# Game Theory: Dynamic Games

Adaptive and Cooperative Algorithms (ECE 457A)

ECE, MME, and MSCI Departments, University of Waterloo, ON, Canada

Course Instructor: Benyamin Ghojogh Fall 2023 **Dynamic Games** 

# **Dynamic Games**

- When the game has some ranges and parameters, the game becomes dynamic.
- In <u>dynamic games</u>, we can <u>find the ranges of parameters</u> which are suitable for the <u>players'</u> payoffs.



- Players: plaintiff and defendant
- The order of playing game:
  - ▶ The plaintiff decides whether to bring suit against the defendant at cost *c*.
  - The plaintiff makes a take-it-or-leave-it settlement offer of s > 0.
  - ► The defendant accepts or rejects the settlement offer.
  - If the defendant rejects the offer, the plaintiff decides whether to give up or go to
  - $\varphi$  trial at a cost p (cost of lawyer) to itself and cost d to the defendant.

If the case goes to trial, the plaintiff wins amount x with probability  $\gamma$  and otherwise wins nothing.



• Payoffs: (plaintiff, defendant)



The plaintiff sues if:

• In case the plaintiff sues and the defendant rejects the settlement, the plaintiff will go to trial if:

$$\gamma x - \ell - p > - \ell \Longrightarrow \gamma x > p.$$
(3)

• The plaintiff prefers the settlement to not suing at all:

$$\underbrace{s-c} > 0 \Longrightarrow s > c. \tag{4}$$

• The plaintiff prefers the settlement to trying again:

$$\underline{s-c} > \underline{\gamma x - c - p} \Longrightarrow \underline{s} > \underline{\gamma x - p}. \tag{5}$$

Game Theory: Dynamic Games



- (Bargaining:
  - ► The plaintiff prefers settlement if:

$$\underline{s-c} > \underline{\gamma x - c - p} \Longrightarrow \underbrace{s > \gamma x - p}$$

The defendant prefers settlement if:

$$-s > -\gamma x - d \implies s < \gamma x + d$$

Equilibrium:  $s = \gamma x + d$ .

(6)

(7)

- Difference from the previous game: the plaintiff pays in advance, without any refund if the
  case settles.
- Payoffs: (plaintiff, defendant)



• Payoffs: (plaintiff, defendant)



The plaintiff sues if:

$$\underbrace{s-c-p>0}_{\gamma x-c-p>0} \Longrightarrow \underbrace{s>c+p}_{\gamma x-p>c}.$$
(8)

• In case the plaintiff sues and the defendant rejects the settlement, the plaintiff will go to trial if:

$$\gamma x - c - p > -c - p \implies \gamma x > 0.$$
(10)

• The plaintiff prefers the settlement to not suing at all:

$$s - c - p > 0 \implies s > c + p. \tag{11}$$

• The plaintiff prefers the settlement to trying again:

$$s - c - p > \gamma x - c - p \implies s > \gamma x. \tag{12}$$

- Difference from the previous game: the plaintiff pays in advance, without any refund if the case settles.
- Payoffs: (plaintiff, defendant)



#### Bargaining:

► The plaintiff prefers settlement if:

$$s - c - p > \gamma x - c - p \Longrightarrow s > \gamma x.$$
 (13)

► The defendant prefers settlement if:

$$-s > -\gamma x - d \Longrightarrow \boxed{s < \gamma x + d.}$$
 (14)

So, the <u>settlement range</u> is  $s \in (\gamma x, \gamma x + d)$ . But as the plaintiff offers the settlement, the <u>equilibrium</u> is  $s = \gamma x + d$  because the plaintiff wants the largest possible s value.

# Acknowledgment

- Some slides of this slide deck are inspired by teachings of <u>Prof. Stanko Dimitrov</u> at the University of Waterloo, Department of Management Science and Engineering.
- Some slides of this slide deck are based on the following book: <u>Eric Rasmusen</u>, "Games and Information: An Introduction to Game Theory", 4th Edition, 2007, [1] <a href="https://www.rasmusen.org/GI/download.htm">https://www.rasmusen.org/GI/download.htm</a>

#### References

[1] E. Rasmusen, *Games and information: An introduction to game theory.* Wiley-Blackwell, 4 ed., 2007.