Game Theory: Dominance and Nash Equilibria

Adaptive and Cooperative Algorithms (ECE 457A)

ECE, MME, and MSCI Departments, University of Waterloo, ON, Canada

Course Instructor: Benyamin Ghojogh Fall 2023

Equilibrium

Equilibrium

- Equilibrium: a strategy profile $s_1^{\bullet} = [s_1^*, s_2^*, \dots, s_n^*]^{\top}$ which is the best strategy for each of the *n* players in the game.
- Equilibrium strategies: the strategies selected by players maximizing their individual payoffs given the strategies of the other players.
- In game theory, we desire to find equilibrium or equilibria in games.
- Two well-known types of equilibria exist:
 - Dominant strategy equilibrium
 - Nash equilibrium

Dominant strategy equilibrium

Dominant strategy equilibrium

• We define *s*_{-*i*} to include the strategies of all players except the *i*-th player:

$$\underbrace{(\underline{s}_{-i})}^{:=} [\underline{s}_1, \dots, \underline{s}_{i-1}, \underline{s}_{i+1}, \dots, \underline{s}_n]^\top.$$

$$(1)$$

• As the players are assumed to be rational, the *i*-th player's best response to the strategies s_{-i} chosen by the other players is the strategy s_i^* resulting in the most payoff for the *i*-th player:

Dominated strategy: a strategy of the *i*-th player is a dominated strategy, denoted by s^d_i, if it is strictly inferior to at least some other strategy of the *i*-th player regardless of what strategies the other players choose.

$$\exists s_i' : \pi_i(s_i^d, s_{-i}) < \pi_i(s_i', s_{-i}), \quad \forall s_{-i}.$$

$$(3)$$

 Dominant strategy: a strategy of the *i*-th player is a (strictly) dominant strategy, denoted by s_i^{*}, if it is strictly greater than all other strategies which the *i*-th player can choose regardless of what strategies the other players choose.

$$\pi_i(\mathbf{s}_i^*, \mathbf{s}_{-i}) \bigoplus \pi_i(\mathbf{s}_i', \mathbf{s}_{-i}), \quad \forall \mathbf{s}_i' \neq \mathbf{s}_i^*, \forall \mathbf{s}_{-i}.$$
(4)

stays 50 (stay), go 82 tany), (90) r3

5_1 = { stry, go} 5, Sstery, iten S_1 290, stay 5-1 Jeos jog /

Dominant strategy equilibrium

 Weak dominant strategy: a strategy of the *i*-th player is a weak dominant strategy, denoted by s_i^{*}, if it results in a higher payoff in some strategy profile and never resulting in a lower payoff. In other words, its payoff is greater than or equal to other strategies of the *i*-th player for all strategies of other players. Moreover, its payoff is strictly greater than other strategies of the *i*-th player for at least some strategies of other players [1]:

- To summarize, a weakly dominant strategy is a strategy which is always at least as good as every other strategy and better than some.
- Weakly dominant strategy equilibrium: the strategy profile found by deleting all the weakly dominated strategies of each player.
- Strictly (Strongly) dominant strategy equilibrium: the strategy profile found by deleting all the strictly dominated strategies of each player.

Iterated-dominance equilibrium

Iterated-dominance equilibrium:

- One way to find the dominant strategy equilibrium is the iterated-dominance equilibrium.
- For this, we delete a strictly/weakly dominated strategy from the strategy set of one
- of the players. This reduces the game matrix to a smaller matrix with less number of cases. We perform this <u>deletion</u> repeatedly. If we can end up with on cell finally, that cell is the strictly/weakly dominant strategy equilibrium.

Nash Equilibrium

Nash Equilibrium

• Nash equilibrium was proposed by John Nash during years 1949 to 1953 [2, 3, 4, 5]. See his Google Scholar:

https://scholar.google.com/citations?user=mYuYWJkAAAAJ&hl=en&oi=sra

• Nash equilibrium: the strategy profile s* is a Nash equilibrium if no player has incentive to deviate from its strategy given that the other players do not deviate [1, 6]:

$$\pi_{i}(s_{i}^{*}, \mathfrak{D}) (\mathfrak{T}_{i}(s_{j}^{*}, \mathfrak{D})), \quad \forall s_{i}^{*}. \quad \forall s_{i}^{*}. \quad (7)$$

- Comparing this equation with Eq. (4) shows that the Nash equilibrium does not have $\forall s_{-i}$.
- In other words, in the <u>Nash equilibrium</u>, all players are happy with their situation and do not wish to deviate from the equilibrium.
- Strict (Strong) Nash equilibrium:

$$\pi_i(s_i^*, s_{-i}^*) \bigotimes \pi_i(s_i', s_{-i}^*), \quad \forall s_i' \not \leftarrow S_i^{\bigstar}$$
(8)

Weak Nash equilibrium:

$$\pi_i(\boldsymbol{s}_i^*, \boldsymbol{s}_{-i}^*) \geq \pi_i(\boldsymbol{s}_i', \boldsymbol{s}_{-i}^*), \quad \forall \boldsymbol{s}_i'.$$
(9)

• Every dominant strategy equilibrium is a Nash equilibrium but not vice versa.

Nash Equilibrium

A way to find the Nash equilibrium in a game is to start from one of the cells in the game matrix and move (deviate) to an adjacent cell if the payoff of the adjacent cell is strictly/weakly greater than that cell. We do this for all cells and players and show the movements by arrows between the cells. The cell(s) where the arrows converge to are the strict/weak Nash equilibria.

Understanding Nash Equilibrium by A Movie Scene

• The bar scene in the movie "A Beautiful Mind" about John Nash.

Nash Equilibrium: Example

Examples for dominant and Nash Equilibria

Equilibria for the Prisoner's Dilemma

Equilibria for the Game of Chicken

Equilibria for Grab the Dollar

Acknowledgment

- Some slides of this slide deck are inspired by teachings of Prof. Stanko Dimitrov at the University of Waterloo, Department of Management Science and Engineering.
- Some slides of this slide deck are based on the following book: Eric Rasmusen, "Games and Information: An Introduction to Game Theory", 4th Edition, 2007, [1] https://www.rasmusen.org/GI/download.htm
- A good lecture series on YouTube, by William Spaniel, about fundamentals of game theory (named "Game Theory 101: Strategic Form Games"): https://www.youtube.com/playlist?list=PL7F0C4C7A4C910AF5
- An important scholar in the area of game theory: Martin J. Osborne, who used to be a professor at the University of Toronto. Google Scholar: https://scholar.google.com/citations?user=lx-4Hd8AAAAJ&hl=en&oi=sra

References

- [1] E. Rasmusen, Games and information: An introduction to game theory. Wiley-Blackwell, 4 ed., 2007.
- J. F. Nash Jr, "Equilibrium points in n-person games," Proceedings of the national academy [2] of sciences, vol. 36, no. 1, pp. 48-49, 1950.
- [3] J. F. Nash Jr, "The bargaining problem," Econometrica: Journal of the econometric society, pp. 155-162, 1950. E
- J. Nash, "Non-cooperative games," Annals of mathematics, pp. 286–295, 1951. [4]
- J. Nash, "Two-person cooperative games," Econometrica: Journal of the Econometric Society, pp. 128-140, 1953.
- M. J. Osborne and A. Rubinstein, A course in game theory. [6] MIT press, 1994.