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Fuzzy inference system

A Fuzzy Inference System (FIS) has three main parts:
▶ fuzzification
▶ fuzzy rules (fuzzu reasoning)
▶ defuzzification
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Fuzzification
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Fuzzification in fuzzy system

The input of fuzzy rules should be fuzzy membership function values.

This is while the signals in the real-world are crisp and not fuzzy. Therefore, the crisp
signals should be converted to fuzzy membership functions.

Fuzzification refers to the representation of a crisp value by a membership function.

This is also justified because a measured signal may not be known to be 100% accurate.
The fuzzy membership values account for the possible noise in the measured crisp signals.

There are several methods for fuzzification. The well-known fuzzification methods are:
▶ singleton method
▶ triangular function method
▶ Gaussian function method
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Fuzzification in fuzzy system

The singleton method for fuzzification makes the following membership function for the
crisp value x0 as follows:

µ(x) = δ(x − x0) =

{
1 if x = x0
0 if x ̸= x0,

(1)

where δ(.) is the Kronecker delta. This fuzzification method treats the crisp value as a
fuzzy value without any fuzziness.
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Fuzzification in fuzzy system

The triangular function method for fuzzification makes the following membership function
for the crisp value x0 as follows:

µ(x) =

{
1− |x−x0|

s
if |x − x0| ≤ s

0 if |x − x0| > s,
(2)

where |.| denotes the absolute value function and s is the length of support set, called the
base length.
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Fuzzification in fuzzy system

The Gaussian function method for fuzzification makes the following membership function
for the crisp value x0 as follows:

µ(x) = exp
(
(
x − x0

σ
)2
)
, (3)

where σ is the standard deviation of the Gaussian function.

Fuzzy Inference System 8 / 44



Defuzzification
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Defuzzification in fuzzy system

The output of fuzzy rules is a fuzzy value.

This is while the signals in the real-world are crisp and not fuzzy. Therefore, the fuzzy
output of fuzzy inference should be converted to a crisp value.

The defuzzified value can be used as an actuator signal for the controllers, for example.

Defuzzification refers to the representation of a membership function as a crisp value.

There are several methods for defuzzification. The well-known defuzzification methods
are:

▶ centroid method
▶ mean of maxima method
▶ smallest of maximum
▶ largest of maximum
▶ bisector of area
▶ threshold method

Fuzzy Inference System 10 / 44



Defuzzification in fuzzy system

The centroid method for defuzzification makes the following crisp value ĉ from the
continuous and discrete membership function µ(x) as follows:

ĉ =

∫
x∈S x µ(x)dx∫
x∈S µ(x)dx

, (4)

ĉ =

∑
xi∈S xi µ(xi )∑
xi∈S µ(xi )

, (5)

respectively, where the integral sign is for integration and it is not a symbolic
representation.
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Defuzzification in fuzzy system
If the membership function is unimodal, the Mean Of Maxima (MOM) method for
defuzzification makes the following crisp value ĉ from the membership function µ(x) as
follows:

ĉ = argmax
x

µ(x). (6)

Assume the membership function is multi-modal, meaning that it has multiple local
maxima where the maximum membership values may or may not be equal to each other.
Let m denote the number of modes of the membership function. Let the membership
values of the local modes be µ1, . . . , µm and let the x ’s where the local modes exist be
c1, . . . , cm. The defuzzified value ĉ is the weighted average of values at the modes of the
membership function:

ĉ =

∑m
i=1 µici∑m
i=1 ci

. (7)
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Defuzzification in fuzzy system

The Smallest Of Maximum (SOM) method and the Largest Of Maximum (LOM)
method for defuzzification make the following crisp value ĉ from the membership function
µ(x) as follows:

ĉ = min
(
argmax

x
µ(x)

)
, (8)

ĉ = max
(
argmax

x
µ(x)

)
, (9)

respectively. If the membership function has only one global maxim, SOM and LOM will
result in the same solution. If it has multiple global maxima, their solutions differ.
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Defuzzification in fuzzy system

The bisector of area method for defuzzification makes the following crisp value ĉ from
the membership function µ(x) as follows:

∫ ĉ

min(S)
µ(x)dx =

∫ max(S)

ĉ
µ(x)dx , (10)

where S is the support set and ĉ is calculated by solving this equation for ĉ.
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Defuzzification in fuzzy system

The threshold method for defuzzification is used in combination of any other
defuzzification method. It uses the α-cut of the membership function, introduced before,
rather than the original membership function, in other methods for defuzzification.

Example: threshold method along with the mean of maxima method
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Fuzzy reasoning
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Crisp relation versus fuzzy relation
Consider a crisp function, or a crisp relation, as follows:

y = R(x). (11)

For this crisp relation, x is a value and y will be a corresponding value. Therefore, the
crisp relation is a curve.

Now, consider a fuzzy relation as follows:

y = R(x). (12)

For this fuzzy relation, x is a range of values and y will be a corresponding range of
values. Therefore, the fuzzy relation is an interval-values function.
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Fuzzy reasoning & composition rule of inference

Fuzzy reasoning, also called approximate reasoning, is an inference procedure that derives
conclusions from a set of if-then rules.

The composition rule of inference is defined as follows.

Recall the implication and the rule of inference introduced before. Let R be a fuzzy
relation on X × Y , i.e., R(x , y) : X → Y , with the membership function µR(x , y).

Consider the relation R(x , y) : X → Y . Given the fuzzy set A in X to this relation will
result in the fuzzy set B according to this relation.

To obtain the resulting fuzzy set B, a cylindrical extension of A, i.e., C(A) should be
constructed. Let µC(A)(x) denote the membership function of C(A).

Then, the composition operator is defined and calculated as the T-norm of the the
cylindrical extension of A and the relation, i.e.,
µC(A)(x) ∧ µR(x , y) = min

(
µC(A)(x), µR(x , y)

)
. Note that the cylindrical extension is just

for matching dimensions between A and R, so it is not an important thing.

The antecedent fuzzy set B is found as the projection of the composition operator onto
the fuzzy set Y which is the resulting set of relation:

µB(y) =
∨
x

(
µC(A)(x) ∧ µR(x , y)

)
= max

x

(
min

(
µC(A)(x), µR(x , y)

))
. (13)

This composition is referred to as max-min composition.
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Fuzzy reasoning & composition rule of inference

Recall that the implication A → B in the fuzzy logic means as follows. The rule says if x
is A, then y is B. Now, x is A′; therefore, y is B′, where A′ and B′ can be far from or
close to A and B, respectively.

In the fuzzy logic, this inference is as follows:

B′ = A′ ◦ R = A′ ◦ (A → B), (14)

where ◦ denotes giving A′ as the input to the fuzzy relation R.

According to the max-min composition, if x is A′, then the antecedent B′ is calculated as:

µB′ (y) =
∨
x

(
µA′ (x) ∧ µR(x , y)

)
= max

x

(
min

(
µA′ (x), µR(x , y)

))
. (15)
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Fuzzy reasoning: single rule with single antecedent
Consider a single rule with a single antecedent. In this case, we have:

▶ rule: if x is A, then y is B
▶ fact: x is A′

▶ conclusion: y is B′

The relation is R : A → B so its membership function is:

µR(x , y) = µA(x) ∧ µB(y). (16)

The inference is:

C ′ = A′ ◦ R = A′ ◦ (A → B). (17)

In this case, the membership grade of inference is:

µB′ (y) =
∨
x

(
µA′ (x) ∧ µR(x , y)

) (16)
=

∨
x

(
µA′ (x) ∧

(
µA(x) ∧ µB(y)

))
=

∨
x

(
µA′ (x) ∧ µA(x)

)
︸ ︷︷ ︸

w

∧µB(y) = w ∧ µB(y), (18)

where w is the degree of validity defined as:

w :=
∨
x

(
µA′ (x) ∧ µA(x)

)
. (19)
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Fuzzy reasoning: single rule with single antecedent

We found:

µB′ (y) =
∨
x

(
µA′ (x) ∧ µA(x)

)
︸ ︷︷ ︸

w

∧µB(y) = w ∧ µB(y).

Fuzzy Inference System 21 / 44



Fuzzy reasoning: single rule with multiple antecedents

Consider a single rule with a multiple antecedents. In this case, we have:
▶ rule: if x is A and y is B, then z is C
▶ fact: x is A′ and y is B′

▶ conclusion: z is C ′

The relation is R : A× B → C so its membership function is:

µR(x , y , z) = µA(x) ∧ µB(y) ∧ µC (z). (20)

The inference is:

C ′ = (A′ × B′) ◦ R = (A′ × B′) ◦ (A× B → C). (21)
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Fuzzy reasoning: single rule with multiple antecedents
In this case, the membership grade of inference is:

µC ′ (z) =
∨
x,y

((
µA′ (x) ∧ µB′ (y)

)
∧ µR(x , y , z)

)
=

∨
x,y

((
µA′ (x) ∧ µB′ (y)

)
∧
(
µA(x) ∧ µB(y) ∧ µC (z)

))
=

∨
x,y

(
µA′ (x) ∧ µB′ (y) ∧ µA(x) ∧ µB(y)

)
∧ µC (z)

=
∨
x

(
µA′ (x) ∧ µA(x)

)
︸ ︷︷ ︸

w1

∧
∨
y

(
µB′ (y) ∧ µB(y)

)
︸ ︷︷ ︸

w2

∧µC (z)

= (w1 ∧ w2)︸ ︷︷ ︸
w

∧µC (z). (22)

where w1 and w2 are the degrees of validity of x and y , respectively, and w is the firing
strength:

w1 :=
∨
x

(
µA′ (x) ∧ µA(x)

)
, (23)

w2 :=
∨
x

(
µB′ (y) ∧ µB(y)

)
, (24)

w := w1 ∧ w2. (25)

Fuzzy Inference System 23 / 44



Fuzzy reasoning: single rule with multiple antecedents

In general, if there are n antecedents, the membership of the consequence of inference is:

µC ′ (y) = (w1 ∧ w2 ∧ · · · ∧ wn)︸ ︷︷ ︸
w

∧µC (z). (26)
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Fuzzy reasoning: multiple rules with multiple antecedents
Consider multiple rules with a single antecedent. In this case, we have:

▶ rule 1: if x is A1 and y is B1, then z is C1
▶ rule 2: if x is A2 and y is B2, then z is C2
▶ fact: x is A′ and y is B′

▶ conclusion: z is C ′

The relations are R1 : A1 × B1 → C1 and R2 : A2 × B2 → C2, so their membership
functions are:

µR1
(x , y , z) = µA1

(x) ∧ µB1
(y) ∧ µC1

(z), (27)

µR2
(x , y , z) = µA2

(x) ∧ µB2
(y) ∧ µC2

(z). (28)

The total rule is the union (S-norm or maximum) of all rules:

R = R1 ∨ R2. (29)

The inference is:

C ′ = (A′ × B′) ◦ (R1 ∨ R2) =
(
(A′ × B′) ◦ R1

)
∨
(
(A′ × B′) ◦ R2

)
= C ′

1 ∨ C ′
2, (30)

where
(
(A′ × B′) ◦ R1

)
and

(
(A′ × B′) ◦ R2

)
are each a rule with multiple antecedents,

introduced before. C ′
1 and C ′

2 are each the consequent of the two rules. The total
consequence is the union (S-norm or maximum) of the consequences of the rules.
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Fuzzy reasoning: multiple rules with multiple antecedents
In general, for r rules, we have: C ′ = C ′

1 ∨ C ′
2 ∨ · · · ∨ C ′

r .
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Mamdani fuzzy system
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Mamdani fuzzy system
In Mamdani fuzzy model, proposed in 1974 [1], the max-min composition is used.
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Input-output curve

It is possible to break down the input range with fine steps. Then, we calculate the
defuzzified output y for every input x .

The output y is obtained from the fuzzy inference system, such as the Mamdani model.

This provides an input-output curve where the the corresponding output of the fuzzy
system is known for every input of the fuzzy system.

Therefore, fuzzy system is run only once for each input value and we do not to run it
again every time. It makes the process faster in practice.
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Sugeno fuzzy system
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Sugeno fuzzy system
The Sugeno fuzzy system, also called the Takagi-Sugeno-Kang (TSK) fuzzy system, was
proposed in 1985 [2].
The consequent in the Sugeno fuzzy model is a function of the antecedent. In other
words, the defuzzification process is included in the execution of the fuzzy rules.
For example, the fuzzy rules in this system are in this form:

▶ If x is A1 and y is B1, then z = f1(x , y),
▶ If x is A2 and y is B2, then z = f2(x , y),

where every fi (., .),∀i is a crisp function.
Usually, the polynomial functions are used in the Sugeno fuzzy system.

▶ Sugeno zero-order model: fi (x , y) = ci ,
▶ Sugeno first-order model: fi (x , y) = aix + biy + ci ,
▶ and so on.

An example for one input x and one output y is as follows:
▶ If x is small, then y = 0.1x + 3.2
▶ If x is medium, then y = 0.5x + 2
▶ If x is large, then y = x − 1

The overall output (aggregation) z is obtained through a weighted average of the outputs
of each rule:

z =

∑n
i=1 wizi∑n
i=1 wi

, (31)

where n is the number of rules, zi is the output of the i-th rule, and wi is the firing
strength for the i-th rule.
As a result, Sugeno fuzzy system does not need any defuzzifier as its output is already
crisp.

Fuzzy Inference System 31 / 44



Sugeno fuzzy system
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Tsukamoto fuzzy
system
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Tsukamoto fuzzy system

In the Tsukamoto fuzzy system, the consequent of every fuzzy rule is obtained as the
value in which the membership function of consequence equals the firing strength. In
other words, the consequent of every fuzzy rule is the inverse of its membership function
when it is equal to the firing strength of that rule.

Of course, the output membership function should be a monotonic mapping, either
increasing or decreasing, in this fuzzy system.

The overall output (aggregation) is obtained through a weighted average:

y =

∑n
i=1 wizi∑n
i=1 wi

, (32)

where n is the number of rules, zi is the output of the i-th rule, and wi is the firing
strength for the i-th rule.

As a result, Tsukamoto fuzzy system does not need any defuzzifier as its output is already
crisp.
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Tsukamoto fuzzy system
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Advanced Topics in
fuzzy logic
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Advanced Topics in fuzzy logic

Type-2 fuzzy sets and systems (1975 by Zadeh) [3]
▶ In type-2 fuzzy sets, the membership function has also uncertainty.

Complex fuzzy logic (2003) [4, 5, 6]

Quaternion fuzzy logic (2020) [7]
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Fuzzy systems in
programming
languages
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Fuzzy systems in programming languages

Fuzzy system in MATLAB:
▶ Fuzzy Logic Designer
▶ Fuzzy Logic in Simulink
▶ https://www.mathworks.com/products/fuzzy-logic.html

Fuzzy system in Python: scikit-fuzzy (or skfuzzy) library:
▶ https://pythonhosted.org/scikit-fuzzy/overview.html
▶ https://pypi.org/project/scikit-fuzzy/
▶ https://github.com/scikit-fuzzy/scikit-fuzzy
▶ https://pythonhosted.org/scikit-fuzzy/api/skfuzzy.html
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