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Evolution, Natural Selection, and Darwinism

Biology and geology show that living beings evolve during long-term periods.

According to natural selection, every generation tries to adapt better to the environment
compared to the previous generation.

Genetic Algorithm (GA), proposed by John H. Holland in 1975 [1], is inspired by natural
selection and Darwinism. It is one of the evolutionary algorithms.

Credit of image: https://www.zmescience.com/science/what-is-natural-selection/
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Cost and Optimization
Variables
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Chromosomes

The candidate solutions are called the chromosomes.

Every chromosome has several genes. The genes are the features/dimensions of the
candidate solutions.

Possible ways to create/encode the chromosomes:
▶ value encoding: the genes are float values of the features/dimensions of vector

solutions.
▶ binary encoding: every solution is a scalar and the scalar is converted to a binary

string. Every gene is binary {0, 1}.
▶ order encoding: the genes are integers if we want to find an optimal order of some

integers.
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Fitness/Cost function

The fitness/cost function value is the evaluation of function at a candidate solution.

Usually we want to maximize the fitness function and minimize the cost function. In other
words, fitness function is minus cost function.

Here, in genetic algorithm, we usually maximize a fitness function (or equivalently
maximize the negative cost).

We do it iteratively.

fitness/cost calculation: at every iteration, we calculate the fitness/cost of chromosomes
to see how good they are.
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Natural Selection
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Natural selection

Natural selection: at every iteration, we select some of the chromosomes, from the
current generation, to be the parents of the next generation.

The other chromosomes which are not selected will die without having offspring
(children).

Selective pressure (also called the take-over pressure): the more the selective pressure is,
the more the speed of selecting the elites as parents, so the sooner the elites take over the
population, so the sooner the algorithm converges (the more it exploits rather than
exploring).

There are various ways for natural selection of chromosomes to be parents of the next
generation:

Random selection: selecting k random chromosomes as parents out of the chromosomes
at the existing generation. It has the least amount of selection pressure. It has too much
exploration.

Elitism selection: selecting the top k chromosomes with the best fitness/cost values. It
has the risk of getting stuck in local optimum. It has too much exploitation.
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Natural selection
Proportional selection: for every chromosome, we calculate a probability of being good
(compatible with the environment / having good fitness value):

pi =
fi∑n
j=1 fj

, ∀i ∈ {1, . . . , n}, (1)

where fi is the fitness value for the i-th chromosome and n is the population of
chromosomes at the generation. Every chromosome has its probability for being selected
as a parent of the next generation.

For making the differences of probabilities bolder, we can use this formula:

pi =
fi − fmin∑n

j=1 fj
, ∀i ∈ {1, . . . , n}, (2)

where fmin denotes the minimum fitness among the fitnesses of the chromosomes in the
current generation.

In the calculation of probabilities, If the some (or all) fitness values are negative, we can
add |fmin| to all of them so all of them become nonnegative:

fi := fi + |fmin|, ∀i ∈ {1, . . . , n}, (3)

where |.| denotes the absolute value.
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Natural selection

In computer programming, we can select by probabilities using a roulette wheel:

Stochastic Universal Sampling (SUS) selection: it is similar to the roulette wheel but
with more than one selection pointer. It gives more chance to chromosomes with less
fitness value.
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Natural selection

Rank-based selection: Close to the termination, the probabilities in the roulette wheel
with probabilities will become very close to each other. So, it will be better to rank the
chromosomes by their fitness values in the late iterations. Then, we create the roulette
wheel using the probabilities proportional to the ranks. This gives more chance to all
chromosomes.
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Natural selection
Tournament selection: We randomly group the chromosomes and then, we randomly
sample from the groups.

This method is using stratified sampling in which the data are grouped into multiple
strata and samples are drawn from the strata. For more information on stratified sampling
refer to our tutorial [2].

A special case of the tournament selection: first we randomly select k1 chromosomes and
then, we select k2 best chromosomes among them with best fitness values.
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Cross-over
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Cross-over

Cross-over: Mating of parent chromosomes to generate offsrpings (children).

It is useful for exploration.

There can be cross-over either with two or multiple (more than two) parents.

From every two or more than two parents, we can generate either only one or multiple
offsprings.
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Cross-over

There are various ways for cross-over. Here, we explain the cross-over of two parents. These
methods can be generalized to have multiple parents per off-spring.

One-point cross-over:

Multi-point cross-over:
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Cross-over

Uniform cross-over:
▶ We randomly choose the j-th gene from one of the parents for the j-th gene in the

offspring.
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Cross-over
Arithmetic mean cross-over:

offspring1 = αx1 + (1− α)x2, (4)

offspring2 = αx2 + (1− α)x1, (5)

where α ∈ (0, 1).

Geometric mean cross-over:

offspring1 = xα
1 × x (1−α)

2 , (6)

offspring2 = xα
2 × x (1−α)

1 , (7)

where α ∈ (0, 1).
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Cross-over
UNDX (Unimodal Distribution Crossover):

▶ It is multi-parent crossover method.
▶ We fit a unimodal Gaussian distribution N (µ,Σ) to the m parents, where the mean

and covariance of the distribution are calculated as:

Rd ∋ µ =
1

m

m∑
i=1

x i , (8)

Rd×d ∋ Σ =
1

m

m∑
i=1

(x i − µ)(x i − µ)⊤, (9)

where m is the number of parents (e.g., m = 2).
▶ Then, we sample as many offsprings as desired from this Gaussian distribution.

offspring ∼ N (µ,Σ). (10)

Metaheuristic Optimization: Genetic Algorithm 18 / 26



Cross-over
PCX (Parent-Centeric Crossover):

▶ Rather than one Gaussian distribution to the m parents, we fit a Gaussian Mixture
Model (GMM) with m modes.

▶ For more information on fitting mixture distributions using expectation
maximization, refer to our tutorial [3].

▶ GMM using sklearn in Python: https://scikit-learn.org/stable/modules/
generated/sklearn.mixture.GaussianMixture.html

SPX (Simplex Crossover):
▶ We consider the m parents as m corners of a simplex in the space.
▶ Then, we sample the offpring(s) from the region inside the simplex.
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Mutation
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Mutation

Mutation: Random changes to the offsprings after crossover. Useful for exploitation.

Uniform mutation: We generate random probability for every gene, i.e.,
pj ∈ [0, 1], ∀j ∈ {1, . . . , d}. Then, for the top k genes with highest probabilities (e.g.,
k = 1), we change genes’ values to random values in the range of that feature.

Bit-flip mutation:

Swap mutation:
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Mutation

Scramble mutation:

Inversion mutation:

Macro mutation (headless chicken): this mutation is implemented as a crossover of the
chromosome and a random chromosome, using any of the crossover methods.
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Flowchart
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Termination and Flowchart
Termination criterion:

▶ reaching maximum number of iterations
▶ reaching maximum elapsed (passed) time
▶ reaching small enough cost (large enough fitness) compared to a known threshold
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A good web link about genetic algorithm:
https://medium.com/@AnasBrital98/genetic-algorithm-explained-76dfbc5de85d

Surveys on genetic algorithm variants: [4, 5]
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