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Idea and Concepts
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The Idea

In genetic algorithm, the chromosomes (the candidate solutions) are multi-dimensional
vectors or matrices.

In genetic programming, the chromosomes (the candidate solutions) are tree data
structures.

Genetic programming was first proposed in 1985 [1].

It tries to extend computational intelligence to programming and function generation.

It can be used for logical expressions:
▶ Tree nodes, except the terminal nodes, are logical operators such as AND, OR,

NOT, etc.
▶ Terminal nodes are are the binary variables.

It can be used for function expressions:
▶ Tree nodes, except the terminal nodes, are functions such as multiplication, division,

addition, subtraction, sine, cosine, logarithm, etc.
▶ Terminal nodes are are the continuous variables.
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Concepts in Genetic Programming

A tree has some nodes starting with a root node.

A node may or may not have a child or multiple children. When drawing the tree, every
node is connected to its children by lines.

A node without any children is a terminal node.

Branching factor: The number of children at every tree node. The larger the branching
factors, the more the width of the tree and usually the less the depth of the tree.

Terminal set: the set of variables which are represented as the terminal nodes.

Function set: the set of functions or operators which are represented as the nodes
excluding the terminal nodes.

Semantic rules: the rules for operations or functions which restrict the structure of tree
from being any structure.
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Example Trees
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Logic Example
Desired: x1 XOR x2
According to the truth table in logic, XOR can be stated as:

x1 XOR x2 = NOT
(
(x1 AND x2) OR

(
(NOT x1) AND (NOT x2)

))
Terminal set: {x1, x2}
Function set: {AND, OR, NOT}
Semantic rules: The operators AND and OR have two inputs each and the operator NOT
has one input.
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Function Example

Desired: y = x ln(a) + sin(z)
exp(−x)

− 1.5

Terminal set: {x , a, z, 1.5,−1}
Function set: {×, /,+,−, ln, exp, sin}
Semantic rules: the domain of logarithm is non-negative values and we should not have
division by zero.
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Genetic Programming
Algorithm
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Genetic Programming Algorithm: Goal

Goal of genetic programming:
▶ We have a dataset (also called truth table) where every row has the input values

and the corresponding ground-truth label or output value.
▶ The goal is to find an expression of functions/operators which fits to this table and

can predict the labels as accurate as possible.
▶ It is similar to regression or classification problem in machine learning where we fit a

learning model to predict as desired.
▶ However, the big difference from machine learning is that genetic programming

finds an expression (combination of functions or operators) to fit the dataset but
machine learning learns some parameters of a model to fit the dataset!
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Genetic Programming Algorithm: Initial Trees

For generating every initial chromosome (candidate solution), we select a random root
node from the function set.

For generating the initial trees (chromosomes):
▶ For every node, we first decide whether it is a function node or terminal node.

⋆ If the depth at that node has reached the maximum depth, it must be a
terminal node.

⋆ If the depth at that node has not reached the maximum depth yet, we have a
probability p ∈ [0, 1] for whether the node is a function node or a terminal
node. The probability for being a terminal node (i.e., a variable node) is 1−p.

▶ For every node, we can let the branching factor b at every node be a random
variable with Poisson distribution:

b ∼ P(b;λ) =
λbe−λ

b!
, (1)

where the random variable b is a non-negative integer and λ > 0 is the
hyperparameter of the distribution (e.g., λ = 3). The larger the λ, the larger the
mean of distribution so the more probable it becomes to draw larger integers.
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Genetic Programming Algorithm: Cost/Fitness

Every tree structure, i.e., every combination of functions/operators, has some fitness or
cost value.

For a tree structure, the cost value can be calculated as the following:
▶ Assume the dataset has r instances {x1, . . . , x r} and the ground-truth labels are
{y1, . . . , yr}. Every data instance x i has d features {xi1, . . . , xid}.

▶ Every tree structure represents an function expression where the variables of
function are all or a subset of the d features.

▶ We feed the every instance of dataset, {x1, . . . , x r}, to the function expression and
it outputs the predicted labels {ŷ1, . . . , ŷr} corresponding to the instances.

▶ The cost for the tree structure can be the mean squared error between the
ground-truth and predicted labels:

f (tree) =
1

r

r∑
i=1

(ŷi − yi )
2. (2)

▶ If the number of instances in the dataset is too large, i.e., r ≫ 1, we may use a
subset of rows for calculating the cost. The subset can be the randomly sampled
rows from the table for evaluating the cost of the tree.
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Genetic Programming Algorithm: Crossover
For cross-over:

▶ For every parent tree, we divide the tree into two partitions from one of the lines in
the tree.

▶ We take the partition containing the root from one of the parents, call it parent 1.
We take the partition not containing the root from the other parent, call it parent 2.

▶ We transplant the partition pf parent 2 to the partition of parent 2 to generate the
offspring.

▶ Depending on which parent to use as parent 1, we can have two offsprings.
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Genetic Programming Algorithm: Mutation

For mutation, we can perform any of the following mutation methods:
▶ Function mutation: we replace one or several function nodes with other functions in

the function set.

▶ Terminal mutation: we replace one or several terminal nodes with other variables in
the terminal set.
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Genetic Programming Algorithm: Mutation

For mutation, we can perform any of the following mutation methods:
▶ Swapping mutation: for the functions sensitive to order of variables, we can swap

their sub-trees.

▶ Truncation (or pruning) mutation: we consider a sub-tree in the tree, remove it, and
replace it with a random terminal node from the terminal set.
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Genetic Programming Algorithm: Mutation

For mutation, we can perform any of the following mutation methods:
▶ Growing mutation: we consider a terminal node in the tree and grow it with some

other random functions from the function set and random terminal nodes from the
terminal set.

▶ Permutation of terminal nodes: we permute some or all the terminal nodes
randomly.
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Genetic Programming Algorithm: Mutation

For mutation, we can perform any of the following mutation methods:
▶ Editing mutation: wherever we see a sub-tree which we know is not useful, we can

edit it to a useful sub-tree. For this, we need to have hard rules for detecting useless
functions. Example: replace x2 × sin(x3) gets replaced by x2 × x3.
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Genetic Programming Algorithm: Mutation

For mutation, we can perform any of the following mutation methods:
▶ Building block operators: if we have a list of correct and useful building blocks

(sub-trees) of operators, we can replace a sub-tree from the tree with a building
block of operators. Note that there is also a variant of genetic programming, named
building block genetic programming [2], which makes the trees from the building
blocks or sub-tress from scratch.
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Genetic Programming Algorithm

Algorithm Genetic Programming

Input: the truth table, the terminal set, the function set, the seman-
tic rules
//Initialize the chromosomes (tree structures) {Ti}ni=1:
for tree Ti ∈ {T1, . . .Tn} do

Ti ← Generate Tree(depth max, λ, p)
Evaluate the cost of tree Ti

if cost(Ti ) < best cost then
best cost ← cost(Ti )
best solution ← Ti

//Search iteratively:
while not converged do

for tree Ti ∈ {T1, . . .Tn} do
Evaluate the cost of tree Ti

if cost(Ti ) < best cost then
best cost ← cost(Ti )
best solution ← Ti

Natural selection of best parents
Cross over of parents
Mutation of some trees

Return best solution T
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