Game Theory: Mixed Strategy

Adaptive and Cooperative Algorithms (ECE 457A)

ECE, MME, and MSCI Departments, University of Waterloo, ON, Canada

Course Instructor: Benyamin Ghojogh Fall 2023 Introduction

Introduction

- So far, the action space was discrete and finite. But what if the actions are continuous, such as price, volume, etc.
- The strategies for discrete actions are pure strategies because the players choose one of actions each:

$$s_i: w_i \to a_i,$$
 (1)

where s_i and a_i are the pure strategy and pure action of the i-th player and w_i is the realization of game which it responds to by the strategy.

 The strategies for continuous actions are mixed strategies because we may have a mixture of actions and not pure actions:

$$s_i: w_i \to m(a_i),$$
 (2)

where s_i and a_i are the mixed strategy and pure action of the i-th player and w_i is the realization of game which it responds to by the strategy.

• Here, $m(a_i)$ is a probability density function (PDF) on the action a_i ; in other words, it is the **probability** that the i-th player plays action a_i :

$$m \ge 0, \quad \int_{A_i} m(a_i) da_i = 1. \tag{3}$$

• A completely mixed strategy puts positive probability on every action; therefore, m > 0.

The welfare game

• Consider the welfare game:

		pauper		
		look for job	I not look for job	
government .	aid	3,2	-1,3	
	o aid	ارا-	0,0	

- It does not have a pure Nash equilibrium or a pure dominant strategy.
- However, it has a mixed Nash equilibrium.
- We can consider probabilities for playing the actions:
 - \triangleright θ : probability of action "aid"
 - ▶ 1θ : probability of action "no aid"
 - γ: probability of action "look for job"
 - ▶ 1γ : probability of action "not look for job"

		pauper	
	_	130k for job(8)	not look for job (1-8)
government	aid(0)	3,2	-1,3
	aid(1-0)		0,0

Nash Equilibrium in Mixed Strategy

Nash Equilibrium in Mixed Strategy

- In the mixed strategy, we can find the Nash equilibrium with two approaches:
 - first-order condition
 - payoff-equating method

First-order Condition

Expectation (expected value) for discrete random variable X:

$$\mathbb{E}[X] = \sum_{x} x \mathbb{P}(x),\tag{4}$$

where x is the value(s) that the random variable X can take and $\mathbb{P}(x)$ is the probability for the taking value x.

The expected payoff for the government player:

$$\pi_{\mathsf{government}} = \theta (3\gamma + (-1)(1-\gamma)) + (1-\theta)((-1)\gamma + (0)(1-\gamma))$$
$$= 5\theta\gamma - \theta - \gamma.$$

• The expected payoff for the pauper player:

$$\pi_{\mathsf{pauper}} = \gamma \big(2\theta + 1(1-\theta) \big) + (1-\gamma) \big(3\theta + (0)(1-\theta) \big)$$

= $-2\theta\gamma + \gamma + 3\theta$.

First-order Condition

- In the mixed strategy, we can find the Nash equilibrium with two approaches:
 - first-order condition
 - payoff-equating method
- In the first-order condition method:
 - ▶ We use the fact that at the maximum of payoff, the gradient of payoff is zero.
 - We can also use second-order condition where the second-order derivative should be non-positive at the maximum.
- In the welfare game:

$$\begin{split} &\pi_{\mathsf{government}} = 5\theta\gamma - \theta - \gamma \implies \frac{\partial \pi_{\mathsf{government}}}{\partial \theta} = 5\gamma - 1 \stackrel{\mathsf{set}}{=} 0 \implies \gamma = 0.2, \\ &\frac{\partial^2 \pi_{\mathsf{government}}}{\partial \theta^2} = 0 \le 0 \qquad \checkmark \\ &\pi_{\mathsf{pauper}} = -2\theta\gamma + \gamma + 3\theta \implies \frac{\partial \pi_{\mathsf{pauper}}}{\partial \gamma} = -2\theta + 1 \stackrel{\mathsf{set}}{=} 0 \implies \theta = 0.5, \\ &\frac{\partial^2 \pi_{\mathsf{pauper}}}{\partial \phi^2} = 0 \le 0 \qquad \checkmark \end{split}$$

• So, in the equilibrium, government will aid with probability 0.5 (and will not aid with probability 0.5) and the pauper will look for a job with probability 0.2 (and will not look for a job with probability 0.8).

Payoff-Equating Method

		pauper	
		(الا) طوز الله عاددا	not look for job (1-8)
government	aid(0)	3,2	-1,3
-	aid(1-0)		0,0

- In the payoff-equating method:
 - When a player uses a mixed strategy in equilibrium, it must get the same payoff from each of the pure strategies used in the mixed strategy.
 - Otherwise (if not equal), then the rational player plays the strategy with higher payoff more frequently, i.e., with probability 1.
- In the welfare game:

$$\begin{split} &\pi_{\text{government}}(\text{aid}) = 3\gamma + (-1)(1-\gamma), \\ &\pi_{\text{government}}(\text{no aid}) = (-1)\gamma + (0)(1-\gamma), \\ &\pi_{\text{pauper}}(\text{look for job}) = 2\theta + 1(1-\theta), \\ &\pi_{\text{pauper}}(\text{no look for job}) = 3\theta + 0(1-\theta). \end{split}$$

Payoff-Equating Method

• In the welfare game:

$$\begin{split} &\pi_{\mathsf{government}}(\mathsf{aid}) = 3\gamma + (-1)(1-\gamma), \\ &\pi_{\mathsf{government}}(\mathsf{no}\;\mathsf{aid}) = (-1)\gamma + (0)(1-\gamma), \\ &\pi_{\mathsf{pauper}}(\mathsf{look}\;\mathsf{for}\;\mathsf{job}) = 2\theta + 1(1-\theta), \\ &\pi_{\mathsf{pauper}}(\mathsf{no}\;\mathsf{look}\;\mathsf{for}\;\mathsf{job}) = 3\theta + 0(1-\theta). \end{split}$$

Pay-off equating method:

$$\pi_{\mathsf{government}}(\mathsf{aid}) = \pi_{\mathsf{government}}(\mathsf{no aid}) \implies 3\gamma + (-1)(1 - \gamma) = (-1)\gamma + (0)(1 - \gamma)$$
 $\implies \gamma = 0.2,$
 $\pi_{\mathsf{pauper}}(\mathsf{look for job}) = \pi_{\mathsf{pauper}}(\mathsf{no look for job}) \implies 2\theta + 1(1 - \theta) = 3\theta + 0(1 - \theta)$
 $\implies \theta = 0.5.$

• So, in the equilibrium, government will aid with probability 0.5 (and will not aid with probability 0.5) and the pauper will look for a job with probability 0.2 (and will not look for a job with probability 0.8).

Discoordination games:

- ▶ a single equilibrium in mixed strategies
- the payoffs are:
 - \star either a > c, d > b, x > w, y > z
 - \star or c > a, b > d, w > x, z > y
- example: the welfare game

		pauper	
		look for job	I not look for job
government	aid	3,2	-1,3
	no aid	ارا–	0,0

Coordination games:

- three equilibria:
 - * two symmetric equilibria in pure strategies
 - ★ one symmetric equilibrium in mixed strategies
- the payoffs are: a > c, d > b, w > x, z > y
- example: the ranked coordination game

		floppy seller	
		large	small
computer seller	lavge	2,2	-1,-1
	small	-1,-1	أوا

Contribution games:

- three equilibria:
 - ★ two asymmetric equilibria in pure strategies
 - ★ one symmetric equilibrium in mixed strategies
- the payoffs are:
 - \star c > a, b > d, x > w, y > z
 - ***** moreover, we have either b > c, y > x or c > b, x > y

Acknowledgment

- Some slides of this slide deck are inspired by teachings of Prof. Stanko Dimitrov at the University of Waterloo, Department of Management Science and Engineering.
- Some slides of this slide deck are based on the following book: Eric Rasmusen, "Games and Information: An Introduction to Game Theory", 4th Edition, 2007, [1] https://www.rasmusen.org/GI/download.htm

References

[1] E. Rasmusen, Games and information: An introduction to game theory. Wiley-Blackwell, 4 ed., 2007.