
Metaheuristic Optimization:
Local Search (Hill Climbing)

Adaptive and Cooperative Algorithms (ECE 457A)

ECE, MME, and MSCI Departments,
University of Waterloo, ON, Canada

Course Instructor: Benyamin Ghojogh
Fall 2023

Metaheuristic Optimization: Local Search (Hill Climbing) 1 / 20



Local Search (Hill
Climbing)

Metaheuristic Optimization: Local Search (Hill Climbing) 2 / 20



Local Search (Hill Climbing)
In local search, also called hill climbing algorithm, we get some neighborhood and we
search for the best fitness value among different points in the neighborhood.

We can consider a neighborhood around the current solution and either evaluate all points
in the neighborhood or sample from the neighborhood.

Algorithm Local search

Initialize the solution x
while not converged do

Generate neighborhood N (x)
for points in N (x) do

Evaluate fitness function
if better fitness then

Update the solution
Optional: Break the inner loop

Return the solution x

Metaheuristic Optimization: Local Search (Hill Climbing) 3 / 20



Improving Local Search

Local search is prone to get stuck in local best.
We can improve local search in various ways:

Iterative with different initializations
▶ Multi-start local search
▶ Iterative local search (ILS)

Change in objective function (landscape) for simplifying the problem
▶ Guided local search (GLS)
▶ Smoothing method
▶ Noisy method (jitter)

Using different neighborhoods
▶ Variable Neighborhood Search (VNS)
▶ Generalized Neighborhood Search (GNS)

Accepting non-improving neighbors: such as simulated annealing (it will be explained
later)

Metaheuristic Optimization: Local Search (Hill Climbing) 4 / 20



Iterative with different
initializations

Metaheuristic Optimization: Local Search (Hill Climbing) 5 / 20



Multi-start local search

In multi-start local search, after finding the local best, we sample a point in some
neighborhood of the solution and restart the local search algorithm from that point.

We can do this for several times and select the best solutions among them.

Algorithm Multi-start local search

solutions = []
Initialize the solution x
for multiple times do

x ← Local-search(x)
solutions.append(x)
x ← sample from N (x)

Return best among solutions

Metaheuristic Optimization: Local Search (Hill Climbing) 6 / 20



Iterative local search (ILS)
The multi-start local search may still get stuck in the same local best every time.

In Iterative local search (ILS) [1, 2], after finding the local best, we sample a point, not in
some neighborhood of the solution, but randomly from somewhere in the landscape.
Then, we restart the local search algorithm from that point.

This lets local search start from various points in the landscape.

We can do this for several times and select the best solutions among them.

Algorithm Iterative local search (ILS)

solutions = []
Initialize the solution x
for multiple times do

x ← Local-search(x)
solutions.append(x)
x ← sample from the optimization landscape

Return best among solutions

Metaheuristic Optimization: Local Search (Hill Climbing) 7 / 20



Change in objective
function

Metaheuristic Optimization: Local Search (Hill Climbing) 8 / 20



Guided local search (GLS)
Guided local search (GLS) (1997) [3] modifies the landscape gradually to simplify the
landscape so local search does not get stuck in the local bests.

GLS does not work on all problems. For using it, the features should be represented as
binary (existing or not existing).

If it is not binary, we may be able to convert it to a binary string either by thresholding
each feature or converting the float values to binary representation.

Assume in some iteration of the local search, the solution is x = [x1, . . . , xd ]
⊤ ∈ [0, 1]d .

We define:

Ij (x) :=
{

1 if xj = 1 (if xi contributes to the solution)
0 otherwise.

(1)

In GLS, every feature xj should also have some cost cj . For example, the overall cost can
be the summation of cj ’s.

We also define the utility function for a solution x :

Uj (x) = Ij (x)×
cj

1 + pj
, (2)

where pj , ∀j ∈ {1, . . . , d} are the penalties initialized to zero. Every time, we see which of

{Uj (x)}dj=1 is the largest. The penalty pj is incremented by one if Uj (x) is the largest
utility.

Metaheuristic Optimization: Local Search (Hill Climbing) 9 / 20



Guided local search (GLS)

GLS penalizes the features which exist in the minimum solution of optimization but have
highest value of cost!

However, it does not desire to penalize the same feature ever and ever again. So, every
time it penalizes a feature, it reduces its change to be penalized again by putting pj in the
denominator of its utility.

Then, after incrementing the penalty, GLS modifies the cost function by regularizing it:

c ′(x) = c(x) + λ
d∑

j=1

pj Ij (x), (3)

where λ > 0 is the regularization parameter.

This regularized cost function finds local minimums and penalize them to become peaks
rather than valleys. Then, the cost function becomes smoother and easier for the global
minimum to be found.

Metaheuristic Optimization: Local Search (Hill Climbing) 10 / 20



Guided local search (GLS)

Algorithm Guided local search (GLS)

solutions = []
Initialize the solution x as a binary vector
while not converged do

x ← Local-search(c(x), x)
solutions.append(x)
for j ∈ {1, . . . , d} do

Ij (x) :=
{

1 if xj = 1 (if xi contributes to the solution)
0 otherwise.

Uj (x) = Ij (x)×
cj

1+pj

k = argmax{U1(x), . . . ,Ud (x)}
pk = pk + 1

c(x)← c(x) + λ
∑d

j=1 pj Ij (x)

Return best among solutions

Metaheuristic Optimization: Local Search (Hill Climbing) 11 / 20



Smoothing method

We can iteratively and gradually smooth the objective function.

In this way, the local bests of the object function gradually disappear so that we can find
the global bests more easily. In initial iterations, if we get stuck in a local best, we will
gradually get out of it to be able to find the global best.

We can use any method for smoothing the function. For example, we can use a window
averaging. In this approach, we make a grid with fine steps in the domain of function and
for every point in the grid, the cost/fitness at the point is replaced by the cost/fitness of
its neighboring points in some window in the grid.

The size of the window is a hyperparameter determined at every iteration. The larger the
window size is, the smoother function becomes.

Metaheuristic Optimization: Local Search (Hill Climbing) 12 / 20



Smoothing method

Metaheuristic Optimization: Local Search (Hill Climbing) 13 / 20



Smoothing method

Algorithm Smooth-the-objective

Input: landscape f (.), window size s
make a grid with some fine step in the domain of landscape
Initialize the smoothed landscape g(.) with f (.)
for each point x in the grid do

sum ← 0, neighbors count ← 0
for each neighbor y in grid in window of size s around x do

sum ← sum + f (y)
g(x)← sum / neighbors count

Return g(x)

Algorithm Local search with the smoothing method

solutions = []
Initialize the solution x and the window size s
for multiple times do

x ← Local-search(x) on landscape
solutions.append(x)
landscape ← Smooth-the-objective(landscape, s)

Return best among solutions

Metaheuristic Optimization: Local Search (Hill Climbing) 14 / 20



Noisy method (jitter)

In every iteration of the local search, we can add some noise (also called jitter) for the
initialization of the next local search.

Therefore, if we have got stuck in a local best, we can get out of it.

The more the jitter is, the more exploration we have compared to exploitation.

Optionally, we can start with large jitter initially and gradually we decrease the amount of
jitter because initially we should explore the landscape but at the end, we are supposed to
be closer the actual solution.

Algorithm Local search with jitter

solutions = []
Initialize the solution x and the jitter’s standard deviation σ
for multiple times do

x ← Local-search(x)
solutions.append(x)
σ ← decrement(σ)
ϵ← Gaussian(0, σ2I )
x ← sample from N (x + ϵ)

Return best among solutions

Metaheuristic Optimization: Local Search (Hill Climbing) 15 / 20



Using different
neighborhoods

Metaheuristic Optimization: Local Search (Hill Climbing) 16 / 20



Variable Neighborhood Search (VNS)

Variable Neighborhood Search (VNS) (2010) [4] performs local search as a finite state
machine [5].

In VSN, we select several neighborhoods {N1, . . . ,Nn}.
First, we perform local search in the optimization landscape.

We do local search in the area N1. We check if a better solution is found in this area. If
yes, we update the best solution, then we go back to this area N1 and search it more. If
not, we go to the next neighborhood N2 and search it.

We check if a better solution is found in the area N2. If yes, we update the best solution,
then we go back to this area N1 and start searching from there again. If not, we go to the
next neighborhood N3 and search it.

Metaheuristic Optimization: Local Search (Hill Climbing) 17 / 20



Generalized Neighborhood Search (GNS)

Generalized Neighborhood Search (GNS) (2015) [6] performs VNS in parallel in several
regions of the landscape and then returns the best among solutions of the VNS regions as
the solution.

Usually, the regions of neighborhoods are chosen layer-wise as shown in this figure.

Metaheuristic Optimization: Local Search (Hill Climbing) 18 / 20



Acknowledgment

Some slides of this slide deck are inspired by teachings of Prof. Saeed Sharifian at the
Amirkabir University of Technology, Department of Electrical Engineering.

Metaheuristic Optimization: Local Search (Hill Climbing) 19 / 20



References

[1] H. R. Lourenço, O. C. Martin, and T. Stützle, “Iterated local search,” in Handbook of
metaheuristics, pp. 320–353, Springer, 2003.

[2] H. R. Lourenço, O. C. Martin, and T. Stützle, “Iterated local search: Framework and
applications,” Handbook of metaheuristics, pp. 129–168, 2019.

[3] C. Voudouris, Guided local search for combinatorial optimisation problems.
PhD thesis, University of Essex, 1997.

[4] P. Hansen, N. Mladenović, and J. A. Moreno Perez, “Variable neighbourhood search:
methods and applications,” Annals of Operations Research, vol. 175, pp. 367–407, 2010.

[5] J. Wang, Handbook of finite state based models and applications.
CRC press, 2012.

[6] N. Bouhmala, K. Hjelmervik, and K. I. Øvergaard, “A generalized variable neighborhood
search for combinatorial optimization problems,” Electronic Notes in Discrete Mathematics,
vol. 47, pp. 45–52, 2015.

Metaheuristic Optimization: Local Search (Hill Climbing) 20 / 20


