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What is Optimization?
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Optimization problem

Consider a function representing some cost. We call it cost function or objective function.

We want to minimize or maximize this objective function.

Examples:
▶ Example for minimization: the cost function can be the error of some airplane

structure from the perfect aerodynamic structure.
▶ Example for maximization: the objective function can be the profit of the company.
▶ All life is optimization!
▶ All machine learning in artificial intelligence is optimization!

The variables of the objective function are called the objective variables or decision
variables or optimization variables.

Example:
minimize

x
f (x) = x2.
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Univariate and multivariate optimization problems

The optimization problem can be univariate, meaning that the optimization problem has
only one scalar variable. Example:

minimize
x

f (x) = x2.

The optimization problem can be multivariate, meaning that the optimization problem
has several scalar variables {x1, . . . , xn}. These variables can be combined into a vector
x = [x1, . . . , xn]⊤ or matrix. Example:

minimize
x

f (x) = x⊤x = x21 + · · ·+ x2n .
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Unconstrained and constrained problems

The optimization problem can be unconstrained, meaning that we simply optimize a
function only. Example:

minimize
x

f (x) = x⊤x .

The optimization problem can be constrained, meaning that we optimize a function while
there are some constraints on the optimization variables. Example:

minimize
x=[x1,x2]⊤

f (x) = x⊤x = x21 + x22

subject to x1 + 2x2 = 8,

2x1 + x22 ≤ 16.
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Optimization versus search
If the objective problem is simple enough, we can solve it using classic optimization
methods. We will learn important classic methods.

If the objective function is complicated or if we have too many constraints, we can use
search for finding a good solution.
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When to use search-based (metaheuristic) optimization

When we have a complicated (highly con-convex) optimization landscape:

or when the gradient of function is hard to compute,

or when the function is not known but it works as a black-box, i.e., it outputs a value for
each input fed to it.

In these cases, we need:
▶ either non-convex optimization,
▶ or search-based optimization (metaheuristic optimization).
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Search for optimization
We can do grid search or brute-force search.

Or we can search wisely by metaheuristic optimization. We will learn several important
metaheuristic optimization methods.
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Preliminaries on Metaheuristic
Optimization
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Heuristic and Metaheuristic Methods

When the problem is complicated, a heuristic method approximates its solution.

It gives a good enough guess of the solution to the problem, but that you may not really
know how good it is.

Heuristics are often problem-dependent, i.e., you define a heuristic for a given problem.

Metaheuristics are problem-independent techniques that can be applied to a broad range
of problems.

Metaheuristic optimization methods can solve various complicated optimization problems
using wise search.

Metaheuristic methods are considered as a family of methods in soft computing.
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Exploration vs. Exploitation

Some things need to be defined:

Fitness vs. cost: We usually minimize the cost function but maximize the fitness function.
Fitness and cost can be converted to each other by changing maximization to
minimization or vice versa.

Optimization landscape: the optimization cost/fitness function

Local best vs. global best in the landscape

Exploitation: local search around the solution because the global optimum might be close
to the current solution.

Exploration: search far away from the solution (explore the landscape) because the global
optimum might be far away from the current solution. It helps not to get stuck in local
optimum.
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Preliminaries on Sets and Norms
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Convex set

Definition (Convex set and convex hull)
A set D is a convex set if it completely contains the line segment between any two points in the
set D:

∀x , y ∈ D, 0 ≤ t ≤ 1 =⇒ tx + (1− t)y ∈ D.

The convex hull of a (not necessarily convex) set D is the smallest convex set containing the set
D. If a set is convex, it is equal to its convex hull.
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Inner product

Definition (Inner product of vectors)

Consider two vectors x = [x1, . . . , xd ]
⊤ ∈ Rd and y = [y1, . . . , yd ]

⊤ ∈ Rd . Their inner product,
also called dot product, is:

⟨x , y⟩ = x⊤y =
d∑

i=1

xi yi .

Definition (Inner product of matrices)

We also have inner product between matrices X ,Y ∈ Rd1×d2 . Let X ij denote the (i , j)-th
element of matrix X . The inner product of X and Y is:

⟨X ,Y ⟩ = tr(X⊤Y ) =

d1∑
i=1

d2∑
j=1

X i,j Y i,j ,

where tr(.) denotes the trace of matrix.
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Norm

Definition (Norm)

A function ∥ · ∥ : Rd → R, ∥ · ∥ : x 7→ ∥x∥ is a norm if it satisfies:

1 ∥x∥ ≥ 0, ∀x
2 ∥ax∥ = |a| ∥x∥, ∀x and all scalars a

3 ∥x∥ = 0 if and only if x = 0

4 Triangle inequality: ∥x + y∥ ≤ ∥x∥+ ∥y∥.
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Important norms for vectors
Some important norms for a vector x = [x1, . . . , xd ]

⊤ are as follows.

The ℓp norm is:

∥x∥p :=
(
|x1|p + · · ·+ |xd |p

)1/p
,

where p ≥ 1 and |.| denotes the absolute value.

Two well-known ℓp norms are ℓ1 norm and ℓ2 norm (also called the Euclidean norm) with
p = 1 and p = 2, respectively:

∥x∥1 := |x1|+ · · ·+ |xd | =
d∑

i=1

|xi |,

∥x∥2 :=
√

x21 + · · ·+ x2d =

√√√√ d∑
i=1

x2i ,

The ℓ∞ norm, also called the infinity norm, the maximum norm, or the Chebyshev norm,
is:

∥x∥∞ := max{|x1|, . . . , |xd |}.
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Important norms for matrices

Some important norms for a matrix X ∈ Rd1×d2 are as follows.

The formulation of the Frobenius norm for a matrix is similar to the formulation of ℓ2
norm for a vector:

∥X∥F :=

√√√√√ d1∑
i=1

d2∑
j=1

X 2
i,j ,

where X ij denotes the (i , j)-th element of X .
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Quadratic forms using norms

For x ∈ Rd and X ∈ Rd1×d2 , we have:

∥x∥22 = x⊤x = ⟨x , x⟩ =
d∑

i=1

x2i ,

∥X∥2F = tr(X⊤X ) = ⟨X ,X ⟩ =
d1∑
i=1

d2∑
j=1

X 2
i,j ,

which are convex and in quadratic forms.
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Preliminaries on Functions
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Convex function

Definition (Convex function)

A function f (.) with domain D is convex if:

f
(
αx + (1− α)y

)
≤ αf (x) + (1− α)f (y), ∀x , y ∈ D, (1)

where α ∈ [0, 1].

If ≥ is changed to ≤ in Eq. (1), the function is concave.
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Convex function

Definition (Convex function)

If the function f (.) is differentiable, it is convex if:

f (x) ≥ f (y) +∇f (y)⊤(x − y), ∀x , y ∈ D. (2)

If ≥ is changed to ≤ in Eq. (2), the function is concave.
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Convex function

Definition (Convex function)

If the function f (.) is twice differentiable, it is convex if its second-order derivative is positive
semi-definite:

∇2f (x) ⪰ 0, ∀x ∈ D. (3)

If ⪰ is changed to ⪯ in Eq. (3), the function is concave.
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Preliminaries on Optimization
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Min, max, sup, inf

Definition (Minimum, maximum, infimum, and supremum)

A minimum and maximum of a function f : Rd → R, f : x 7→ f (x), with domain D, are defined
as:

min
x

f (x) ≤ f (y), ∀y ∈ D,

max
x

f (x) ≥ f (y), ∀y ∈ D,

respectively.

The minimum and maximum of a function belong to the range of function.
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Min, max, sup, inf

Definition (Infimum and supremum)
Infimum and supremum are the lower-bound and upper-bound of function, respectively:

inf
x

f (x) := max{z ∈ R | z ≤ f (x), ∀x ∈ D},

sup
x

f (x) := min{z ∈ R | z ≥ f (x), ∀x ∈ D}.

Depending on the function, the infimum and supremum of a function may or may not belong to
the range of function.
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Local and global minimizers

Definition (Local minimizer)

A point x ∈ D is a local minimizer of function f (.) if and only if:

∃ ϵ > 0 : ∀y ∈ D, ∥y − x∥2 ≤ ϵ =⇒ f (x) ≤ f (y), (4)

meaning that in an ϵ-neighborhood of x , the value of function is minimum at x .

Definition (Global minimizer)

A point x ∈ D is a global minimizer of function f (.) if and only if:

f (x) ≤ f (y), ∀y ∈ D. (5)
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Minimizer in convex function

Lemma (Minimizer in convex function)

In a convex function, any local minimizer is a global minimizer. In other words, in a convex
function, there exists only one local minimum value which is the global minimum value.

Proof.
Proof can be found in the appendix of the tutorial [1].

As an imagination, a convex function is like a multi-dimensional bowl with only one minimum
value (it may have several local minimizers but with the same minimum values).
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Minimizer in convex function

Lemma (Gradient of a convex function at the minimizer point)

When the function f (.) is convex and differentiable, a point x∗ is a minimizer if and only if:

∇f (x∗) = 0.

Proof.
Proof can be found in the appendix of the tutorial [1].
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Stationary, extremum, and saddle points

Definition (Stationary, extremum, and saddle points)

In a general (not-necessarily-convex) function f (.), a point x∗ is a stationary if and only if
∇f (x∗) = 0.

By passing through a saddle point, the sign of the second derivative flips to the opposite
sign.

Minimizer and maximizer points (locally or globally) minimize and maximize the function,
respectively.

A saddle point is neither minimizer nor maximizer, although the gradient at a saddle
point is zero.

Both minimizer and maximizer are also called the extremum points.

A stationary point can be either a minimizer, a maximizer, or a saddle point of function.
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First-order optimality condition

Lemma (First-order optimality condition [2, Theorem 1.2.1])

If x∗ is a local minimizer for a differentiable function f (.), then:

∇f (x∗) = 0. (6)

Note that if f (.) is convex, this equation is a necessary and sufficient condition for a minimizer.

Proof.
Proof can be found in the appendix of the tutorial [1].

Note
If setting the derivative to zero, ∇f (x∗) = 0, gives a closed-form solution for x∗, the
optimization is done. Otherwise, we should solve it iteratively by either classic optimization or
metaheuristic optimization.
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Arguments of optimization

Definition (Arguments of minimization and maximization)

In the domain of function, the point which minimizes (resp. maximizes) the function f (.) is the
argument for the minimization (resp. maximization) of function.

The minimizer and maximizer of function are denoted by

argmin
x

f (x), and

argmax
x

f (x),

respectively.
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Converting optimization problems

Converting max to min and vice versa
We can convert convert maximization to minimization and vice versa:

maximize
x

f (x) = −minimize
x

(
−f (x)

)
,

minimize
x

f (x) = −maximize
x

(
−f (x)

)
.

We can have similar conversions for the arguments of maximization and minimization but as the
sign of optimal value of function is not important in argument, we do not have the negative sign
before maximization and minimization:

argmax
x

f (x) = argmin
x

(
−f (x)

)
,

argmin
x

f (x) = argmax
x

(
−f (x)

)
.
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Converting optimization problems

Converting max to min and vice versa
We can convert convert maximization to minimization and vice versa using the reciprocal of cost
function:

maximize
x

f (x) =
1

minimize
x

1
f (x)

,

minimize
x

f (x) =
1

maximize
x

1
f (x)

.

We can have similar conversions for the arguments of maximization and minimization:

argmax
x

f (x) = argmin
x

1

f (x)
,

argmin
x

f (x) = argmax
x

1

f (x)
.
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Preliminaries on Derivatives
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Dimensionality of derivative

Consider a function f : Rd1 → Rd2 , f : x 7→ f (x).
Derivative of function f (x) ∈ Rd2 with respect to (w.r.t.) x ∈ Rd1 has dimensionality
(d1 × d2).

This is because tweaking every element of x ∈ Rd1 can change every element of
f (x) ∈ Rd2 . The (i , j)-th element of the (d1 × d2)-dimensional derivative states the
amount of change in the j-th element of f (x) resulted by changing the i-th element of x .

Examples
The derivative of a scalar w.r.t. a scalar is a scalar.

The derivative of a scalar w.r.t. a vector is a vector.

The derivative of a scalar w.r.t. a matrix is a matrix.

The derivative of a vector w.r.t. a vector is a matrix.

The derivative of a vector w.r.t. a matrix is a rank-3 tensor.

The derivative of a matrix w.r.t. a matrix is a rank-4 tensor.
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Dimensionality of derivative

In more details:

If the function is f : R → R, f : x 7→ f (x), the derivative (∂f (x)/∂x) ∈ R is a scalar
because changing the scalar x can change the scalar f (x).
If the function is f : Rd → R, f : x 7→ f (x), the derivative (∂f (x)/∂x) ∈ Rd is a vector
because changing every element of the vector x can change the scalar f (x).
If the function is f : Rd1×d2 → R, f : X 7→ f (X ), the derivative (∂f (X )/∂X ) ∈ Rd1×d2 is
a matrix because changing every element of the matrix X can change the scalar f (X ).

If the function is f : Rd1 → Rd2 , f : x 7→ f (x), the derivative (∂f (x)/∂x) ∈ Rd1×d2 is a
matrix because changing every element of the vector x can change every element of the
vector f (x).
If the function is f : Rd1×d2 → Rd3 , f : X 7→ f (X ), the derivative (∂f (X )/∂X ) is a
(d1 × d2 × d3)-dimensional tensor because changing every element of the matrix X can
change every element of the vector f (X ).

If the function is f : Rd1×d2 → Rd3×d4 , f : X 7→ f (X ), the derivative (∂f (X )/∂X ) is a
(d1 × d2 × d3 × d4)-dimensional tensor because changing every element of the matrix X
can change every element of the matrix f (X ).
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Gradient, Jacobian, and Hessian

Definition (Gradient)

Consider a function f : Rd → R, f : x 7→ f (x). In optimizing the function f , the derivative of
function w.r.t. its variable x is called the gradient, denoted by:

∇f (x) :=
∂f (x)
∂x

∈ Rd .

Definition (Hessian)

Consider a function f : Rd → R, f : x 7→ f (x). The second derivative of function w.r.t. to its
derivative is called the Hessian matrix, denoted by:

B = ∇2f (x) :=
∂2f (x)
∂x2

∈ Rd×d .

The Hessian matrix is symmetric. If the function is convex, its Hessian matrix is positive
semi-definite.
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Gradient, Jacobian, and Hessian

Definition (Jacobian)

If the function is multi-dimensional, i.e., f : Rd1 → Rd2 , f : x 7→ f (x), the gradient becomes a
matrix:

J :=
[ ∂f

∂x1
, . . . ,

∂f

∂xd1

]⊤
=


∂f1
∂x1

. . .
∂fd2
∂xd1

...
. . .

...
∂f1
∂xd1

. . .
∂fd2
∂xd1

∈ Rd1×d2 ,

where x = [x1, . . . , xd1 ]
⊤ and f (x) = [f1, . . . , fd2 ]

⊤.

This matrix derivative is called the Jacobian matrix.
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Optimization Problems
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General optimization problem

Consider the function f : Rd → R, f : x 7→ f (x). Let the domain of function be D where
x ∈ D, x ∈ Rd .

Definition (Unconstrained optimization)

Unconstrained minimization of a cost function f (.):

minimize
x

f (x),

where x is called the optimization variable and the function f (.) is called the objective function
or the cost function.

Preliminaries on Optimization 40 / 49



General optimization problem

Definition (Constrained optimization)

Constrained optimization problem where we want to minimize the function f (x) while satisfying
m1 inequality constraints and m2 equality constraint:

minimize
x

f (x)

subject to yi (x) ≤ 0, i ∈ {1, . . . ,m1},
hi (x) = 0, i ∈ {1, . . . ,m2}.

f (x) is the objective function, every yi (x) ≤ 0 is an inequality constraint, and every hi (x) = 0
is an equality constraint.

Note
If some of the inequality constraints are not in the form yi (x) ≤ 0, we can restate them as:

yi (x) ≥ 0 =⇒ −yi (x) ≤ 0,

yi (x) ≤ c =⇒ yi (x)− c ≤ 0.

Therefore, all inequality constraints can be written in the form yi (x) ≤ 0.
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General optimization problem

Example:
minimize

x
x1 + 3x22

subject to 2x1 − 10x2 ≤ 5,

− 2x1 + 5x2 ≥ 3,

4x1 + 10x2 = 6.

can be converted to:

minimize
x

x1 + 3x22

subject to 2x1 − 10x2 − 5 ≤ 0,

2x1 − 5x2 + 3 ≤ 0,

4x1 + 10x2 − 6 = 0.
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Feasible point

Definition (Feasible point)
The point x for the optimization problem:

minimize
x

f (x)

subject to yi (x) ≤ 0, i ∈ {1, . . . ,m1},
hi (x) = 0, i ∈ {1, . . . ,m2},

is feasible if:
x ∈ D, and

yi (x) ≤ 0, ∀i ∈ {1, . . . ,m1}, and

hi (x) = 0, ∀i ∈ {1, . . . ,m2}.
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Constrained optimization with the feasible set

Definition (Constrained optimization)
The constrained optimization problem can also be stated as:

minimize
x

f (x)

subject to x ∈ S,

where S is the feasible set of constraints.
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Converting
Constrained
Optimization to
Unconstrained
Optimization
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Converting Constrained Optimization to Unconstrained
Optimization

Consider the following constrained optimization problem:

minimize
x

f (x)

subject to g(x) ≤ 0.
(7)

This is a constrained hard penalty because it kills the problem if it is not satisfied (it can
never happen as it would be infeasible).

We can convert it to an unconstrained regularized problem:

minimize
x

f (x) + λg(x), (8)

where λ > 0 is the regularization parameter. This is a soft penalty which tolerates some
violence of the constraint. The solution of this problem is approximately similar to the
solution of the constrained hard penalty.
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Converting Constrained Optimization to Unconstrained
Optimization

We can also convert it to an unconstrained problem using indicator function. In
optimization, indicator function I(.) is zero if its condition is satisfied and is infinite
otherwise.

I(x ∈ S) =
{

0 if x ∈ S
∞ if x ̸∈ S. (9)

The problem can become regularized using the indicator function:

minimize
x

f (x) + λI(g(x) ≤ 0), (10)

where λ > 0 is the regularization parameter. This is a unconstrained hard penalty
because it kills the problem if it is not satisfied (it blows the regularized cost function to
infinity). The solution of this problem is exactly the same as the solution of the
constrained hard penalty.
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Converting Constrained Optimization to Unconstrained
Optimization

In practice, it is not possible to implement the indicator function in computer as it has
infinity and also it is not smooth (differentiable). Therefore, we can use approximations of
the indicator function by barrier functions. One of the barrier functions is logarithm,
named the logarithmic barrier or log barrier in short. It approximates the indicator
function by:

I(yi (x) ≤ 0) ≈ −
1

t
log(−yi (x)), (11)

where t > 0 (usually a large number such as t = 106) and the approximation becomes
more accurate by t → ∞.

The solution of the problem, which uses barrier functions as approximations of the
indicator function, is approximately similar to the solution of the hard penalty.
This is the technique that the interior point method uses.
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