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Boltzmann (Gibbs) Distribution

Centuries ago, the Boltzmann distribution (1868) [1], also called the Gibbs distribution
(1902) [2], was proposed.

This energy-based distribution was found to be useful for modeling the physical systems
statistically [3].

One of these systems was the Ising model which modeled interacting particles with binary
spins [4, 5].

Assume we have several particles {xi}di=1 in statistical physics.

These particles can be seen as random variables which can randomly have a state. For
example, if the particles are electrons, they can have states +1 and −1 for
counterclockwise and clockwise spins, respectively.
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Boltzmann (Gibbs) Distribution

The Boltzmann distribution (1868) [1], also called the Gibbs distribution (1902) [2], can
show the probability that a physical system can have a specific state. i.e., every of the
particles has a specific state. The probability mass function of this distribution is [3]:

P(x) =
e−βE(x)

Z
, (1)

where E(x) is the energy of variable x and Z is the normalization constant so that the
probabilities sum to one.

This normalization constant is called the partition function which is hard to compute as it
sums over all possible configurations of states (values) that the particles can have. If we
define Rd ∋ x := [x1, . . . , xd ]

⊤, we have:

Z :=
∑
x∈Rd

e−βE(x). (2)
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Boltzmann (Gibbs) Distribution

We had:

P(x) =
e−βE(x)

Z
.

The coefficient β ≥ 0 is defined as:

β :=
1

kβT
∝

1

T
, (3)

where kβ is the Boltzmann constant and T ≥ 0 is the absolute thermodynamic
temperature in Kelvins.

If the temperature tends to absolute zero, T → 0, we have β →∞ and P(x)→ 0,
meaning that the absolute zero temperature occurs extremely rarely in the universe.
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Boltzmann (Gibbs) Distribution
Recall Eqs. (10) and (2):

P(x) =
e−βE(x)

Z
,

Z :=
∑
x∈Rd

e−βE(x).

The free energy is defined as:

F (β) :=
−1
β

ln(Z), (4)

where ln(.) is the natural logarithm.

The internal energy is defined as:

U(β) :=
∂

∂β

(
β F (β)

)
. (5)

Therefore, we have:

U(β) =
∂

∂β
(− ln(Z)) =

−1
Z

∂Z

∂β

(2)
=

∑
x∈Rd

E(x)
e−βE(x)

Z

(10)
=

∑
x∈Rd

P(x)E(x). (6)
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Boltzmann (Gibbs) Distribution

Recall Eqs. (10) and (4) and (6):

P(x) =
e−βE(x)

Z
,

F (β) :=
−1
β

ln(Z),

U(β) =
∑
x∈Rd

P(x)E(x).

The entropy is defined as:

H(β) := −
∑
x∈Rd

P(x) ln
(
P(x)

) (10)
= −

∑
x∈Rd

P(x)
(
− βE(x)− ln(Z)

)
= β

∑
x∈Rd

P(x)E(x) + ln(Z)
∑
x∈Rd

P(x)

︸ ︷︷ ︸
=1

(a)
= −β F (β) + β U(β), (7)

where (a) is because of Eqs. (6) and (4).
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Boltzmann (Gibbs) Distribution

Lemma

A physical system prefers to be in low energy; hence, the system always loses energy to have less
energy.

Proof.
On the one hand, according to the second law of thermodynamics, entropy of a physical system
always increases by passing time [6]. Entropy is a measure of randomness and disorder in system.
On the other hand, when a system loses energy to its surrounding, it becomes less ordered.
Hence, by passing time, the energy of system decreases to have more entropy. Q.E.D.

Corollary
According to Eq. (10):

P(x) =
e−βE(x)

Z
,

and Lemma 1, the probability P(x) of states in a system tend to increase by passing time.
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Boltzmann (Gibbs) Distribution
This corollary makes sense because systems tend to become more probable. This idea is
also used in simulated annealing [7] where the temperature of system is cooled down
gradually.
Simulated annealing is a metaheuristic optimization algorithm in which a temperature
parameter controls the amount of global search versus local search. It reduces the
temperature gradually to decrease the exploration and increase the exploitation of the
search space, gradually.
Recall Eqs. (10) and (3):

P(x) =
e−βE(x)

Z
, (8)

β :=
1

kβT
∝

1

T
. (9)

Therefore, the probability mass function of the Boltzmann distribution or Gibbs
distribution can be written as:

P(x) =
e−

E(x)
T

Z
, (10)

where E(x) is the energy of variable x , and T is the Kelvin temperature, and Z is the
normalization constant so that the probabilities sum to one. We can write it as:

P(∆E) =
e−

∆E
T

Z
, (11)

where ∆E is the difference of energy.
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Simulated Annealing
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Simulated Annealing: Idea

Simulated annealing was proposed in 1983 [7] and is inspired by the annealing schedule
in high-energy physics for forming the shape of materials.

It is used in various applications such as VLSI (Very Large Scale Integration) and circuit
routing.
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Simulated Annealing: algorithm

step 1: choose some random initial candidates and an initial temperature

step 2: in every iteration, do a local search in a neighborhood of candidates and choose a
neighbor point for every candidate.

▶ for every candidate, if the fitness of the neighbor solution is better than the
candidate: accept it and replace the candidate with that.

▶ otherwise, accept it with some Boltzmann probability:

P(∆E) =

{
1 if ∆E ≤ 0

e−
∆E
T if ∆E > 0,

(12)

where ∆E is the change of cost (cost of neighbor minus cost of candidate) (or
fitness of candidate minus fitness of neighbor).

This gives a chance to even worse candidates for exploration (not to get stuck in local
optimum).

It starts with high temperature and cools down the temperature gradually in the
iterations:

▶ linear reduction rule: T = T − α
▶ geometric reduction rule: T = T × α, where α ∈ (0, 1)
▶ slow-decrease rule: T = T

1+βT
, where β is a hyper-parameter
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Simulated Annealing: algorithm

Algorithm Simulated annealing

Initialize the solution x
while not converged do

x ← get a point from the neighborhood N (x)
Evaluate fitness function and calculate ∆E
if ∆E ≤ 0 then

Update the solution
Break the loop

else
u ← U(0, 1)

if u ≤ e−
∆E
T then

Update the solution
Break the loop

T ← Decrement the temperature T

Return the solution x
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Simulated Annealing: Analysis of temperature

P(∆E) =

{
1 if ∆E ≤ 0

e−
∆E
T if ∆E > 0

The e−
1
T graph with respect to T :

Analysis of temperature:

In initial iterations, the temperature T is high so e−
∆E
T is large (closer to one) so we give

more chance to worse candidates so we have more exploration.

In the end iterations, the temperature T is low so e−
∆E
T is small (closer to zero) so we

give less chance to worse candidates so we have more exploitation.

It is like starting with large learning rate in gradient descent initially and then decrease the
learning rate gradually.
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Simulated Annealing: Threshold accepting

In some applications, it is time-consuming and resource-consuming to calculate the
Boltzmann probability. In these cases, we can relax the Eq. (12) using a threshold q:

P(∆E) =

{
1 if ∆E ≤ q
0 if ∆E > q,

(13)

where this threshold q ≥ 0 is a decreasing function with respect to iteration index.

This technique is called threshold accepting in simulated annealing.
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