ECE 457A TUTORIAL 07: GAME THEORY

30-Oct-2023

Danial Sadrian Zadeh,
Department of Electrical and Computer Engineering

Strategies To Solve Examples

- Dominant Strategy
 - It yields the best payoff for the player, regardless of other players' strategies.
- Iterated-Dominance (Dominated) Strategy
 - There is another strategy that performs at least as good, regardless of other players' strategies.
- Nash Equilibrium
 - A strategy profile is NE if no player wants to unilaterally deviate to another strategy, given other players' strategies.
 - No player can gain by deviating alone, i.e., by changing his or her strategy single-handedly.

Example 1 (Prisoner's Dilemma) - DS

Prisoner 2

		Confess	Deny
DS for P1 -> { Confess: -10-1 = -11 Prisoner 1	Confess	-10, -10	<u>-1</u> , <u>-25</u>
$Deny: -25 - 3 = -28 \times$	Deny	-25,(-1)	-3, -3

$$DS$$
 for $P2 \rightarrow \{Confess: -10-1 = -11 \ V \}$
 $\{Deny: -25-3 = -28 \ X\}$

(Confess, confess) - dominant strategy equilibrium

Example 1 (Prisoner's Dilemma) - IDS

Prisoner 2

For P2, Deny (-25) is completely dominated by Confess (-10).

Prisoner 1

Confess

Deny

For P1, contest (-10) dominates Deny (-25)

(-10, -10) -> (confess vontess) -> IDS Eq

Example 1 (Prisoner's Dilemma) - NE

Prisoner 2

Confess Deny

Prisoner 1 Confess

Deny

NE (confess, confess)

Example 2 - DS

$$DS for P2 \longrightarrow 1 Run : 1-1 = 6$$

$$Stop: -3+3 = 6$$

Stop

Example 2 - IDS

Alice P1 considering P1 Stop Run Run Stop dominates fun Bob Stop 2/3/// 2:0

Considering P2 — Stop dominates Run (3>-1) Bob IDS Eq : (Stop, stop)

Example 2 - NE

Example 3 - DS

Player 2

1A: 5+4=9		X	Y
P1-> { B: 3+3 = 6 X \ we cannot	A	<u>5</u> ,2	4,2
P1 — $B: 3+3 = 6 \times$ we cannot $C: 2+4=6 \times$ Player 1	В	3,1,	3,2,
D: 4+5=9 a dominant strategy	\mathbf{C}		4,1
	D	4,3,	5,4,

$$P2 \longrightarrow \begin{cases} X: 2+1+1+3 = 7 \\ Y: 2+2+1+4 = 9 () \longrightarrow 05 \end{cases}$$

Example 3 - IDS

Player 2

Example 3 - NE

week Player 1 В

Player 2

Example 4 - DS

Example 4 - IDS

Player 2 \mathbf{R} Player 1 \mathbf{M}

Example 4 - NE

References

- https://www.tayfunsonmez.net/wp-content/uploads/2013/10/E308SL4.pdf
- http://www.smallparty.com/yoram/classes/principles/nash.pdf

