ECE 457A TUTORIAL 11:
REINFORCEMENT LEARNING

Danial Sadrian Zadeh,
Department of Electrical and Computer Engineering

.gmﬂ UNIVERSITY OF EACULTY OF

WATERLOOQO | encineerinG

Introduction to Deep Reinforcement Learning (DRL)

Deep Learning Reinforcement Learning

affects the

+ Agent Environment

affects the

DEEP REINFORCEMENT LEARNING

W UNIVERSITY OF | cacuLry oF
Reinforcement Learning 2 (@\ WATERLOO | encineerine

R
Summary of RL Algorithms

[RL Algorithms]
|

. .
[MDP] [Bandits]
| |
' v ' '
Model-Based Model-Free Action-Value Gradient Bandit
(DP, etc) (TD, MC, etc) Methods Methods
—'[Given the .\ludel]
T4 Raec dalicv_-Rac
MCTS (AlphaGo [Value-Based] [Policy-Based]
AlphaZero) ‘ I N : I :
[On-Policy] [()ff—l’olic_\'] [Gradient-Free] [Gradient-Based]
—o[Learn the Model] I
¥ ¥ R
{ Sarsa Q-LuumiugJ [Cross-Entropy Method] [Evolution Strategy] — Policy Gradient w

YON o OT- SAMUEL (
DQ_J @ RN L sl TRPO/PPO |

DG

‘ i—|—+ l —» ACKTR |
(

[('5] } {[)lwling [)QN‘ {I)uuh]c I)(‘).\']—'[TD3 ‘ [SAC } {.—\3(";’\3('}

W UNIVERSITY OF
Reinforcement Learning 3 4@\ WATERLOO

World Model]

[

FACULTY OF
ENGINEERING

I —
Deep 0-Network (DON)

= In this tutorial, we only focus of Deep Q-Network (DQN) algorithm.

= Q-learning can struggle with situations when the count of the observable set of states is very
large.

= (Q-learning uses a table to represent the state-action values (Q-values). Each entry in the table
corresponds to the expected cumulative reward of taking a particular action in a particular
state.

= DQN algorithm is a model-free, online, off-policy reinforcement learning method.

= It employs a neural network (NN) to approximate Q-values rather than using a table. This
allows DQN to handle high-dimensional state spaces, making it applicable to a broader range
of problems.

W UNIVERSITY OF | cacuLry oF
Reinforcement Learning 4 l@\ WATERLOO | encineerine

Deep 0-Network (DON)

= In this tutorial, we only focus of Deep Q-Network (DQN) algorithm.

= DQN can handle both discrete and continuous observation spaces, making it more versatile
than traditional Q-learning.

= The NN plays the role of Q function.

State

Y

Q function —-{ Action-value }

Action

Figure 3.2 The Q function could be any function that accepts
a state and action and returns the value (expected rewards)

of taking that action given that state.

] UNIVERSITY OF | cacuLry oF
5 /@\ WATERLOO | encineerine

Reinforcement Learning

I —
Deep 0-Network (DON)

= In this tutorial, we only focus of Deep Q-Network (DQN) algorithm.

= Why — Universal Approximation Theorem

= A feedforward NN with a single hidden layer containing a sufficient number of neurons (nodes) can
approximate any continuous function on a compact subset of the input space to arbitrary accuracy.
This means that, in theory, an NN with the right architecture and a large enough number of neurons
can approximate any function.

State -

Q function —-{ Action-value }
Action

Figure 3.2 The Q function could be any function that accepts
a state and action and returns the value (expected rewards)
of taking that action given that state.

W UNIVERSITY OF | cacuLry oF
Reinforcement Learning 6 /@\ WATERLOO | encineerine

R
DON Algorithm

= We train a function approximator, such as an NN with parameters 6, to estimate
the Q-values. This can be done by minimizing the following loss function at each
step .

Li(0:) = Eqpymp() [(%: — Q(s,;0,))2] where y; = 7+ ymax, Q(s',a';6;-1)

= Here, y; is called the TD target, and y; — Q is called the TD error. p represents the
behavior distribution, the distribution over transitions {s, a, r, s'} collected from
the environment.

W UNIVERSITY OF | cacuLry oF
Reinforcement Learning 7 (@\ WATERLOO | encineerine

R
DON Algorithm

We set up a for loop for the number of epochs.

In the loop, we set up a while loop (while the game is in progress).

We run the Q-network forward.

We’'re using an epsilon-greedy implementation, so at time ¢ with probability &
we will choose a random action. With probability 1 — & we will choose the action
associated with the highest Q) value from our neural network.

Take action a as determined in the preceding step, and observe the new state s’
and reward 7.

Run the network forward using s”. Store the highest Q value, which we’ll call
max Q.

Our target value for training the network is r,; + y*maxQ,(S,;), where ¥
(gamma) is a parameter between 0 and 1. If after taking action @, the game is
over, there 1s no legitimate s;,1, so y*maxQx(S;,1) 1s not valid and we can set it to
0. The target becomes just r;,;.

Given that we have four outputs and we only want to update (i.e., train) the out-
put associated with the action we just took, our target output vector is the same
as the output vector from the first run, except we change the one output associ-
ated with our action to the result we computed using the Q-learning formula.

Train the model on this one sample. Then repeat steps 2-9.

W UNIVERSITY OF | _r Uity oF
Reinforcement Learning 8 A@\ WATERLOO | encineerine

Gridworld Problem

= Let us apply DQN to the Gridworld problem.
= Goal
= Train an NN to play the game from scratch.
= Design
= Any move that does not win the game receives a reward of -1.

= The winning move receives a reward of +10.

= The losing move receives a reward of -10.

W UNIVERSITY OF | cacuLry oF
Reinforcement Learning 9 /@\ WATERLOO | encineerine

Gridworld Problem

A : Agent
W: Wall
—: Pit

+ : Goal

+..|..-__________I

Figure 3.1 This is a simple Gridworld game setup.
The agent (A) must navigate along the shortest path
to the goal tile (+) and avoid falling into the pit (-).

W UNIVERSITY OF | cacuLry oF
Reinforcement Learning 10 /@\ WATERLOO | encineerine

Gridworld Problem

Hidden layers

Game state Input layer Qutput layer
A Right
w Left
- Down
+ Up

Neural network

Figure 3.8 The neural network model we will use to play Gridworld. The model

has an input layer that can accept a 64-length game state vector, some hidden

layers (we use one, but two are depicted for generality), and an output layer that
produces a 4-length vector of Q values for each action, given the state.

W UNIVERSITY OF | _r Uity oF
Reinforcement Learning 11 A@\ WATERLOO | encineerine

References

1. B. Brown and A. Zai, Deep Reinforcement Learning in Action. Manning
Publication Co., 2020. Codes:
https://github.com/DeepReinforcementlearning/DeepReinforcementlearningl
nAction

2. H. Dong, Z. Ding, and S. Zhang, Deep Reinforcement Learning. Springer Nature,
2020.

3. “Introduction to RL and Deep Q Networks,” TensorFlow, Sep. 26, 2023.
[Online]. Available: https://www.tensorflow.org/agents/tutorials/0 intro rl

W UNIVERSITY OF EACULTY OF
/@\ WATERLOO ENGINEERING

https://github.com/DeepReinforcementLearning/DeepReinforcementLearningInAction
https://github.com/DeepReinforcementLearning/DeepReinforcementLearningInAction
https://www.tensorflow.org/agents/tutorials/0_intro_rl

	Slide 1: ECE 457A Tutorial 11: Reinforcement Learning
	Slide 2: Introduction to Deep Reinforcement Learning (DRL)
	Slide 3: Summary of RL Algorithms
	Slide 4: Deep Q-Network (DQN)
	Slide 5: Deep Q-Network (DQN)
	Slide 6: Deep Q-Network (DQN)
	Slide 7: DQN Algorithm
	Slide 8: DQN Algorithm
	Slide 9: Gridworld Problem
	Slide 10: Gridworld Problem
	Slide 11: Gridworld Problem
	Slide 12: References

