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Introduction to Deep Reinforcement Learning (DRL)
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Summary of RL Algorithms
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Deep 0-Network (DON)

= In this tutorial, we only focus of Deep Q-Network (DQN) algorithm.

= Q-learning can struggle with situations when the count of the observable set of states is very
large.

= (Q-learning uses a table to represent the state-action values (Q-values). Each entry in the table
corresponds to the expected cumulative reward of taking a particular action in a particular
state.

= DQN algorithm is a model-free, online, off-policy reinforcement learning method.

= It employs a neural network (NN) to approximate Q-values rather than using a table. This
allows DQN to handle high-dimensional state spaces, making it applicable to a broader range
of problems.
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Deep 0-Network (DON)

= In this tutorial, we only focus of Deep Q-Network (DQN) algorithm.

= DQN can handle both discrete and continuous observation spaces, making it more versatile
than traditional Q-learning.

= The NN plays the role of Q function.

State

Y

Q function —-{ Action-value }

Action

Figure 3.2 The Q function could be any function that accepts
a state and action and returns the value (expected rewards)

of taking that action given that state.
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Deep 0-Network (DON)

= In this tutorial, we only focus of Deep Q-Network (DQN) algorithm.

= Why — Universal Approximation Theorem

= A feedforward NN with a single hidden layer containing a sufficient number of neurons (nodes) can
approximate any continuous function on a compact subset of the input space to arbitrary accuracy.
This means that, in theory, an NN with the right architecture and a large enough number of neurons
can approximate any function.
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Q function —-{ Action-value }
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Figure 3.2 The Q function could be any function that accepts
a state and action and returns the value (expected rewards)
of taking that action given that state.

W UNIVERSITY OF | cacuLry oF
Reinforcement Learning 6 /@\ WATERLOO | encineerine



R
DON Algorithm

= We train a function approximator, such as an NN with parameters 6, to estimate
the Q-values. This can be done by minimizing the following loss function at each
step .

Li(0:) = Eqpymp() [(%: — Q(s,;0,))2] where y; = 7+ ymax, Q(s',a';6;-1)

= Here, y; is called the TD target, and y; — Q is called the TD error. p represents the
behavior distribution, the distribution over transitions {s, a, r, s'} collected from
the environment.

W UNIVERSITY OF | cacuLry oF
Reinforcement Learning 7 (@\ WATERLOO | encineerine



R
DON Algorithm

We set up a for loop for the number of epochs.

In the loop, we set up a while loop (while the game is in progress).

We run the Q-network forward.

We’'re using an epsilon-greedy implementation, so at time ¢ with probability &
we will choose a random action. With probability 1 — & we will choose the action
associated with the highest Q) value from our neural network.

Take action a as determined in the preceding step, and observe the new state s’
and reward 7.

Run the network forward using s”. Store the highest Q value, which we’ll call
max Q.

Our target value for training the network is r,; + y*maxQ,(S,;), where ¥
(gamma) is a parameter between 0 and 1. If after taking action @, the game is
over, there 1s no legitimate s;,1, so y*maxQx(S;,1) 1s not valid and we can set it to
0. The target becomes just r;,;.

Given that we have four outputs and we only want to update (i.e., train) the out-
put associated with the action we just took, our target output vector is the same
as the output vector from the first run, except we change the one output associ-
ated with our action to the result we computed using the Q-learning formula.

Train the model on this one sample. Then repeat steps 2-9.
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Gridworld Problem

= Let us apply DQN to the Gridworld problem.
= Goal
= Train an NN to play the game from scratch.
= Design
= Any move that does not win the game receives a reward of -1.

= The winning move receives a reward of +10.

= The losing move receives a reward of -10.
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Gridworld Problem

A : Agent
W: Wall
—: Pit

+ : Goal

+..|..-__________I

Figure 3.1 This is a simple Gridworld game setup.
The agent (A) must navigate along the shortest path
to the goal tile (+) and avoid falling into the pit (-).
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Gridworld Problem

Hidden layers

Game state Input layer Qutput layer
A Right
w Left
- Down
+ Up

Neural network

Figure 3.8 The neural network model we will use to play Gridworld. The model

has an input layer that can accept a 64-length game state vector, some hidden

layers (we use one, but two are depicted for generality), and an output layer that
produces a 4-length vector of Q values for each action, given the state.
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