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The Lagrangian Function
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Optimization Problem

minimize
x

f (x)

subject to yi (x) ≤ 0, i ∈ {1, . . . ,m1},
hi (x) = 0, i ∈ {1, . . . ,m2}.

(1)

Inequality constraints:

yi (x) ≤ 0

ki (x) ≥ 0 =⇒ −ki (x) ≤ 0 =⇒ yi (x) ≤ 0, where yi (x) := −ki (x)

Maximization:

maximize
x

f (x) =⇒ minimize
x

− f (x) =⇒ minimize
x

g(x)

Examples:

for fi (x) : x⊤x + a⊤x + b, x31 − 4x2 − 2x23 , tan(x1)− 4 sin(x3)− 2

for yi (x) ≤ 0 : x⊤x + a⊤x + b ≤ 0

for yi (x) ≤ 0 : x21 + 3x2 + 2 ≤ 0, x32 − 4x3 − 2 ≤ 0, tan(x3)− 4 sin(x1)− 2 ≤ 0, ...

for hi (x) = 0 : x⊤x + a⊤x + b = 0

for hi (x) = 0 : x21 + 3x2 + 2 = 0, x32 − 4x3 − 2 = 0, tan(x3)− 4 sin(x1)− 2 = 0, ...
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Lagrangian and Dual Variables

minimize
x

f (x)

subject to yi (x) ≤ 0, i ∈ {1, . . . ,m1},
hi (x) = 0, i ∈ {1, . . . ,m2}.

Definition (Lagrangian and dual variables)

The Lagrangian function for the optimization problem (1) is L : Rd × Rm1 × Rm2 → R, with
domain D × Rm1 × Rm2 , defined as:

L(x ,λ,ν) := f (x) +
m1∑
i=1

λiyi (x) +
m2∑
i=1

νihi (x) = f (x) + λ⊤y(x) + ν⊤h(x), (2)

where {λi}m1
i=1 and {νi}m2

i=1 are the Lagrange multipliers, also called the dual variables,
corresponding to inequality and equality constraints, respectively.

λ := [λ1, . . . , λm1 ]
⊤ ∈ Rm1 , ν := [ν1, . . . , νm2 ]

⊤ ∈ Rm2 ,
y(x) := [y1(x), . . . , ym1 (x)]⊤ ∈ Rm1 , h(x) := [h1(x), . . . , hm2 (x)]⊤ ∈ Rm2 .

Eq. (2) is also called the Lagrange relaxation of the optimization problem (1).
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Sign of Terms in Lagrangian

minimize
x

f (x)

subject to yi (x) ≤ 0, i ∈ {1, . . . ,m1},
hi (x) = 0, i ∈ {1, . . . ,m2}.

L(x ,λ,ν) := f (x) +
m1∑
i=1

λiyi (x) +
m2∑
i=1

νihi (x) = f (x) + λ⊤y(x) + ν⊤h(x).

sometimes, the plus sign behind
∑m2

i=1 νihi (x) is replaced with the negative sign. As hi (x)
is for equality constraint, its sign is not important in the Lagrangian function.

hi (x) = 0 =⇒ −hi (x) = 0,

L(x ,λ,ν) := f (x) +
m1∑
i=1

λiyi (x)−
m2∑
i=1

νihi (x) = f (x) + λ⊤y(x)− ν⊤h(x).

However, the sign of the term
∑m1

i=1 λiyi (x) is important because the sign of inequality
constraint is important.
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Interpretation of Lagrangian

minimize
x

f (x)

subject to yi (x) ≤ 0, i ∈ {1, . . . ,m1},
hi (x) = 0, i ∈ {1, . . . ,m2}.

Our goals:

minimize the cost function: minimize
x

f (x)

while satisfying the constraints by penalizing them:

yi (x) ≤ 0 =⇒ minimize
x,λi

λiyi (x), where λi ≥ 0.

hi (x) = 0 =⇒ minimize
x,νi

νihi (x), where νi ≥ 0.

let’s combine these using regularized minimization:

min
x,λ,ν

L(x ,λ,ν) := f (x) +
m1∑
i=1

λiyi (x) +
m2∑
i=1

νihi (x) = f (x) + λ⊤y(x) + ν⊤h(x).

So, Lagrangian is the relaxation of optimization problem to an unconstrained problem.
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Interpretation of Lagrangian

minimize
x

f (x)

subject to yi (x) ≤ 0, i ∈ {1, . . . ,m1},
hi (x) = 0, i ∈ {1, . . . ,m2}.

We want to minimize the objective function f (x). We create a cost function consisting of
the objective function.

The optimization problem has constraints so its constraints should also be satisfied while
minimizing the objective function. Therefore, we penalize the cost function if the
constraints are not satisfied.

For this, we can add the constraints to the objective function as the regularization (or
penalty) terms and we minimize the regularized cost.

The dual variables λ and ν can be seen as the regularization parameters which weight the
penalties compared to the objective function f (x).
This regularized cost function is the Lagrangian function or the Lagrangian relaxation of
the problem (1).

Minimization of the regularized cost function minimizes the function f (x) while trying to
satisfy the constraints.

min
x,λ,ν

L(x ,λ,ν) := f (x) +
m1∑
i=1

λiyi (x) +
m2∑
i=1

νihi (x) = f (x) + λ⊤y(x) + ν⊤h(x).
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Lagrange Dual Function

Definition (Lagrange dual function)

The Lagrange dual function (also called the dual function) g : Rm1 × Rm2 → R is defined as:

g(λ,ν) := inf
x∈D

L(x ,λ,ν)

= inf
x∈D

(
f (x) +

m1∑
i=1

λiyi (x) +
m2∑
i=1

νihi (x)
)
.

(3)

For convex minimization: the dual function g is a concave function. We will see later
that we maximize this concave function in a so-called dual problem.

For convex maximization: the dual function g is a convex function. We will see later that
we minimize this convex function in a so-called dual problem.
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Primal and Dual Feasibility
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Primal Feasibility

minimize
x

f (x)

subject to yi (x) ≤ 0, i ∈ {1, . . . ,m1},
hi (x) = 0, i ∈ {1, . . . ,m2}.

Definition (The optimal point and the optimum)
The solution of this optimization problem is the optimal point denoted by x∗. The minimum
function from this solution, i.e., f ∗ := f (x∗), is called the optimum function of this problem.

The optimal point x∗ is one of the feasible points which minimizes function f (.) with
constraints in problem (1). Hence, the optimal point is a feasible point:

yi (x∗) ≤ 0, ∀i ∈ {1, . . . ,m1}, (4)

hi (x∗) = 0, ∀i ∈ {1, . . . ,m2}. (5)

These are called the primal feasibility.
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Feasibility in dual function

minimize
x

f (x)

subject to yi (x) ≤ 0, i ∈ {1, . . . ,m1},
hi (x) = 0, i ∈ {1, . . . ,m2}.

L(x ,λ,ν) := f (x) +
m1∑
i=1

λiyi (x) +
m2∑
i=1

νihi (x) = f (x) + λ⊤y(x) + ν⊤h(x).

The optimal point x∗ minimizes the Lagrangian function because Lagrangian is the
relaxation of optimization problem to an unconstrained problem.

On the other hand, according to Eq. (3),

g(λ,ν) := inf
x∈D

L(x ,λ,ν),

the dual function is the minimum of Lagrangian w.r.t. x . Hence, we can write the dual
function as:

g(λ,ν)
(3)
= inf

x∈D
L(x ,λ,ν) = L(x∗,λ,ν). (6)
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Dual Feasibility

Lemma (Dual function as a lower bound)

For minimization problem, if λ ⪰ 0, then the dual function is a lower bound for f ∗:

g(λ,ν) ≤ f ∗. (7)

Proof.
Let λ ⪰ 0 which means λi ≥ 0, ∀i . Consider a feasible x̃ for problem (1). We have:

L(x̃ ,λ,ν) (2)
= f (x̃) +

m1∑
i=1

λi︸︷︷︸
≥0

yi (x̃)︸ ︷︷ ︸
≤0

+

m2∑
i=1

νi hi (x̃)︸ ︷︷ ︸
=0

≤ f (x̃). (8)

Therefore, we have:

f (x̃)
(8)

≥ L(x̃ ,λ,ν) ≥ inf
x∈D

L(x ,λ,ν) (3)
= g(λ,ν).

Hence, the dual function is a lower bound for the function of all feasible points. As the optimal
point x∗ is a feasible point, the dual function is a lower bound for f ∗.

KKT Conditions 12 / 42



Dual function as a lower bound
For minimization problem: g(λ,ν) ≤ f ∗

For maximization problem: g(λ,ν) ≥ f ∗
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Nonnegativity of dual variables for inequality constraints

From the above lemma, we conclude that for having the dual function as a lower bound
for the optimum function, the dual variable {λi}m1

i=1 for inequality constraints (less than or
equal to zero) should be non-negative, i.e.:

λ ⪰ 0 or λi ≥ 0, ∀i ∈ {1, . . . ,m1}. (9)

We assume that the inequality constraints are less than or equal to zero. If some of the
inequality constraints are greater than or equal to zero, we convert them to less than or
equal to zero by multiplying them to −1. Or, if the inequality constraints are greater than
or equal to zero, we should have λi ≤ 0, ∀i because yi (x) ≥ 0 =⇒ −yi (x) ≤ 0.
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The Dual Problem
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Primal and dual problems

Definition (Primal and dual problems)

We saw that the dual function is a lower bound for the optimum function: g(λ,ν) ≤ f ∗.

We want to find the best lower bound so we maximize g(λ,ν) w.r.t. the dual variables
λ,ν.

Eq. (9) says that the dual variables for inequalities must be nonnegative: λ ⪰ 0

Hence, we have the following optimization:

maximize
λ,ν

g(λ,ν)

subject to λ ⪰ 0.
(10)

The problem (10) is called the Lagrange dual optimization problem for problem (1).

The problem (1) is also referred to as the primal optimization problem.

The variable of problem (1), i.e. x , is called the primal variable while the variables of
problem (10), i.e. λ and ν, are called the dual variables.

Let the solutions of the dual problem be denoted by λ∗ and ν∗. We denote:

g∗ := g(λ∗,ν∗) = sup
λ,ν

g .
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Weak and strong duality

Definition (Weak and strong duality)
For all convex and nonconvex minimization problems, the optimum dual problem is a lower
bound for the optimum function:

g∗ ≤ f ∗ i.e., g(λ∗,ν∗) ≤ f (x∗). (11)

This is called the weak duality. For some optimization problems, we have strong duality which
is when the optimum dual problem is equal to the optimum function:

g∗ = f ∗ i.e., g(λ∗,ν∗) = f (x∗). (12)

The strong duality usually holds for convex optimization problems.
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Weak and strong duality

Corollary

Eqs. (11) and (12) show that, in a minimization problem, the optimum dual function always
provides a lower-bound for the optimum primal function:

g∗ ≤ f ∗. (13)

KKT Conditions 18 / 42



Weak and strong duality in iterative optimization
If optimization is iterative, the solution is updated iteratively until convergence.

The series of primal optimal and dual optimal converge to the optimal solution and the
dual optimal, respectively.

in convex problem:

{x (0), x (1), x (2), . . . } → x∗,

{ν(0),ν(1),ν(2), . . . } → ν∗,

{λ(0),λ(1),λ(2), . . . } → λ∗,

f (x (0)) ≥ f (x (1)) ≥ f (x (2)) ≥ · · · ≥ f (x∗),

g(λ(0),ν(0)) ≤ g(λ(1),ν(1)) ≤ · · · ≤ g(λ∗,ν∗).

g(λ(k),ν(k)) ≤ f (x (k)), ∀k.

(14)
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Slater’s condition

Lemma (Slater’s condition [1])
For a convex optimization problem in the form:

minimize
x

f (x)

subject to yi (x) ≤ 0, i ∈ {1, . . . ,m1},
Ax = b,

we have strong duality if it is strictly feasible, i.e.:

∃x ∈ int(D) : yi (x) < 0, ∀i ∈ {1, . . . ,m1},
Ax = b.

(15)

In other words, for at least one point in the interior of domain (not on the
boundary of domain), all the inequality constraints hold strictly. This is called
the Slater’s condition.
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Example for Slater’s condition

Example:
minimize
x=[x1,x2]⊤

x21 + x22 + 1

subject to x1 + x2 ≥ 1,

x1 − x2 = 2.

The constraints:

x1 + x2 ≥ 1 =⇒ −x1 − x2 + 1 ≤ 0,

x1 − x2 = 2 =⇒ x1 − x2 − 2 = 0.

So, the problem is:
minimize
x=[x1,x2]⊤

x21 + x22 + 1

subject to − x1 − x2 + 1 ≤ 0,

x1 − x2 − 2 = 0.
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Example for Slater’s condition

minimize
x=[x1,x2]⊤

x21 + x22 + 1

subject to − x1 − x2 + 1 ≤ 0,

x1 − x2 − 2 = 0.

Can we find at least one [x1, x2]⊤ to satisfy the following?

− x1 − x2 + 1 ≤ 0,

x1 − x2 − 2 = 0.

We have:

x1 − x2 − 2 = 0 =⇒ x1 = x2 + 2 =⇒ −(x2 + 2)− x2 + 1 < 0 =⇒ x2 > −0.5

We can take x2 = 0, then:

x1 = x2 + 2 = 0 + 2 = 2

So, we can find x1 = 2, x2 = 0 which satisfies the Slater’s condition. Therefore, strong duality
holds for this problem.
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Stationarity Condition
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Stationarity condition

L(x ,λ,ν) := f (x) +
m1∑
i=1

λiyi (x) +
m2∑
i=1

νihi (x).

As was explained before, the Lagrangian function can be interpreted as a regularized cost
function to be minimized. Hence:

minimize
x

L(x ,λ,ν). (16)

We can find its minimum by setting its derivative w.r.t. x , denoted by ∇xL, to zero:

∇xL(x ,λ,ν) = 0 =⇒ ∇x f (x) +
m1∑
i=1

λi∇xyi (x) +
m2∑
i=1

νi∇xhi (x) = 0. (17)

This equation is called the stationarity condition because this shows that the gradient of
Lagrangian w.r.t. x should vanish to zero (note that a stationary point of a function is a
point where the derivative of function is zero).

This derivative holds for all dual variables and not just for the optimal dual variables.
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Complementary Slackness
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Complementary slackness

Assume that the problem has strong duality with x∗, λ∗, and ν∗.

According to Eq. (12), g(λ∗,ν∗) = f (x∗), and Eq. (3), g(λ,ν) := infx∈D L(x ,λ,ν), we
have:

f (x∗)
(12)
= g(λ∗,ν∗)

(3)
= inf

x∈D

(
f (x) +

m1∑
i=1

λ∗
i yi (x) +

m2∑
i=1

ν∗i hi (x)
)

(a)
= f (x∗) +

m1∑
i=1

λ∗
i yi (x

∗) +

m2∑
i=1

ν∗i hi (x
∗)

(b)
= f (x∗) +

m1∑
i=1

λ∗
i yi (x

∗)
(c)

≤ f (x∗), (18)

where (a) is because x∗ is the primal optimal solution for problem (1) and it minimizes
the Lagrangian, (b) is because x∗ is a feasible point and satisfies hi (x∗) = 0, and (c) is
because λ∗

i ≥ 0 according to Eq. (9) and the feasible x∗ satisfies yi (x∗) ≤ 0, so we have:

λ∗
i yi (x

∗) ≤ 0, ∀i ∈ {1, . . . ,m1}. (19)
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Complementary slackness

We obtained Eqs. (18) and (19):

f (x∗) = f (x∗) +

m1∑
i=1

λ∗
i yi (x

∗) ≤ f (x∗),

λ∗
i yi (x

∗) ≤ 0, ∀i ∈ {1, . . . ,m1}.

Therefore:

f (x∗) = f (x∗) +

m1∑
i=1

λ∗
i yi (x

∗) ≤ f (x∗)

=⇒
m1∑
i=1

λ∗
i yi (x

∗) = 0
(19)
=⇒ λ∗

i yi (x
∗) = 0,∀i .

Therefore, the multiplication of every optimal dual variable λ∗
i with yi (.) of optimal primal

solution x∗ must be zero. This is called the complementary slackness:

λ∗
i yi (x

∗) = 0, ∀i ∈ {1, . . . ,m1}. (20)
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Complementary slackness

The complementary slackness:

λ∗
i yi (x

∗) = 0, ∀i ∈ {1, . . . ,m1}.

These conditions can be restated as:

λ∗
i > 0 =⇒ yi (x∗) = 0, (21)

yi (x∗) < 0 =⇒ λ∗
i = 0, (22)

which means that, for an inequality constraint,

▶ If the dual optimal is nonzero, its inequality function of the primal optimal must be
zero.

▶ If the inequality function of the primal optimal is nonzero, its dual optimal must be
zero.
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KKT Conditions
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Karush-Kuhn-Tucker (KKT) conditions

In previous slides, we derived the primal feasibility, dual feasibility, stationarity condition,
and complementary slackness. These four conditions are called the Karush-Kuhn-Tucker
(KKT) conditions [2, 3].

The primal optimal variable x∗ and the dual optimal variables λ∗ = [λ∗
1 , . . . , λ

∗
m1

]⊤,

ν∗ = [ν∗1 , . . . , ν
∗
m2

]⊤ must satisfy the KKT conditions.
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Karush-Kuhn-Tucker (KKT) conditions
We summarize the KKT conditions in the following:

1 Stationarity condition:

∇xL(x ,λ,ν) =∇x f (x) +
m1∑
i=1

λi∇xyi (x) +
m2∑
i=1

νi∇xhi (x) = 0. (23)

2 Primal feasibility:

yi (x∗) ≤ 0, ∀i ∈ {1, . . . ,m1}, (24)

hi (x∗) = 0, ∀i ∈ {1, . . . ,m2}. (25)

3 Dual feasibility:

λ ⪰ 0 or λi ≥ 0, ∀i ∈ {1, . . . ,m1}. (26)

4 Complementary slackness:

λ∗
i yi (x

∗) = 0, ∀i ∈ {1, . . . ,m1}. (27)

As listed above, KKT conditions impose constraints on the optimal dual variables of inequality
constraints because the sign of inequalities is important.

KKT Conditions 31 / 42



Karush-Kuhn-Tucker (KKT) conditions

Recall the dual problem (10):
maximize

λ,ν
g(λ,ν)

subject to λ ⪰ 0.

The constraint in this problem is already satisfied by the dual feasibility in the KKT
conditions. Hence, we can ignore the constraint of the dual problem:

maximize
λ,ν

g(λ,ν), (28)

which should give us λ∗, ν∗, and g∗ = g(λ∗,ν∗).

This is an unconstrained optimization problem and for solving it, we should set the
derivative of g(λ,ν) w.r.t. λ and ν to zero:

∇λg(λ,ν) = 0
(6)
=⇒ ∇λL(x∗,λ,ν) = 0. (29)

∇νg(λ,ν) = 0
(6)
=⇒ ∇νL(x∗,λ,ν) = 0. (30)

Setting the derivatives of Lagrangian w.r.t. dual variables always gives back the
corresponding constraints in the primal optimization problem.
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Karush-Kuhn-Tucker (KKT) conditions

Eqs. (23), (29), and (30) state that the primal and dual residuals must be zero:

∇xL(x ,λ,ν) = ∇x f (x) +
m1∑
i=1

λi∇xyi (x) +
m2∑
i=1

νi∇xhi (x) = 0,

∇λL(x∗,λ,ν) = 0,

∇νL(x∗,λ,ν) = 0.

Eqs. (3) and (28) can be summarized into the following max-min optimization problem:

sup
λ,ν

g(λ,ν)
(3)
= sup

λ,ν
inf
x

L(x ,λ,ν) = L(x∗,λ∗,ν∗). (31)
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Where the KKT name came from?

The reason for the name KKT is as follows [4].

In 1952, Kuhn and Tucker published an important paper proposing the conditions [3].

However, later it was found out that there is a master’s thesis by Karush, in 1939, at the
University of Chicago, Illinois [2].

That thesis had also proposed the conditions; however, researchers including Kuhn and
Tucker were not aware of that thesis. Therefore, these conditions were named after all
three of them.
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Method of Lagrange Multipliers
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Method of Lagrange multipliers
We can solve the optimization problem (1):

minimize
x

f (x)

subject to yi (x) ≤ 0, i ∈ {1, . . . ,m1},
hi (x) = 0, i ∈ {1, . . . ,m2},

using duality and KKT conditions. This technique is also called the method of Lagrange
multipliers. For this, we should do the following steps:

1 We write the Lagrangian as Eq. (2):

L(x ,λ,ν) := f (x) +
m1∑
i=1

λiyi (x) +
m2∑
i=1

νihi (x) = f (x) + λ⊤y(x) + ν⊤h(x).

2 We consider the dual function defined in Eq. (3) and we solve it:

x† := argmin
x

L(x ,λ,ν). (32)

It is an unconstrained problem and according to Eqs. (3) and (23), we solve this problem
by taking the derivative of Lagrangian w.r.t. x and setting it to zero, i.e.,

∇xL(x ,λ,ν)
set
= 0. This gives us the dual function:

g(λ,ν) = L(x†,λ,ν). (33)
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Method of Lagrange multipliers
3 We consider the dual problem, defined in Eq. (10) which is simplified to Eq. (28) because

of Eq. (26). This gives us the optimal dual variables λ∗ and ν∗:

λ∗,ν∗ := argmax
λ,ν

g(λ,ν). (34)

It is an unconstrained problem and according to Eqs. (29) and (30), we solve this problem
by taking the derivative of dual function w.r.t. λ and ν and setting them to zero, i.e.,

∇λg(λ,ν)
set
= 0 and ∇νg(λ,ν)

set
= 0. The optimum dual value is obtained as:

g∗ = max
λ,ν

g(λ,ν) = g(λ∗,ν∗). (35)

4 We put the optimal dual variables λ∗ and ν∗ in Eq. (23) to find the optimal primal
variable:

x∗ := argmin
x

L(x ,λ∗,ν∗). (36)

It is an unconstrained problem and we solve this problem by taking the derivative of
Lagrangian at optimal dual variables w.r.t. x and setting it to zero, i.e.,

∇xL(x ,λ∗,ν∗)
set
= 0. The optimum primal value is obtained as:

f ∗ = f (x∗). (37)
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Example for Method of Lagrange multipliers
Example:

minimize
x=[x1,x2]⊤

x21 + x22 + 1

subject to x1 + x2 ≥ 1,

x1 − x2 = 2.

The constraints:

x1 + x2 ≥ 1 =⇒ −x1 − x2 + 1 ≤ 0,

x1 − x2 = 2 =⇒ x1 − x2 − 2 = 0.

The Lagrangian is:

L(x , λ, ν) = x21 + x22 + 1 + λ(−x1 − x2 + 1) + ν(x1 − x2 − 2).

∇xL =

[
∇x1L
∇x2L

]
=

[
2x1 − λ+ ν
2x2 − λ− ν

]
=

[
0
0

]
.

Therefore: {
2x1 − λ+ ν = 0
2x2 − λ− ν = 0

=⇒ x†1 =
λ− ν

2
, x†2 =

λ+ ν

2
.
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Example for Method of Lagrange multipliers

L(x†, λ, ν) = (x†1 )
2 + (x†2 )

2 + 1 + λ(−x†1 − x†2 + 1) + ν(x†1 − x†2 − 2)

= (
λ− ν

2
)2 + (

λ+ ν

2
)2 + 1 + λ(−

λ− ν

2
−

λ+ ν

2
+ 1) + ν(

λ− ν

2
−

λ+ ν

2
− 2)

= −
1

2
λ2 −

1

2
ν2 + λ− 2ν + 1

Hence:

g(λ, ν) = L(x†, λ, ν) = −
1

2
λ2 −

1

2
ν2 + λ− 2ν + 1.

We have: {
∇λg(λ, ν) = −λ+ 1 = 0
∇νg(λ, ν) = −ν − 2 = 0

=⇒ λ∗ = 1, ν∗ = −2.
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Example for Method of Lagrange multipliers

We found λ∗ = 1, ν∗ = −2. Therefore:

L(x , λ∗, ν∗) = x21 + x22 + 1 + λ∗(−x1 − x2 + 1) + ν∗(x1 − x2 − 2)

= x21 + x22 + 1 + (1)(−x1 − x2 + 1) + (−2)(x1 − x2 − 2)

= x21 + x22 − 3x1 + x2 + 6.

We have:

∇xL(x , λ∗, ν∗) =

[
∇x1L(x , λ∗, ν∗)
∇x2L(x , λ∗, ν∗)

]
=

[
2x1 − 3
2x2 + 1

]
=

[
0
0

]
.

{
2x1 − 3 = 0
2x2 + 1 = 0

=⇒ x∗1 =
3

2
, x∗2 = −

1

2
.
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Example for Method of Lagrange multipliers

In summary, we have:

x∗1 =
3

2
, x∗2 = −

1

2
, λ∗ = 1, ν∗ = −2.

f ∗ = f (x∗) = 3(x∗1 )
2 + 2(x∗2 )

2 + 1 = 3(
3

2
)2 + 2(−

1

2
)2 + 1 = 3.5

g∗ = g(λ∗, ν∗) = L(x†, λ∗, ν∗) = −
1

2
(λ∗)2 −

1

2
(ν∗)2 + λ∗ − 2ν∗ + 1

= −
1

2
(1)2 −

1

2
(−2)2 + 1− 2(−2) + 1 = 3.5

It is expected to have f ∗ = g∗, as we have strong duality (we saw in previous slides that this
problem satisfies Slater’s condition; see the example we provided for Slater’s condition).
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