KKT Conditions

Optimization Techniques (ENGG*6140)

School of Engineering,
University of Guelph, ON, Canada

Course Instructor: Benyamin Ghojogh
Winter 2023

KKT Conditions



The Lagrangian Function
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Optimization Prob

f(x)

subject to  y;(x) < ie{l,...,m}, (7\)4" (1)
h,'(X)Z i € {1,..,,!1‘!2}. R
\/V\‘ .
. . RS
Inequality constraints: e\

3
® yi(x)<0 L hm, =
@ ki(x)>0 g\ E@ 0, where y;(x) := —k;(x) 7(2‘ _'_317’ <!

LGN :'k‘(") 2 >
Maximization: ’61( ) { A5~ 2
@ maximize f(x) = minimize — f(x) = minimize g(x) ;\47;1\'1_ £/
X S | L= - \
Examples: 7\'\5—\—27\14
/

for fi(x) : (xTx +a'x+ b,y X} —4xy — 2x2, tan(xi) — 4sin(x3) — 2 1.1M2
l T T u L \ ’\'1'
foryi(x) <0: x'x+a x+b<0
= 22T =
for yi(x) <0: p+30+2<0, 7 —4g-2<0, tan(xs) —4sin(x) =2 <0,
for hj(x
(

y=0: x'x+a' x+b=0
——
for hi(x) =0: X2 +3x+2=0, x3—4x3—2=0, tan(xs)—4sin(x;)—2=0,
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Lagrangian and Dual Variables

where { 1.and {vi} "12 are the Lagrange multipliers, also called the dual variables,
correspon |ng to |nequa |fy and equa ity constraints, respectively.

) ml,.. )\mI]T € R, = [vy,.. .,I/mQ]T € R™,
y(x) = [yl(x), L Ym ()] L € R, h(x) == [A1(X), - - -, hmy (x)]T € R™

. L—’__’\__’———‘J
@ Eq. (2) is also called the Lagrange relaxation of the optimization problem (1).
— -
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Sign of Terms in Lagrangian

RVHRS )
minimize w \//% ‘_5\(7\)7/

subject to “y;(x) <0, ie{1,...,m},
h,'(X) =0,i¢€ {1,. cy m2}‘

L(x, A\, v):=Ff @Z)\‘y, x)@Zu‘ hi(x) = F(x) + AT y(x) + v T h(x).
(LT

@ sometimes, the plus sign behind >~ v;h;i(x) is replaced with the negative sign. As h;(x)
is for equality constraint, its sign is not important in the Lagrangian function.

B hia) e _
hi(x) = 0\= —hi(x) =0, gV\ I\A(H LN )

- L(x, A, v) = f( x)+Z)\,y,(x @ZV, i(x) = f( x)+)\Ty(x)@uTh x).
= k-’—L—'—'L}q_Z /'V ‘\«\('17

@ However, the sign of the term Z,. Aiyi(x) is important bel:ause thefsign of inequality
e A

sen =

constraint is important.
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Interpretatlon of Lagrangian

) Mem'cycm
mmm<:7” hoe
78

subject to [ yi(x) <0, i€ {1,...,m},
hi(x) =0, i € {1,...,m2}.

Our goals:
s ¥ AL
@ minimize the cost function: / W“ﬁ g‘( 5\“2};‘ v\\ g °

@ while satisfying the constraints by penallzmg them:

-]
=0 = minimize wher v; > 0.
W= o b &

@\ let's combine these using regularized minimization: . \v\'(’h)”
greg ’ w*xd‘ll‘j% y

l,—‘ \ — . -
) — f(x Y i h; = f(x x) + v ' h(x).
¢ [ E oA ) y‘y@h@»M

oS i
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Interpretation of Lagrangian er\ ®+ ARG

minimize  f(x)

-X ' / ?%.\%Q'&s“
subject to  yi(x) <0, ie{1,...,m},

hi(x) =0, ie{1,...,m}.

@ We want to minimize the objective function f(x). We create a cost functlon consisting of
the objective function.

@ The optimization problem has constraints so its constraints should also be satisfied while
minimizing the objective function. Therefore, we penalize the cost function if the
constraints are not satisfied.

@ For this, we can add the constraints to the objective function as the regularization (or
penalty) terms and we minimize the regularized cost.

@ The dual variables X and v can be seen as the regularization parameters which weight the
penalties compared to the objective function f(x).

@ This regularized cost function is the Lagrangian function or the Lagrangian relaxation of
the problem (1).

@ Minimization of the regularized cost function minimizes the function f(x) while trying to
satisfy the constraints.

) ' my my
xl?}\l,rl/ L(x,\,v) ::Lf-@‘-i- ;@W(x) + ;@ht—,‘(:) = f(x)+ AT y(x) + v " h(x).
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Lagrange Dual Function U‘ﬁ Is ol Doidin
n ¢
/\9 5 FJNJ fineditn

Definition (Lagrange dual function)
The Lagrange dual function (also called the dual function ): R™ x R™ — R is defined as:
e ™ e i

. }_’Jno\ /@@f\ﬁ(kavu) M‘k _Z’* X‘——_. ]

Jr
vy 3)
& et R -5 (f(x) + Z Ayi(x) + Z vihi(x)). _

) 4

@ For convex minimization: the dual function g is a concave function. We will see later
that we maximize this concave function in a so-called dual problem.

@ For convex maximization: the dual function g is a convex function. We will see later that

—_—

we minimize this convex function in a so-called dual problem. ‘F

N
Uy
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Primal and Dual Feasibility
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Primal Feasibility

minimize \ f(x)
X
subject to  y;(x) <0, ie{l,...,m},
h,'(X) =0,i¢€ {1,. cy m2}‘

Definition (The optimal point and the optimum)

The solution of this optimization_problem is the optimal point denoted b)@ The minimum
function from this solution, i.e.,@:: f(x*), is called the optimum function of this problem.
l

The optimal point x* is one of the feasible points which minimizes function f(.) with

constraints in problem (1). Hence, the optimal point is a feasible point:

%\ yitx) <0, (WPe 1....mi}, (@)
[

hi(x*) =0, @:e{1,...,m2}. (5)

These are called the prlmal feasibility.

KKT Conditions 10 /42



Feasibility in dual function

X
m|n|m|ze f(x) /

subject to  y;(x) <0, ie{l,...,m},
h,'(X) =0,i¢€ {1,. cy mz}.

K LOGAv) =F(x)+> Ayi(x)+ > vihi(x) = f(x) + AT y(x) + v " h(x).
X v (x ;yx 2 (x X y(x v X

@ The opti oint x* minimizes the Lagrangian function because Lagrangian is the
relaxation of optimization problem to an unconstrained problem.

@ On the other hand, according to Eq. (3),

( s\ ¥) = inf £(x.A ﬂ

the dual function is the minimum of Lagrangian w.r.t. x. Hence, we can write the dual

function as: A :\ Y)
dof- & il
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Dual Feasibility >O< \)\'f N f

Lemma (Dual function as a lower bound)
= =L LLLy —_—

For minimization problem / hen the dual function is a lower bound for f*:

&M lg(A V)<]f* \j 44/ s @

7.‘1/ k_F—}

Proof

Let A = 0 which means \; > 0,@ Consider a} for problem (1). We have:
[ - '

Hence, the dual function is a lower bound for the function of all feasible points. As the optimal
point x* is a feasible point, the dual function is a lower bound for f*. O
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Dual function as a lower bound

For minimization problem: g(\,v) < f*
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Nonnegativity of dual variables for inequality constraints

@ From the above lemma, we conclude that for having the dual function as a lower bound
for the optimum function, the dual variable {A;}™; for inequality constraints (less than or
equal to zero) should be non-negative, i.e.:

%<
40!’&,’20, Vie{l,...,ml}. (9)

@ We assume that the inequality constraints are less than or equal to zero. If some of the
inequality constraints are greater than or equal to zero, we convert them to less than or
equal to zero by multiplying them to —1. Or, if the inequaljty constraints are greater than
or equal to zero, we should have \; < 0,Vi because y;(x) = —yi(x) <0.

L

A <o
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The Dual Problem
—_—
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Primal and dual problems {

Definition (Primal and dual problems)

We want to find the best lower bound so we maximize g
A, V.

Eq. (9) says that the dual variables for inequalities must be nonnegative: A = 0

Hence, we have the following optimization:
maximjze @
| TES w0
subject to

The problem (10) is called the Lagrange dual optimization problem for problem (1).

The problem (1) is also referred to as the primal optimization problem.
—————e e

The variable of problem (1), i.e. x, is called the primal variable while the variables of
problem (10), i.e. A and v, are called the dual variables.

Let the solutions of the dual problem be denoted by@anc@ We denote:

tTe-f ) :—M% b
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Weak and strong duality

-~ NP
Definition (Weak and strong duality)

For all convex and nonconvex minimizatign-probtégs, thgop dual problem is a lower
bound for the optimum function: ﬁ q

gr < f* e, g(A*,v*) < f(x¥). (11)
1 -

This is called the weak duality. For some optimization problems, we have strong duality which
is when the optimum dual problem is equal to the optimum function:

e (g7 ,v") = F(x).| % (12)

The strong duality usually holds for convex optimization problems.
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Weak and strong duality

Corollary

Egs. (11) and (12) show that, in a minimization problem, the optimum dual function always
provides a lower-bound for the optimum primal function:

gr < f*. (13)

9(Av)
. . = ) _
weak duality strong duality Wweak duality strong duality

minimization problem maximization problem
Maximization prob’em

_—_—
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Weak and strong duality in iterative optimization
o Ifw, the solution is updated iteratively until convergence.

@ The series of primal optimal and dual optimal converge to the optimal solution and the
dual optimal, respectively.

@ in convex problem:

LoD )
I ORY ORI O
2O O 2@
) 2 F) > 7(xD) > - > (), |
g0, 00) < g pV) < < g(A7,07).
g(AW) L)) < £(x9)), vk

gA® @)
9@ L))

(a)

KKT Conditions 19 /42




Slater’s condition e

Lemma (Slater’s condition}[1]) A |7
73 - [
For a convex optimization problem in the fornt: o} Ty d
minimi.
X
subject to i€ {1,...,m},

_e Ttedleaym
k(n) A z})

we have

trong duality /i it is strictly feasible, i.e.:

ﬁx € int(D) , '6 {1,. 494 )
eAis 9%

In other words, FOR AT LEAST ONE POINT IN THE INTERIOR OF DOMAIN (NOT ON THE
BOUNDARY OF DOMAIN), ALL THE INEQUALITY CONSTRAINTS HOLD STRICTLY. This is called
the Slater’s condition.
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Example for Slater's condition

Example:
minimize  xZ +x3 +1
x=[x1, %] T
subject to x; +x2 > 1,

X1 — xp = 2.
The constraints:

x1+x>1 = —x31—xx+1<0,
x]—xp=2 = x1 —xp—2=0.

So, the problem is:
minimize x12 + x22 +1
x=[x1,x2] T
subjectto —x31—xx+1<0,
x1 —xp—2=0.

KKT Conditions 21/42



Example for Slater's condition J’(*ﬁ&

minii'ie x12 + x22 +1 9
subjectto ) —x31 —xx+1<0,
x1 —x2—2=0.

Can we find at least one [x17 XQ]T to satisfy the following?

—X1—X2+1‘<0,

%Xl—x2—2—0A
We have:

x1—x—2=0 = x1=x+2 = —(+2)—-xx+1<0 = x >-05
L b | ) - )

We can take x» = 0, then:
| —
x1=x4+2=042=2

So, we can findhich satisfies the Slater’s condition. Therefore, strong duality

holds for this problem.
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Stationarity Condition
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Stationarity condition

AKX LA v) =)+ Ay + S vihi(x).
[ ,2 ,E

As was explained before, the Lagrangian function can be interpreted as a regularized cost
function to be minimized. Hence:

ol

We can find its minimum by setting its derivative w.r.t. x, denoted by to zero:

st L 2 st
VEL(x, A\, v) =0 Vxf(x) + > (NWVxyi(x) + > (viVxhi(x)'=0.
sactnef o —{ g S S

This equation is called the(stationarityIcondition because this shows that the gradient of
Lagrangian w.r.t. x should vanish to zero (note that a stationary point of a function is a

point where the derivative of function is zero).
This derivative holds for‘ dual variables and not just for the optimal dual variables.

i

17
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Complementary Slackness
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Complementary slackness

@ Assume that the problem has strong duality with x*, A*, and v*

@ According to Eq. (12), g(A*,v*) = f(x*), and Eq. (5, g\, v) = infyep(L(x, A, v))we
have: [/_,_,?;_/—_——J

_ e U
¥ fx) @ e @ inf (700 +Z@y, X)+Z@h (x)) LY
2

L] \<.
my m m AN c
@ (x> +Z/\*y,(x )+ ,h,-(g)“’ )+ Afﬂx\*) g) f(x*), (18)
J b i=1 i ‘\J L i=1 8] _J
< O
where (a) is becausg x* is the primal optimal solution for problem and it minimizes
the Lagrangian, (b) is because x* is a feasible point and satisfies
because A7 > 0 according to Eg. (9) and the feasible x* satisfies y; x*) <0, so we have:
g A
& NMyi(x") <0, Vie{l,...,m}. (19)

X‘{ Vs jl'("#)\<°
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Complementary slackness

@ We obtained Egs. (18) and (19):

K F(x) = F(x) + DN yilx") < F(x7),

i=1

¥K AyixT) <0, Vie{l,...,m}.
—_—

@ Therefore:

my —
f(x*)=f(x*) + Z)\,’-‘y,-(x*) < f(x*

i=1

my
— ST 20 B ey xty = 0, vi ¢
Li=L ] -

@ Therefore, the multiplication of every optimal dual variable \¥ with y;(.) of optimal primal
solution x* must be zero. This is called the complementary slackness:

(20)
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Complementary slackness

@ The complementary slackness:

¥ ANyi(x*)=0,

@ These conditions can be restated as:

Al >0 = y(x*) =0, (21)
— s
yi(x*) <0 = X =0, (22)

which means that, for an inequality constraint,

> If the dual optimal is nonzero, its inequality function of the primal optimal must be

zero.
> If the inequality function of the primal optimal is nonzero, its dual optimal must be

zero.
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Karush-Kuhn-Tucker (KKT) conditions

@ In previous slides, we derived the primal feasibility, dual feasibility, stationarity condition,
and complementary slackness. These four conditions are called the Karush-Kuhn-Tucker
(KKT) conditions [2, 3].

@ The primal optimal variable x* and the dual optimal variables A* = [A], .. .,)\;‘nl]—r,

v =[vf, ...,y ]T must satisfy the KKT conditions.

*
m
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Karush-Kuhn-Tucker (KKT) conditions

We summarize the KKT conditions in the following:

@ Stationarity condition:
my my
] VL(x, A, v) =Vaf(x) + D> N Vayi(x) + > viVehi(x) = 0. (23)
L e E— i=1 i=1

@ Primal feasibility:
_——

.\ * .yi(X*)SOa _vie{lﬂ"':ml}’ (24)

¥ hi(x) =0, Vie{l,... m}& (25)
© Dual feasibility:
A0, o >0 vie{l,. . m} ¥ (26)
ey

@ Complementary slackness:

C_;vie{l,...,ml}.-\f (27)

As listed above, KKT conditions impose constraints on the optimal dual variables of inequality
. - , — - - e ————ee e
constraints because the sign of inequalities is important.
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Karush-Kuhn-Tucker (KKT) conditions
@ Recall the dual problem (10):

maximize 7g(\,v)
v

subject to é’w/

The constraint in this problem is already satisfied by the dual feasibility in the KKT
conditions. Hence,|we can ignore the constraint of the dual problem:

— X _ %
m ize g(A\v), |—= A oY (28)
which should givd us A*, v*, and : g()\*,t/*).l

@ This is an unconstrained optimization problem and for solving it, we should set the
derivative of g(\,v) w.r.t. X and v to zero:

¥o.S0 2 G a1 %o 5t
Do - é@ux*,x,u)‘i Lokt

@ Setting the derivatives of Lagrangian w.r.t. dual variables always gives back the
corresponding constraints in the primal optimization problem.
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Karush-Kuhn-Tucker (KKT) conditions

@ Egs. (23), (29), and (30) state that the primal and dual residuals must be zero:

L m

my
VxL(x, A, v) = Vif(x) + D AVayi(x) + > 17 Vxhi(x) =0,

i=1 i=1
¥ vas(x*, A )= o,’(]

Vo, L(x*,\, ) = 0.
| S |

@ Egs. (3) and (28) can be summarized into the following max-min optimization problem:

sup g(A,v) Y c(x,A,u) = L(x*, A", v7). (31)
l A,V ] L ]

oy (ax L)
E\mqﬁ (w\\\ oL)
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Where the KKT name came from?

@ The reason for the name KKT is as follows [4].

In 1952, Kuhn and Tucker published an important paper proposing the conditions [3].

@ However, later it was found out that there is a master’s thesis by Karush, in 1939, at the
University of Chicago, lllinois [2].

@ That thesis had also proposed the conditions; however, researchers including Kuhn and
Tucker were not aware of that thesis. Therefore, these conditions were named after all
three of them.
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Method of Lagrange Multipliers
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Method of Lagrange multipliers ~ G=) Lefhe

We can solve the optimization problem (1): @ < Mf\:ﬂh
minimize  f(x) %
X
j ; < 1 1,...
subject to  y;(x) <0, i €1, ’ﬂ}’ Y ?\"" .ﬁ(ﬂ%)

hi(x) =0,i¢€ {1)'“’m2}7

using duality and KKT conditions. is technique 5afso called the method of Lagrange
multipliers. For this, we should do the following steps:
multipliers.

@ We write the Lagrangian as Eq. (2):

< LA v):=f x)+Z)\,y,(x +Zu, i(x) = f(x) + AT y(x) + v T h(x).
( VL= | L= il

@ We consider the dual function defined in Eq. (3) and we solve it:

. .
Lf,,\'_ arg min L(x, A, v). (32)

It is an unconstrained problem and according to Egs. (3) and (23), we solve this problem
by taking the derivative of Lagrangian w.r.t. x and setting it to zero, i.e.,

VxL(x,A, V) £ 0. This gives us the dual functionl:—/\ 9((\)7/)5 %-# oé(?‘;/l,'/)

-
: £(xt, A ). (33)
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Method of Lagrange multipliers

© We consider the dual problem, defined in Eq. (10) which is simplified to Eq. (28) because
of Eq. (26). This gives us the optimal dual variables A* and v*:

X AL,vti=arg n)lal} g(A,v). (34)

It is an unconstrained problem and according to Egs. (29) and (30), we solve this problem
by taking the derivative of dual function w.r.t. A and v and setting them to zero, i.e.,

Vag(A,v) Z0and Vog(A, v) = 0. The optimum dual value is obtained as:

& max g\ v) =g(A",v"). (35)

@ We put the optimal dual variables A* and v* in Eq. (23) to find the optimal primal

variable:
@:: arg (3fK)

min L£(x .

|
It is an unconstrained problem and we solve this problem by taking the derivative of
Lagrangian at optimal dual variables w.r.t. x and setting it to zero, i.e.,

t . . . .
= 0. The optimum primal value is obtained as:

o5 @ = f(x*). (37)
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7
Example for Method of Lagrange multipliers ¢, W~ _ kol
Example: 5
baal ik 7\%-H\¢+ (
subject to  x1 +x > 1, At

At 1<
ke o

The constraints:

The Lagrangian is:

¥ L(x,\v) :Xdz +2 + 1+ A—x1 — x2 +i))+£/(x1 — X — 2)4.

2x1—)\+1/-<g‘(’0
2% — A—v| |0

¥ o= [ -

Therefore:
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Example for Method of Lagrange multipliers
N

4

L(x", A v) —(XIT)2+(XT)2+1+,\( =] +1)+u(d —xd —2)

A A A— A
+( +I/)2+1+)\(_ 1/_ ;V+1)+,,( 21/_ -;V

1
:—5/\2—51/ +A-2v+1
Hence:

L e Lt Gy

We have: ¥

Sa
V)\g(Aa ):—A+1:0 = M =1 v=-2
Vog\v)=-1v—-2=0
ey, st 1
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Example for Method of Lagrange multipliers

We found \* =1, v* = —2. Therefore:

LN ) =x2+ 3+ 1+ X (—x1 — x4+ 1)+ (x1 —x2 —2)
=X+ 414+ 1) (—x1 — x4+ 1)+ (=2)(x1 — x2 — 2)

X12+X2273X1+X2+6.
L |

We have:

v e [V £, A, 0%)]  [2x — 3]5€%T0
VeL(x, A%, v7) = [inﬁ(x,)\*,u*)] = |:2X2+1:| =lo|"

{2X1—3:0 =>x*—3 = 1
2xo+1=0 1T 2Ty
| S R A
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Example for Method of Lagrange multipliers

In summary, we have:

3 1
=2 x5 =3

e 2 7 2"

z
K F =) = 3040 4206 +1 =300 + 227 +1(35) i
)= L(xT A v :—EA*Z—EV*2+A*—2V*+1
¥ (£ £0r) - Lx )= 307 5 L

1

=5y - (2)2 172(2+1:@@9$3§

1S

It is expected to have f* = g*, as we have strong duality (we saw in previous slides that this

problem satisfies Slater’s condition; see the example we provided for Slater’s condition).

D =
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