
Introduction to Riemannian Optimization
An introduction to optimization on Riemannian matrix manifolds

Benyamin Ghojogh
Winter 2023

Introduction to Riemannian Optimization 1 / 42



Riemannian Manifold

Introduction to Riemannian Optimization 2 / 42



Riemannian manifold vs Euclidean space

Vector space: a vector space (also called a linear space) is a set whose elements, often
called vectors, can be added together and multiplied (scaled) by numbers called scalars.

Euclidean space: A Euclidean space is a vector space, but with a Euclidean distance
metric defined over it.

Smooth manifold:
▶ In simple words, it is a differentiable curvy hyper-surface.
▶ In mathematical definition, it needs the concepts of topological space, chart, and

homeomorphism.

Riemannian manifold M:
▶ In simple words, it is a real smooth manifold M with a Riemannian distance metric

(distance on the curvy hyper-surface) defined over it.
▶ In mathematical definition, it is a real smooth manifold M equipped with a

positive-definite inner product on the tangent space at each point.
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Euclidean optimization

In Euclidean optimization, the cost function is a function from the Euclidean space to a
scalar:

f : Rd → R, f : x 7→ f (x).

The optimization problem is:
minimize

x∈Rd
f (x), (1)

or equivalently:
minimize

x
f (x)

subject to x ∈ Rd .
(2)

If the optimization problem is constrained:

minimize
x

f (x)

subject to x ∈ S,
(3)

where S is the feasibility set.
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Riemannian optimization

So far in the course, we covered optimization methods in the Euclidean space. The
Euclidean optimization methods can be slightly revised to have optimization on (possibly
curvy) Riemannian manifolds.

In Riemannian optimization [1, 2] optimizes a cost function while the variable lies on a
Riemannian manifold M.

The optimization variable in the Riemannian optimization is usually matrix rather than
vector; hence, Riemannian optimization is also called optimization on matrix manifolds:

f : M → R, f : X 7→ f (X ).

The optimization problem is:
minimize

X∈M
f (X ), (4)

or equivalently:
minimize

X
f (X )

subject to X ∈ M.
(5)

A good technique: If the optimization problem is constrained, we may define the
constraint as the matrix manifold of that constraint (such as the Stiefel (orthogonal
matrix) manifold for X⊤X = I ) and use Eq. (5) to solve it.

Introduction to Riemannian Optimization 5 / 42



Euclidean optimization vs. Riemannian optimization
Euclidean optimization: f : Rd → R, f : x 7→ f (x).

minimize
x

f (x)

subject to x ∈ Rd .

Riemannian optimization: f : M → R, f : X 7→ f (X ).

minimize
X

f (X )

subject to X ∈ M.
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Euclidean optimization vs. Riemannian optimization
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Topology and Smooth
Manifold Concepts
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Topology and topological space

Definition (Topology and topological space [3, 4])
Let X be a set. A topology on X is a collection T of subsets X , called open sets, satisfying:

∅,X ∈ T
If U1, . . . ,Uk ∈ T , then

⋂k
j=1 Uj ∈ T . In other words, finite intersections of open sets are

open.

If Uα ∈ T , ∀α ∈ A (where A is the index set of topology), then
⋃

α∈A Uα ∈ T . In other
words, arbitrary unions of open sets are open.

The pair (X , T ) is called a topological space associated with the topology T .
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Hausdorff space

Definition (Hausdorff space [3, 4])

A topological space (X , T ) is Hausdorff if and only if for x1, x2 ∈ X , x1 ̸= x2, we have:

∃ open sets U,V such that x1 ∈ U, x2 ∈ V , U ∩ V = ∅. (6)

In other words, the points of a Hausdorff topological space are separable and distinguishable.
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Homeomorphism and Diffeomorphism

Definition (Homeomorphism and Diffeomorphism)
Homeomorphism: A transformation from one topology to another topology without
tearing up the topology. It is studied in algebraic topology.

The two topologies before and after a homeomorphism transformation are called
homeomorphic to each other.

The homeomorphic symbol is usually denoted by ∼=.

Diffeomorphism: A homeomorphism transformation which is smooth and differentiable.

Example; A cup and doughnut (torus) are homeomorphic:

Introduction to Riemannian Optimization 11 / 42



Topological manifold

Definition (Topological manifold [3])

A topological space (X , T ) is a topological manifold of dimension d , for d ∈ Z≥0, also called a
topological d-manifold, if all the following conditions hold:

(X , T ) is Hausdorff.

(X , T ) has a countable basis.

(X , T ) is locally homeomorphic to d-dimensional Euclidean space, Rd .
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Chart

Definition (Chart [3])

Consider a topological manifold M := (X , T ). It is locally homeomorphic to Rd , meaning that
for all x ∈ X , there exists an open set U containing x and a homeomorphism ϕ : U → ϕ(U)

where ϕ(U) is an open subset of Rd . Such mapping is denoted by ϕ : U
∼=−→ ϕ(U) and the tuple

(U, ϕ) is called a coordinate chart, or a chart in short, for M.
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Smooth atlas

Definition (Smooth atlas [5])

A smooth atlas A for a topological d-manifold M is a collection of charts (Uα, ϕα) for M such
that:

They cover M, i.e.,
⋃

α∈A Uα = M.

Any two charts in this collection are smoothly compatible (n.b. two charts (U, ϕ) and
(V , ψ) are smoothly compatible if the mapping ψ ◦ ϕ−1 is a diffeomorphism).

Definition (Maximal atlas [5])
A smooth atlas A for a topological d-manifold M is maximal if it is not contained in any other
smooth atlas for M.
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Smooth manifold and Riemannian manifold

Definition (Smooth manifold [5])
A smooth manifold M of dimension d , also called a smooth d-manifold, is a topological
d-manifold together with a choice of maximal smooth atlas A on M.

Definition (Riemannian manifold)

Riemannian manifold M is a smooth manifold which also has a metric (inner product) g .
Knowing the metric can determine the whole Riemannian manifold because using the metric, we
can calculate:

inner product on manifold

distance on manifold

geodesic (shortest curvy line) on manifold

curvature on every point of manifold
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Riemannian Manifold Concepts
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Riemannian concepts: tangent space, metric, norm

Tangent space TxM: The space of tangent vectors on the manifold M at the point x .

Riemannian metric g :

gx (ξ, η) : TxM× TxM → R.

Norm:

∥ξ∥x =
√

gx (ξ, ξ).
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Riemannian concepts: length of curve

Length of curve:

ℓ(x(t)) ≈
n∑

t=0

∥∥x(t)− x(t + 1)
∥∥

ℓ(x(t)) = lim
n→∞

n∑
t=0

∥∥x(t)− x(t + 1)
∥∥

= lim
n→∞

n∑
t=0

∥∥x(t)− x(t + 1)

∆t

∥∥∆t

(a)
=

∫ 1

0
∥
dx(t)
dt

∥dt =
∫ 1

0
∥ẋ(t)∥dt,

where (a) is because it is a Riemann’s sum. In general, the length between points a and b is:

ℓ(x(t)) =
∫ b

a
∥ẋ(t)∥dt.

Introduction to Riemannian Optimization 18 / 42



Riemannian concepts: geodesic, gradient, Hessian

Geodesic: locally minimizing curves between two points on the manifold

Riemannian gradient: the direction of steepest descent of cost function (maximum
growth of cost function) on the manifold

∇f (x) = gx (∇f , ξ) = Dξf (x) =
d

dt
f (δ(t)), δ̇(t) = ξ.

Riemannian Hessian: the derivative of one of directions (ξ) in the tangent space (the
derivative of derivative)

B f (x) ξ = ∂ξ∇f (x),

where B denotes the Hessian matrix and ∂ξ is the affine connection.
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Riemannian concepts: logarithm and exponential maps

Logarithm map:
▶ In Euclidean space, subtraction is:

∆ = xn − xm, point× point → vector.

▶ The generalization of subtraction in the Riemannian space is logarithm map:

Logxm (xn) = ∆, point on M× point on M → tangent vector TxM.

Logxm (xn) = ξ, ξ ∈ TxmM.

Exponential map:
▶ In Euclidean space, addition is:

xn = xm +∆, point× vector → point.

▶ The generalization of addition in the Riemannian space is exponential map:

Expxm (∆) = xn, point on M× tangent vector TxM → point on M.

Expxm (ξ) = xn, ξ ∈ TxmM.
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Riemannian concepts: retraction

The exponential map Expx (ξ) is hard to compute, because it is moving from point x on
the manifold along the direction ξ ∈ TxM.

We can approximate/replace the exponential map by retraction.

Retraction is a mapping from the tangent space to a point on manifold:

Retx (ξ) : point x on M× tangent vector ξ ∈ TxM → point on M.

You can see it as projection of a point in the tangent space onto the manifold.

Credit of image: [6]
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Riemannian concepts: parallel transport, Riemannian
curvature

Parallel transport: move/transport a tangent vector on the manifold in a way that it stays
parallel with respect to the connection.

Assume we do parallel transport on a tangent vector on the manifold and return back to
the starting point. If the starting and ending tangent vectors do not match exactly, it
means that the manifold has a curvature. This is the idea of Riemannian curvature.

Credit of image: Wikipedia
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Riemannian concepts: vector transport

Parallel transport is hard to compute. We can approximate/replace the parallel transport
by vector transport.

Vector transport is a mapping from a tangent space to another tangent space on
manifold:

Tx1,x2 (ξ) : Tx1M → Tx2M,

where ξ ∈ Tx1M and Tx1,x2 (ξ) ∈ Tx2M.

You can see it as moving a tangent vector in a tangent space to the corresponding
tangent vector in another tangent space.

Credit of image: [6]
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First-order Riemannian Optimization
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Riemannian Stochastic Gradient Descent

Stochastic gradient descent in Euclidean space:

x (k+1) := x (k) − λ∇f (x (k)),

where k is the iteration index and λ is the learning rate.

Therefore:

x (k+1) − x (k) := −λ∇f (x (k)),

Stochastic gradient descent in Riemannian space (2013) [7]:

x (k+1) := Expx(k)
(
−λ∇f (x (k))

)
, (7)

where subtraction in Euclidean space is generalized to the exponential map in Riemannian
space.

For simplicity, we can replace the exponential map with retraction:

x (k+1) := Retx(k)
(
−λ∇f (x (k))

)
, (8)
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Second-order Riemannian Optimization
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Riemannian Newton’s method
Iterative optimization updates solution iteratively:

x (k+1) := x (k) +∆x , (9)

Newton’s method uses Hessian ∇2f (x) in its updating step:

∆x := −∇2f (x)−1∇f (x). (10)

In the literature, this equation is sometimes restated to:

∇2f (x)∆x := −∇f (x). (11)

Recall Riemannian Hessian: the derivative of one of directions (ξ) in the tangent space
(the derivative of derivative)

B f (x) ξ = ∂ξ∇f (x),

where B denotes the Hessian matrix and ∂ξ is the affine connection.

Riemannian Newton’s method (compare Eqs. (11) and (12)):

B f (x) ξ := −∇f (x). (12)
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Quasi-Newton’s method: Limited-memory BFGS (LBFGS)

The quasi-Newton’s method, including BFGS, approximate the inverse Hessian matrix by
a dense (d × d) matrix. For large d , storing this matrix is very memory-consuming.

Hence, Limited-memory BFGS (LBFGS) [8, 9] was proposed, by Nocedal et al. in 1980’s,
which uses much less memory than BFGS.

The LBFGS algorithm can be implemented as shown in the following algorithm [10] which
is based on the algorithm in Nocedal’s book [11, Chapter 6].
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Riemannian LBFGS
Euclidean LBFGS (1980-1989) [8, 9], [11, Chapter 6]:

Riemannian LBFGS (2020) [10]:
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Important Riemannian Matrix Manifolds
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Important Riemannian Matrix Manifolds

Stiefel manifold St(p, d) is defined as the set of orthogonal matrices as:

M = St(p, d) := {X ∈ Rd×p |X⊤X = I}. (13)

The quotient of a vector space V by a subspace N is a vector space obtained by
collapsing N to zero. The obtained space is called a quotient space and is denoted by
V /N (read “V mod N” or “V by N”).

The Grassmannian (Grassmann) manifold G(p, d) can be seen as the quotient space of
the Stiefel manifold St(p, d) [1]:

M = G(p, d) := St(p, d)/St(p, p). (14)

The Grassmannian manifold G(p, d) is a space of all p-dimensional linear subspaces of the
d-dimensional vector space. So, every element of this manifold can be the linear
column-space of a projection matrix X ∈ Rd×p from a d-dimensional input space to a
p-dimensional subspace, where p ≤ d .

Therefore, Grassmannian manifold can be used for linear projection in many machine
learning methods, such as PCA, FDA, etc.
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Important Riemannian Matrix Manifolds

Symmetric Positive Definite (SPD) manifold S++ is defined as the set of SPD matrices
as:

M = S++ := {X ∈ Rd×d |X ≻ 0}, (15)

where X is a symmetric matrix and all the eigenvalues of X are positive (neither negative
nor zero).

Examples:
▶ Covariance matrix: Σ
▶ The weight matrix in quadratic functions: x⊤Wx
▶ The weight matrix in the generalized Mahalanobis distance: (x1 − x2)⊤W (x1 − x2)

Introduction to Riemannian Optimization 32 / 42



Toolboxes, Papers, and References
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Important toolboxes for Riemannian optimization

Manopt [12] (Matlab):
https://github.com/NicolasBoumal/manopt

PyManopt [13] (Python):
https://github.com/pymanopt/pymanopt

StochMan [14] (Python - stochastic manifolds):
https://github.com/MachineLearningLifeScience/stochman

GeomStats [15] (Python - machine learning):
https://github.com/geomstats/geomstats

Geoopt [16] (PyTorch):
https://github.com/geoopt/geoopt

ROPTLIB [17] (C++):
https://github.com/whuang08/ROPTLIB

MixEst [18] (Matlab - Riemannian LBFGS, mixture models using Riemannian
optimization):
https://github.com/utvisionlab/mixest
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Important papers and books
Papers with Codes page:
https://paperswithcode.com/task/riemannian-optimization

The books of John M. Lee on topology and manifolds:
▶ “Introduction to Topological Manifolds” [3]
▶ “Introduction to Smooth Manifolds” [5]

Two very good books on Riemannian optimization:
▶ “Optimization algorithms on matrix manifolds” by Pierre-Antoine Absil et al: [1]
▶ “An introduction to optimization on smooth manifolds” by Nicolas Boumal: [2]

Some papers:
▶ A brief introduction to manifold optimization: (2020) [19]
▶ Riemannian BFGS (RBFGS): (2010) [20]
▶ Proving convergence of RBFGS: (2012, 2015) [21, 22]
▶ Analyzing properties of RBFGS: (2013) [23]
▶ As vector transport is computationally expensive in RBFGS, cautious RBFGS was

proposed (2016) [24] which ignores the curvature condition in the Wolfe conditions
(1969) [25] and only checks the Armijo condition (1966) [26]. Since the curvature
condition guarantees that the approximation of Hessian remains positive definite, it
compensates by checking a cautious condition (2001) [27] before updating the
approximation of Hessian. This cautious RBFGS has been used in the Manopt
optimization toolbox (2014) [12].

▶ RLBFGS and SPD manifolds: (2015, 2016, 2020) [28, 29, 10].
▶ Some other direct extensions of Euclidean BFGS to Riemannian spaces: (2007) [30,

Chapter 7]
▶ Vector-transport free RLBFGS: (2021) [31]
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Important scholars in the field
Some important scientists in the field of Riemannian optimization (not limited to the following):

Pierre-Antoine Absil, UCLouvain, Belgium (Author of book [1], proposer of Manopt
toolbox)

Rodolphe Sepulchre, KU Leuven, Belgium (Coauthor of Absil in book [1])

Robert Mahony, Australian National University, Australia (Coauthor of Absil in book [1])

Nicolas Boumal, EPFL, Switzerland (Author of book [2], proposer of Manopt toolbox)

Silvere Bonnabel, Mines Paris PSL, France (proposed Riemannian stochastic gradient
descent [7])

Ring Wolfgang, Karl-Franzens-Universitat Graz, Austria (proof of convergence of RBFGS)

Bart Vandereycken, University of Geneva, Switzerland (proposer of low-rank matrix
completion by Riemannian optimization [32])

Suvrit Sra, MIT, USA (optimization and Riemannian optimization)

Reshad Hosseini, University of Tehran, Iran (Mixest toolbox, SPD manifolds, mixture
models using Riemannian optimization [10])

Mehrtash T. Harandi, Monash University, Australia (machine learning using Riemannian
optimization)

Soren Hauberg, Technical University of Denmark, Denmark (StochMan toolbox, machine
learning using Riemannian optimization)

I also thank my friend, Reza Godaz (see our paper together [31]), who introduced this
field to me.
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