
Conclusion and Summary

Optimization Techniques (ENGG*6140)

School of Engineering,
University of Guelph, ON, Canada

Course Instructor: Benyamin Ghojogh
Winter 2023

Conclusion and Summary 1 / 22



Additional Notes

Conclusion and Summary 2 / 22



Cutting-Plane Methods

Cutting plane methods, also called the localization methods, are a family of methods
which start with a large feasible set containing the solution to be found.

Then, iteratively they reduce the feasible set by cutting off some piece of it [1].

For example, a cutting-plane method starts with a polyhedron feasible set. It finds a plane
at every iteration which divides the feasible sets into two disjoint parts one of which
contains the ultimate solution. It gets rid of the part without solution and reduces the
volume of the polyhedron. This is repeated until the polyhedron feasible set becomes very
small and converges to the solution.

credit of image: [1]

Conclusion and Summary 3 / 22



Cutting-Plane Methods

This is somewhat a generalization of the bisection method, also called the binary search
method, which was used for root-finding [2] but later it was used for convex optimization.
The bisection method halves the feasible set and removes the part without the solution, at
every iteration

Some of the important cutting-plane methods are center of gravity method, Maximum
Volume Ellipsoid (MVE) cutting-plane method, Chebyshev center cutting-plane
method, and Analytic Center Cutting-Plane Method (ACCPM) [3, 4, 5]. Similar to
subgradient methods, cutting-plane methods can be used for optimizing non-smooth
functions.

Conclusion and Summary 4 / 22



Ellipsoid Method
Ellipsoid method was developed by several people [6, 7].

It was proposed in 1976 and 1977 [8, 9, 10, 11].

It was initially applied to liner programming in a famous paper in 1979 [12].

It is similar to cutting-plane methods in cutting some part of feasible set iteratively.

At every iteration, it finds an ellipsoid centered at the current solution:

E(x (k),P) := {z | (z − x (k))⊤P−1(z − x (k)) ≤ 1},

where P ∈ Sd++ (is symmetric positive definite).

It removes half of the ellipsoid which does not contain the solution.

Again, another ellipsoid is found at the updated solution. This is repeated until the
ellipsoid of iteration is very small and converges to the solution.

credit of image: [13]

Conclusion and Summary 5 / 22



Minimax and Maximin Problems

Consider a function of two variables, f (x1, x2), and the following optimization problem:

minimize
x1

(
maximize

x2
f (x1, x2)

)
. (1)

In this problem, we want to minimize the function w.r.t. one of the variables and maximize
it w.r.t the other variable. This optimization problem is called the minimax problem.

We can change the order of this problem to have the so-called maximin problem:

maximize
x1

(
minimize

x2
f (x1, x2)

)
. (2)

Under certain conditions [14], the minimax and maximin problems are equivalent if the
variables of maximization (or minimization) stay the same. In other words, under some
conditions, we have [14]:

minimize
x1

(maximize
x2

f (x1, x2)) = maximize
x2

(minimize
x1

f (x1, x2)).

In the minimax and maximin problems, the two variables have conflicting or contrastive
desires; one of them wants to maximize the function while the other wants to minimize it.
Hence, they are widely used in the field of game theory as important strategies [15].

Conclusion and Summary 6 / 22



Summary

Conclusion and Summary 7 / 22



Summary of what we learned in this course

The course provided the main methods of optimization.

We started with preliminaries including sets, norms, functions, local/global minimizer,
derivatives, gradient, Jacobian, Hessian, convexity of sets, and convexity of functions.

We introduced the standard problems (e.g., convex problem, linear programming,
quadratic programming, semidefinite programming, etc).

We covered linear programming (the simplex algorithm) and integer linear programming
for continuous and discrete linear problems, respectively.

We introduced the Karush-Kuhn-Tucker (KKT) conditions along with the Lagrangian
function and the method of Lagrange multipliers.

We covered unconstrained and constrained first-order optimization which are gradient
methods and include gradient descent, backpropagation, AGM, SGD, SAG, Adam,
neural network, and proximal methods.

The unconstrained and constrained second order optimization techniques, including the
Newton’s method and interior-point method, were covered in order to be able to solve
all convex optimization problems (this method also works fairly well on nonconvex
problems). We also covered decomposition methods and conjugate gradient for
accelerating Newton’s method as well as the quasi-Newton’s methods.

Conclusion and Summary 8 / 22



Summary of what we learned in this course

We also went through distributed optimization (such as alternating optimization and
ADMM) in order to solve complex multivariate optimization problems.

We covered non-smooth optimization including approximation by convex conjugate and
Huber function, proximal algorithm and soft thresholding, coordinate descent, and
subgradients.

We covered non-convex optimization including local optimization method (sequential
convex programming) and global optimization method (branch and bound).

We covered important search-based (metaheuristic) optimization such as genetic
algorithm, particle swarm optimization, simulated annealing, and the Nelder-Mead
simplex algorithm.

Finally, we also introduced Riemannian optimization for optimization on the Riemannian
matrix manifolds.

Additional methods which we mentioned: cutting-plane methods, ellipsoid method,
minimax and maximin problems

Conclusion and Summary 9 / 22



Dealing with an Optimization Problem

Conclusion and Summary 10 / 22



Dealing with an Optimization Problem

Assume we have an optimization problem where we want to minimize or maximize a cost
function and we might have several equality and/or inequality constraints as the
feasibility set.

If the problem is unconstrained:

minimize
x

f (x).

▶ take derivative and set it to zero (first-order optimality condition) (high school rule):

∇f (x) set
= 0 =⇒ x∗ = expression without x , (closed-form),

∇2f (x) ⪰ 0, ∀x s.t. ∥x − x∗∥ ≤ ϵ.

▶ if not-closed-form solution, we should use numerical optimization:

⋆ first-order optimization: needs first-order derivative ∇f (x)
⋆ second-order optimization: needs first-order derivative ∇f (x) and

second-order derivative ∇2f (x)

Conclusion and Summary 11 / 22



Dealing with an Optimization Problem

If the problem is constrained:

minimize
x

f (x)

subject to yi (x) ≤ 0, i ∈ {1, . . . ,m1},
hi (x) = 0, i ∈ {1, . . . ,m2}.

We can embed the constraint into the objective function using penalty (regularization)
term:

▶ soft penalty:

minimize
x

f (x) +
m1∑
i=1

λiyi (x) +
m2∑
i=1

νihi (x) = f (x) + ηΩ(x ∈ S),

where:

Ω(x ∈ S) =
{

0 if x ∈ S
increasing function w.r.t. not being in feasibility set if x ̸∈ S

Conclusion and Summary 12 / 22



Dealing with an Optimization Problem

If the problem is constrained:

minimize
x

f (x)

subject to yi (x) ≤ 0, i ∈ {1, . . . ,m1},
hi (x) = 0, i ∈ {1, . . . ,m2}.

We can embed the constraint into the objective function using penalty (regularization)
term:

▶ hard penalty:
minimize

x
f (x) + ηI(x ∈ S),

where:

I(x ∈ S) =
{

0 if x ∈ S
∞ if x ̸∈ S

▶ approximation of hard penalty: such as log-barrier method.

Conclusion and Summary 13 / 22



Dealing with an Optimization Problem

If the problem is linear programming (affine cost and constraints), we can solve it using
the simplex algorithm; any of its implementations such as the tableau method.

If the problem is integer linear programming (affine cost and constraints and some or all
variables are integer), we should use the branch and bound method. In each subproblem
of the tree, we use the simplex algorithm; any of its implementations such as the tableau
method.

If the optimization problem is not linear but not very complicated, we can solve it using
the method of Lagrange multipliers which makes use of the KKT conditions. If it is
complicated, solving the system of equations in the method of Lagrange multipliers is very
hard.

Conclusion and Summary 14 / 22



Dealing with an Optimization Problem

If the optimization problem is unconstrained:
▶ slower but easier: we can use unconstrained first-order optimization methods, such

as gradient descent, backpropagation, AGM, SGD, SAG, Adam, neural network,
and unconstrained proximal methods.

▶ faster but harder: we can use unconstrained second-order optimization method,
such as Newton’s method.

If the optimization problem is constrained:
▶ slower but easier: we can use constrained first-order optimization methods, such as

projected gradient method, and constrained proximal methods.
▶ faster but harder: we can use constrained second-order optimization method, such

as interior-point method and log-barrier method.

We can use decomposition methods, conjugate gradient, or quasi-Newton’s method to
make second-order optimization easier.

Conclusion and Summary 15 / 22



Dealing with an Optimization Problem

If the optimization problem is distributed or with multiple variables, we can use
distributed optimization such as alternating optimization and ADMM. We can use
multiple servers or cores to make it parallel.

If the cost in the optimization problem is non-smooth (non-differentiable) at least at one
of the points in its domain/feasibility set, we can use non-smooth optimization including
approximation by convex conjugate and Huber function, proximal algorithm and soft
thresholding, coordinate descent, and subgradients.

If the optimization problem is non-convex (i.e., cost is not a convex function and/or the
feasibility set is non-convex set), we can use non-convex optimization

▶ fast but not guarantee to find the global solution: local optimization method
(sequential convex programming)

▶ slow but guarantees to find the global solution: global optimization method (branch
and bound)

Conclusion and Summary 16 / 22



Dealing with an Optimization Problem

We use either non-convex optimization or search-based optimization (metaheuristic
optimization) if:

▶ if the optimization problem has a complicated (highly con-convex) optimization
landscape,

▶ or when the gradient of function is hard to compute,
▶ or when the function is not known but it works as a black-box, i.e., it outputs a

value for each input fed to it,

Some examples for search-based (metaheuristic) optimization are genetic algorithm,
particle swarm optimization, simulated annealing, and the Nelder-Mead simplex
algorithm.

If the feasibility set (set of constraints) can be seen as a Riemannian manifold, we can
use Riemannian optimization. Some examples are orthogonal matrix (Stiefel manifold),
projection matrix onto subspace (Grassmannian manifold), and Symmetric Positive
Definite (SPD) matrices (SPD manifold).

Conclusion and Summary 17 / 22



KKT Backbone!

I think now that you know the theory behinf many of the optimization algorithms, you can
see the Nirvana (enlightenment) moment of optimization:

The backbone of most of optimization is KKT conditions and Lagrangian!

Conclusion and Summary 18 / 22



Acknowledgement

Some slides of this slide deck are inspired by the lectures of Prof. Stephen Boyd at the
Stanford University.

Our tutorial also has some of the materials of this slide deck: [16]

Conclusion and Summary 19 / 22



References

[1] S. Boyd and L. Vandenberghe, “Localization and cutting-plane methods,” tech. rep.,
Stanford EE 364b lecture notes, 2007.

[2] R. L. Burden and J. D. Faires, Numerical Analysis.
PWS Publishers, 1963.

[3] J.-L. Goffin and J.-P. Vial, “On the computation of weighted analytic centers and dual
ellipsoids with the projective algorithm,” Mathematical Programming, vol. 60, no. 1,
pp. 81–92, 1993.

[4] Y. Nesterov, “Cutting plane algorithms from analytic centers: efficiency estimates,”
Mathematical Programming, vol. 69, no. 1, pp. 149–176, 1995.

[5] D. S. Atkinson and P. M. Vaidya, “A cutting plane algorithm for convex programming that
uses analytic centers,” Mathematical Programming, vol. 69, no. 1, pp. 1–43, 1995.

[6] P. Wolfe, “Invited noteâsome references for the ellipsoid algorithm,” Management Science,
vol. 26, no. 8, pp. 747–749, 1980.

[7] S. Rebennack, “Ellipsoid method,” Encyclopedia of Optimization, pp. 890–899, 2009.

[8] N. Z. Shor, “Cut-off method with space extension in convex programming problems,”
Cybernetics, vol. 13, no. 1, pp. 94–96, 1977.

Conclusion and Summary 20 / 22



References (cont.)

[9] D. Yudin and A. S. Nemirovski, “Informational complexity and efficient methods for the

solution of convex extremal problems,” Èkon Math Metod, English translation: Matekon,
vol. 13, no. 2, pp. 22–45, 1976.

[10] D. Yudin and A. Nemirovski, “Evaluation of the informational complexity of mathematical

programming problems,” Èkon Math Metod, English translation: Matekon, vol. 13, no. 2,
pp. 3–24, 1977.

[11] D. Yudin and A. Nemirovski, “Optimization methods adapting to the “significant”
dimension of the problem,” Autom Telemekhanika, English translation: Automation and
Remote Control, vol. 38, no. 4, pp. 513–524, 1977.

[12] L. G. Khachiyan, “A polynomial algorithm in linear programming,” in Doklady Akademii
Nauk, vol. 244, pp. 1093–1096, Russian Academy of Sciences, 1979.

[13] S. Boyd and C. Barratt, “Ellipsoid method,” Notes for EE364B, Stanford University,
vol. 2008, 2008.

[14] D.-Z. Du and P. M. Pardalos, Minimax and applications, vol. 4.
Springer Science & Business Media, 2013.

[15] R. J. Aumann and M. Maschler, “Some thoughts on the minimax principle,” Management
Science, vol. 18, no. 5-part-2, pp. 54–63, 1972.

Conclusion and Summary 21 / 22



References (cont.)

[16] B. Ghojogh, A. Ghodsi, F. Karray, and M. Crowley, “KKT conditions, first-order and
second-order optimization, and distributed optimization: Tutorial and survey,” arXiv
preprint arXiv:2110.01858, 2021.

Conclusion and Summary 22 / 22


