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Problem Statement

When we have several optimization variables, we have:

minimize
{x i}mi=1

f (x1, . . . , xm), (1)

where m is the number of optimization variables.

In this case, we can have distributed optimization because we can work on the
optimization variables in a distributed manner.
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Alternating Optimization
Consider the following multivariate optimization problem:

minimize
{x i}mi=1

f (x1, . . . , xm),

where the objective function depends on m variables.
When we have several optimization variables, we can alternate between optimizing over
each of these variables. This technique is called alternating optimization in the literature
[1] (also see [2, Chapter 4]).
Alternating optimization alternates between updating every variable while assuming other
variables are constant, set to their last updated value. After random feasible initialization,
it updates solutions as [1]:

x (k+1)
1 := argmin

x1
f (x1, x

(k)
2 , . . . , x (k)

m−1, x
(k)
m ),

x (k+1)
2 := argmin

x2
f (x (k+1)

1 , x2, . . . , x
(k)
m−1, x

(k)
m ),

...

x (k+1)
m := argmin

xm
f (x (k+1)

1 , x (k+1)
2 , . . . , x (k+1)

m−1 , xm),

until convergence.
Any optimization methods, including first-order and second-order methods, can be used
for each of the optimization lines above.
In most cases, alternating optimization is robust to changing the order of updates of
variables.
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Alternating Optimization for Decomposable Function in
terms of Variables

If the function f (x1, . . . , xm) is decomposable in terms of variables, i.e., if we have:

f (x1, . . . , xm) =
m∑
i=1

fi (x i ),

the alternating optimization can be simplified to:

x (k+1)
1 := argmin

x1
f1(x1),

x (k+1)
2 := argmin

x2
f2(x2),

...

x (k+1)
m := argmin

xm
fm(xm),

because other terms become constant in optimization.

The above updates mean that if the function is completely decomposable in terms of
variables, the updates of variables are independent and can be done independently.

Hence, in that case, alternating optimization is reduced to m independent optimization
problems, each of which can be solved by any optimization method such as the first-order
and second-order methods.
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Proximal Alternating Optimization

Proximal alternating optimization uses proximal operator:

proxλg (x) := argmin
u

(
g(u) +

1

2λ
∥u − x∥22

)
, (2)

for minimization to keep the updated solution close to the solution of previous iteration
[1]:

x (k+1)
1 := argmin

x1

(
f (x1, x

(k)
2 , . . . , x (k)

m−1, x
(k)
m ) +

1

2λ
∥x1 − x (k)

1 ∥22
)
,

x (k+1)
2 := argmin

x2

(
f (x (k+1)

1 , x2, . . . , x
(k)
m−1, x

(k)
m ) +

1

2λ
∥x2 − x (k)

2 ∥22
)
,

...

x (k+1)
m := argmin

xm

(
f (x (k+1)

1 , x (k+1)
2 , . . . , x (k+1)

m−1 , xm) +
1

2λ
∥xm − x (k)

m ∥22
)
.
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Alternating Optimization for Constrained Problems
The alternating optimization methods can also be used for constrained problems:

minimize
{x i}mi=1

f (x1, . . . , xm)

subject to x i ∈ Si , ∀i ∈ {1, . . . ,m}.
(3)

In this case, every line of the optimization is a constrained problem:

x (k+1)
1 := argmin

x1

(
f (x1, x

(k)
2 , . . . , x (k)

m−1, x
(k)
m ), s.t. x1 ∈ S1

)
,

x (k+1)
2 := argmin

x2

(
f (x (k+1)

1 , x2, . . . , x
(k)
m−1, x

(k)
m ), s.t. x2 ∈ S2

)
,

...

x (k+1)
m := argmin

xm

(
f (x (k+1)

1 , x (k+1)
2 , . . . , x (k+1)

m−1 , xm), s.t. xm ∈ Sm

)
.

Any constrained optimization methods can be used for each of the optimization lines
above. Some examples are projected gradient method, proximal methods, interior-point
methods, etc.

Practical experiments have shown there is usually no need to use a complete optimization
until convergence for every step in the alternating optimization, either unconstrained or
constrained. Often, a single step of updating, such as a step of gradient descent or
projected gradient method, is enough for the whole algorithm to work.
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Dual Ascent and Dual
Decomposition Methods
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Dual Ascent Method
Consider the following problem:

minimize
x

f (x)

subject to Ax = b.
(4)

We follow the method of Lagrange multipliers discussed before.
The Lagrangian is:

L(x ,ν) = f (x) + ν⊤(Ax − b).

The dual function is:

g(ν) = inf
x

L(x ,ν). (5)

The optimal dual problem maximizes g(ν):

ν∗ = argmax
ν

g(ν), (6)

so the optimal primal variable is:

x∗ = argmin
x

L(x ,ν∗). (7)

For solving Eq. (6), we should take the derivative of the dual function w.r.t. the dual
variable:

∇νg(ν)
(5)
= ∇ν(inf

x
L(x ,ν)) (7)

= ∇ν(f (x∗) + ν⊤(Ax∗ − b)) = Ax∗ − b.

Distributed Optimization 10 / 46



Dual Ascent Method
We found:

ν∗ = argmax
ν

g(ν),

x∗ = argmin
x

L(x ,ν∗).

The dual problem is a maximization problem so we can use gradient ascent for iteratively
updating the dual variable with this gradient. We can alternate between updating the
optimal primal and dual variables:

x (k+1) := argmin
x

L(x ,ν(k)), (8)

ν(k+1) := ν(k) + η(k)(Ax (k+1) − b), (9)

where k is the iteration index and η(k) is the step size (also called the learning rate) at
iteration k.

Eq. (8) can be performed by any optimization method. We compute the gradient of
L(x ,ν(k)) w.r.t. x . If setting this gradient to zero does not give x in closed form, we can
use gradient descent to perform Eq. (8).

Some papers approximate Eq. (8) by one step or few steps of gradient descent rather than
a complete gradient descent until convergence. If using one step, we can write Eq. (8) as:

x (k+1) := x (k) − γ∇xL(x ,ν(k)), (10)

where γ > 0 is the step size. It has been shown empirically that even one step of gradient
descent for Eq. (8) works properly for the whole alternating algorithm.
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Dual Ascent Method

We had:

x (k+1) := argmin
x

L(x ,ν(k)),

ν(k+1) := ν(k) + η(k)(Ax (k+1) − b),

We continue the iterations until convergence of the primal and dual variables to stable
values. When we get closer to convergence, we will have (Axk+1 − b) → 0 so that we will
not have update of dual variable according to Eq. (9). This means that after
convergence, we have (Axk+1 − b) ≈ 0 so that the constraint Ax = b in Eq. (4) is
getting satisfied. In other words, the update of dual variable in Eq. (9) is taking care of
satisfying the constraint.

This method is known as the dual ascent method because it uses gradient ascent for
updating the dual variable.
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Dual Decomposition Method
Again, consider the following problem:

minimize
x

f (x)

subject to Ax = b.

If the objective function can be distributed and decomposed on b blocks {x i}bi=1, i.e.:

f (x) = f1(x1) + · · ·+ f1(xb),

we can have b Lagrangian functions where the total Lagrangian is the summation of these
functions:

Li (x i ,ν) = f (x i ) + ν⊤(Ax i − b),

L(x i ,ν) =
b∑

i=1

(
f (x i ) + ν⊤(Ax i − b)

)
.

We can divide the Eq. (8), x (k+1) := argminx L(x ,ν(k)), into b updates, each for one of
the blocks.

x (k+1)
i := argmin

x i
L(x ,ν(k)), ∀i ∈ {1, . . . , b}, (11)

ν(k+1) := ν(k) + η(k)(Ax (k+1) − b). (12)

Distributed Optimization 13 / 46



Dual Decomposition Method

We found:

x (k+1)
i := argmin

x i
L(x ,ν(k)), ∀i ∈ {1, . . . , b},

ν(k+1) := ν(k) + η(k)(Ax (k+1) − b).

This is called dual decomposition developed by decomposition techniques such as the
Dantzig-Wolfe decomposition (1960) [3], Bender’s decomposition (1962) [4], and
Lagrangian decomposition (1963) [5].

The dual decomposition methods can divide a problem into sub-problems and solve them
in parallel. Hence, it can be used for big data but they are usually slow to converge.
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Augmented Lagrangian
Method (Method of
Multipliers)
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Augmented Lagrangian Method (Method of Multipliers)

Recall Eq. (4):
minimize

x
f (x)

subject to Ax = b.

Assume we regularize the objective function in Eq. (4) by a penalty on not satisfying the
constraint:

minimize
x

f (x) +
ρ

2
∥Ax − b∥22

subject to Ax = b,
(13)

where ρ > 0 is the regularization parameter.

Definition (Augmented Lagrangian (1969) [6, 7])

The Lagrangian for problem (13) is:

Lρ(x ,ν) := f (x) + ν⊤(Ax − b) +
ρ

2
∥Ax − b∥22. (14)

This Lagrangian is called the augmented Lagrangian for problem (4).
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Augmented Lagrangian Method (Method of Multipliers)

The augmented Lagrangian:

Lρ(x ,ν) := f (x) + ν⊤(Ax − b) +
ρ

2
∥Ax − b∥22.

Recall Eqs. (8) and (9):

x (k+1) := argmin
x

L(x ,ν(k)),

ν(k+1) := ν(k) + η(k)(Ax (k+1) − b),

We can use this augmented Lagrangian in Eqs. (8) and (9):

x (k+1) := argmin
x

Lρ(x ,ν(k)), (15)

ν(k+1) := ν(k) + ρ(Ax (k+1) − b), (16)

where we use ρ for the step size of updating the dual variable. This method is called the
augmented Lagrangian method or the method of multipliers (1969) [6, 7, 8].
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Alternating Direction
Method of Multipliers
(ADMM)
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Alternating Direction Method of Multipliers (ADMM)
Alternating Direction Method of Multipliers (ADMM), proposed in 1976 [9, 10, 11], has
been used in many recent machine learning and signal processing papers.

The usefulness and goal for using ADMM (and other distributed methods) are two-fold:
▶ it makes the problem distributed and parallelizable on several servers,
▶ it makes it possible to solve an optimization problem with multiple variables.

Consider the following problem:

minimize
x1,x2

f1(x1) + f2(x2)

subject to Ax1 + Bx2 = c,
(17)

which is an optimization over two variables x1 and x2.

The augmented Lagrangian for this problem is:

Lρ(x1, x2,ν) = f1(x1) + f2(x2) + ν⊤(Ax1 + Bx2 − c) +
ρ

2
∥Ax1 + Bx2 − c∥22. (18)

We can alternate between updating the primal variables x1 and x2 and the dual variable ν
until convergence of these variables:

x (k+1)
1 := argmin

x1
Lρ(x1, x

(k)
2 ,ν(k)), (19)

x (k+1)
2 := argmin

x2
Lρ(x

(k+1)
1 , x2,ν

(k)), (20)

ν(k+1) := ν(k) + ρ(Ax (k+1)
1 + Bx (k+1)

2 − c). (21)
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Alternating Direction Method of Multipliers (ADMM)

Note that the order of updating primal and dual variables is important and the dual
variable should be updated after the primal variables but the order of updating primal
variables is not important.

A good survey/tutorial on ADMM is by Boyd in 2011 [11].

As was explained before, Eqs. (19) and (20) can be performed by any optimization
method such as calculating the gradient of augmented Lagrangian w.r.t. x1 and x2,
respectively, and using a few (or even one) iterations of gradient descent for each of these
equations.
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Simplifying Equations in ADMM
The last term in the augmented Lagrangian, Eq. (18), can be restated as:

ν⊤(Ax1 + Bx2 − c) +
ρ

2
∥Ax1 + Bx2 − c∥22

= ν⊤(Ax1 + Bx2 − c) +
ρ

2
∥Ax1 + Bx2 − c∥22 +

1

2ρ
∥ν∥22 −

1

2ρ
∥ν∥22

=
ρ

2

(
∥Ax1 + Bx2 − c∥22 +

1

ρ2
∥ν∥22 +

2

ρ
ν⊤(Ax1 + Bx2 − c)

)
−

1

2ρ
∥ν∥22

(a)
=

ρ

2

∥∥Ax1 + Bx2 − c +
1

ρ
ν
∥∥2
2
−

1

2ρ
∥ν∥22

(b)
=

ρ

2

∥∥Ax1 + Bx2 − c + u
∥∥2
2
−

1

2ρ
∥ν∥22.

where (a) is because of the square of summation of two terms and (b) is because we
define u := (1/ρ)ν.

The last term −(1/(2ρ))∥ν∥22 is constant w.r.t. the primal variables x1 and x2 so we can
drop that term from Lagrangian when updating the primal variables.

Hence, the augmented Lagrangian can be restated as:

Lρ(x1, x2, u) = f1(x1) + f2(x2) +
ρ

2

∥∥Ax1 + Bx2 − c + u
∥∥2
2
+ constant. (22)
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Simplifying Equations in ADMM

The augmented Lagrangian:

Lρ(x1, x2, u) = f1(x1) + f2(x2) +
ρ

2

∥∥Ax1 + Bx2 − c + u
∥∥2
2
+ constant.

For updating x1 and x2, the terms f2(x2) and f (x1) are constant, respectively, and can be
dropped (because here argmin is important and not the minimum value). Hence, Eqs.
(19), (20), and (21) can be restated as:

x (k+1)
1 := argmin

x1

(
f1(x1) +

ρ

2

∥∥Ax1 + Bx (k)
2 − c + u(k)

∥∥2
2

)
, (23)

x (k+1)
2 := argmin

x2

(
f2(x2) +

ρ

2

∥∥Ax (k+1)
1 + Bx2 − c + u(k)

∥∥2
2

)
, (24)

u(k+1) := u(k) + ρ(Ax (k+1)
1 + Bx (k+1)

2 − c). (25)

Again, Eqs. (23) and (24) can be performed by one or few steps of gradient descent or
any other optimization method.

The convergence of ADMM for non-convex and non-smooth functions has been analyzed
in [12].
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ADMM Algorithm for
General Optimization
Problems and Any Number
of Variables
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ADMM Algorithm for General Optimization Problems and
Any Number of Variables

ADMM can be extended to several equality and inequality constraints for several
optimization variables [13, 14].

Consider the following optimization problem with m optimization variables and an equality
and inequality constraint for every variable:

minimize
{x i}mi=1

m∑
i=1

fi (x i )

subject to yi (x i ) ≤ 0, i ∈ {1, . . . ,m},
hi (x i ) = 0, i ∈ {1, . . . ,m}.

(26)

We can convert every inequality constraint to equality constraints by this technique
[13, 14]:

yi (x i ) ≤ 0 ≡ y ′
i (x i ) :=

(
max(0, yi (x i ))

)2
= 0.

Hence, the problem becomes:

minimize
{x i}mi=1

m∑
i=1

fi (x i )

subject to y ′
i (x i ) = 0, i ∈ {1, . . . ,m},
hi (x i ) = 0, i ∈ {1, . . . ,m}.
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ADMM Algorithm for General Optimization Problems and
Any Number of Variables

We found:

minimize
{x i}mi=1

m∑
i=1

fi (x i )

subject to y ′
i (x i ) = 0, i ∈ {1, . . . ,m},
hi (x i ) = 0, i ∈ {1, . . . ,m}.

Having dual variables λ = [λ1, . . . , λm]⊤ and ν = [ν1, . . . , νm]⊤ and regularization
parameter ρ > 0, the augmented Lagrangian for this problem is:

Lρ({x i}mi=1,ν
′,ν)

=
m∑
i=1

fi (x i ) +
m∑
i=1

λiy
′
i (x i ) +

m∑
i=1

νihi (x i ) +
η

2

m∑
i=1

(y ′
i (x i ))

2 +
ρ

2

m∑
i=1

(hi (x i ))
2

=
m∑
i=1

fi (x i ) + λ⊤y ′(x) + ν⊤h(x) +
ρ

2
∥y ′(x)∥22 +

ρ

2
∥h(x)∥22,

(27)

where Rm ∋ y ′(x) := [y ′
1(x1), . . . , y ′

m(xm)]⊤ and Rm ∋ h(x) := [h1(x1), . . . , hm(xm)]⊤.
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ADMM Algorithm for General Optimization Problems and
Any Number of Variables

We found:

Lρ({x i}mi=1,ν
′,ν) =

m∑
i=1

fi (x i ) + λ⊤y ′(x) + ν⊤h(x) +
ρ

2
∥y ′(x)∥22 +

ρ

2
∥h(x)∥22.

Updating the primal and dual variables are performed as [13, 14]:

x (k+1)
i := argmin

x i
Lρ(x i , λ

(k)
i , ν

(k)
i ), ∀i ∈ {1, . . . ,m},

λ(k+1) := λ(k) + ρ y ′(x (k+1)),

ν(k+1) := ν(k) + ρ h(x (k+1)).

Note that as the Lagrangian is completely decomposable by the i indices, the optimization
for every i-th primal or dual variable does not depend on other indices; in other words, the
terms of other indices become constant for every index.
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ADMM Algorithm for General Optimization Problems and
Any Number of Variables

The last terms in the augmented Lagrangian, Eq. (27), can be restated as:

λ⊤y ′(x) + ν⊤h(x) +
ρ

2
∥y ′(x)∥22 +

ρ

2
∥h(x)∥22

= λ⊤y ′(x) +
ρ

2
∥y ′(x)∥22 +

1

2ρ
∥λ∥22 −

1

2ρ
∥λ∥22

+ ν⊤h(x) +
ρ

2
∥h(x)∥22 +

1

2ρ
∥ν∥22 −

1

2ρ
∥ν∥22

=
ρ

2

(
∥y ′(x)∥22 +

1

ρ2
∥λ∥22 +

2

ρ
λ⊤y ′(x)

)
−

1

2ρ
∥λ∥22

+
ρ

2

(
∥h(x)∥22 +

1

ρ2
∥ν∥22 +

2

ρ
ν⊤h(x)

)
−

1

2ρ
∥ν∥22

=
ρ

2

∥∥y ′(x) +
1

ρ
λ
∥∥2
2
−

1

2ρ
∥λ∥22 +

ρ

2

∥∥h(x) + 1

ρ
ν
∥∥2
2
−

1

2ρ
∥ν∥22

(a)
=

ρ

2

∥∥y ′(x) + uλ

∥∥2
2
+

ρ

2

∥∥h(x) + uν

∥∥2
2
− constant,

where (a) is because we define uλ := (1/ρ)λ and uν := (1/ρ)ν.
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ADMM Algorithm for General Optimization Problems and
Any Number of Variables

The augmented Lagrangian was:

Lρ({x i}mi=1,ν
′,ν) =

m∑
i=1

fi (x i ) + λ⊤y ′(x) + ν⊤h(x) +
ρ

2
∥y ′(x)∥22 +

ρ

2
∥h(x)∥22.

We simplified the last terms in the augmented Lagrangian:

λ⊤y ′(x) + ν⊤h(x) +
ρ

2
∥y ′(x)∥22 +

ρ

2
∥h(x)∥22

=
ρ

2

∥∥y ′(x) + uλ

∥∥2
2
+

ρ

2

∥∥h(x) + uν

∥∥2
2
− constant.

Hence, the Lagrangian can be restated as:

Lρ({x i}mi=1,uλ, uν) =
m∑
i=1

fi (x i ) +
ρ

2

∥∥y ′(x) + uλ

∥∥2
2
+

ρ

2

∥∥h(x) + uν

∥∥2
2
+ constant

=
m∑
i=1

fi (x i ) +
ρ

2

m∑
i=1

[
(y ′

i (x i ) + uλ,i )
2 + (hi (x i ) + uν,i )

2
]
+ constant,

where uλ,i = (1/ρ)λi and uν,i = (1/ρ)νi are the i-th elements of uλ and uν , respectively.
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ADMM Algorithm for General Optimization Problems and
Any Number of Variables

The Lagrangian was restated as:

Lρ({x i}mi=1,uλ, uν) =
m∑
i=1

fi (x i ) +
ρ

2

∥∥y ′(x) + uλ

∥∥2
2
+

ρ

2

∥∥h(x) + uν

∥∥2
2
+ constant

=
m∑
i=1

fi (x i ) +
ρ

2

m∑
i=1

[
(y ′

i (x i ) + uλ,i )
2 + (hi (x i ) + uν,i )

2
]
+ constant.

Hence, updating variables can be restated as:

x (k+1)
i := argmin

x i

(
fi (x i ) +

ρ

2

[
(y ′

i (x i ) + u
(k)
λ,i )

2 + (hi (x i ) + u
(k)
ν,i )

2
])

, ∀i ∈ {1, . . . ,m},

(28)

u
(k+1)
λ,i := u

(k)
λ,i + ρ y ′

i (x
(k+1)
i ), ∀i ∈ {1, . . . ,m} (29)

u
(k+1)
ν,i := u

(k)
ν,i + ρ hi (x

(k+1)
i ), ∀i ∈ {1, . . . ,m}. (30)
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Use of ADMM for
Distributed Optimization
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Use of ADMM for Distributed Optimization

ADMM is one of the most well-known algorithms for distributed optimization.

If the problem can be divided into several disjoint blocks (i.e., several primal variables), we
can solve the optimization for each primal variable on a separate core or server (see Eq.
(28) for every i):

x (k+1)
i := argmin

x i

(
fi (x i ) +

ρ

2

[
(y ′

i (x i ) + u
(k)
λ,i )

2 + (hi (x i ) + u
(k)
ν,i )

2
])

, ∀i ∈ {1, . . . ,m}.

Hence, in every iteration of ADMM, the update of primal variables can be performed in
parallel by distributed servers.

At the end of each iteration, the updated primal variables are gathered in a central server
so that the update of dual variable(s) is performed (see Eqs. (29) and (30)):

u
(k+1)
λ,i := u

(k)
λ,i + ρ y ′

i (x
(k+1)
i ), ∀i ∈ {1, . . . ,m},

u
(k+1)
ν,i := u

(k)
ν,i + ρ hi (x

(k+1)
i ), ∀i ∈ {1, . . . ,m}.

Then, the updated dual variable(s) is sent to the distributed servers so they update their
primal variables. This procedure is repeated until convergence of primal and dual variables.

In this sense, ADMM is performed similar to the approach of federated learning [15, 16].
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Making Optimization
Problem Distributed
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Making Optimization Problem Distributed
We can convert a non-distributed optimization problem to a distributed optimization
problem to solve it using ADMM. Many recent machine learning and signal processing
papers are using this technique.

Univariate optimization problem: Consider a regular non-distributed problem with one
optimization variable x :

minimize
x

m∑
i=1

fi (x)

subject to yi (x) ≤ 0, i ∈ {1, . . . ,m},
hi (x) = 0, i ∈ {1, . . . ,m}.

(31)

This problem can be stated as:

minimize
{x i}mi=1

m∑
i=1

fi (x i )

subject to yi (x i ) ≤ 0, i ∈ {1, . . . ,m},
hi (x i ) = 0, i ∈ {1, . . . ,m},
x i = z , i ∈ {1, . . . ,m},

(32)

where we introduce m variables {x i}mi=1 and use the trick x i = z ,∀i to make them equal
to one variable.
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Eq. (32) is similar to Eq. (26) except that it has 2m equality constraints rather than m
equality constraints.

Hence, we can use ADMM updates similarly to Eqs. (28), (29), and (30) but with slight
change because of the additional m constraints.

We introduce m new dual variables for constraints x i = z ,∀i and update those dual
variables as well as other variables. The augmented Lagrangian also has some additional
terms for the new constraints.

The Lagrangian and ADMM updates of this are not stated here because of its similarity to
the previous equations.

This is a good technique to make a problem distributed, use ADMM for solving it, and
solving it in parallel servers.
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Multivariate optimization problem: Consider a regular non-distributed problem with
multiple optimization variables {x i}mi=1:

minimize
{x}mi=1

m∑
i=1

fi (x i )

subject to x i ∈ Si , i ∈ {1, . . . ,m},

(33)

where x i ∈ Si can be any constraint such as belonging to a set Si , an equality constraint,
or an inequality constraint.

We can embed the constraint in the objective function using an indicator function:

minimize
{x}mi=1

m∑
i=1

(
fi (x i ) + ϕi (x i )

)
,

where ϕi (x i ) := I(x i ∈ Si ) is zero if x i ∈ Si and is infinity otherwise.

This problem can be stated as:

minimize
{x i}mi=1

m∑
i=1

(
fi (x i ) + ϕi (z i )

)
subject to x i = z i , i ∈ {1, . . . ,m},

(34)

where we introduce a variable z i for every x i , use the introduced variable for the second
term in the objective function, and we equate them in the constraint.
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We found:

minimize
{x i}mi=1

m∑
i=1

(
fi (x i ) + ϕi (z i )

)
subject to x i = z i , i ∈ {1, . . . ,m}.

As the constraints x i − z i = 0, ∀i are equality constraints, we can use Eqs. (23), (24),
and (25) as ADMM updates for this problem:

x (k+1)
i := argmin

x i

(
fi (x i ) +

ρ

2

∥∥x i − z(k)
i + u(k)

i

∥∥2
2

)
, ∀i ∈ {1, . . . ,m}, (35)

z(k+1)
i := argmin

z i

(
ϕi (z i ) +

ρ

2

∥∥x (k+1)
i − z i + u(k)

i

∥∥2
2

)
, ∀i ∈ {1, . . . ,m}, (36)

u(k+1)
i := u(k)

i + ρ(x (k+1)
i + z(k+1)

i ), ∀i ∈ {1, . . . ,m}.

Comparing Eqs. (35) and (36) with the proximal operator,

proxλg (x) := argminu

(
g(u) + 1

2λ
∥u − x∥22

)
, shows that these ADMM updates can be

written as proximal mappings:

x (k+1)
i := prox 1

ρ
fi
(z(k)

i − u(k)
i ), ∀i ∈ {1, . . . ,m},

z(k+1)
i := prox 1

ρ
ϕi
(x (k+1)

i + u(k)
i ), ∀i ∈ {1, . . . ,m}, (37)

u(k+1)
i := u(k)

i + ρ(x (k+1)
i + z(k+1)

i ), ∀i ∈ {1, . . . ,m},

if we notice that ∥x (k+1)
i − z i + u(k)

i ∥22 = ∥z i − x (k+1)
i − u(k)

i ∥22.
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Note that in many papers, such as [17], we only have m = 1. In that case, we only have
two primal variables x and z .
According to the lemma we had (that the proximal operator of indicator function is
projection), as the function ϕi (.) is an indicator function, Eq. (37):

z(k+1)
i := prox 1

ρ
ϕi
(x (k+1)

i + u(k)
i ), ∀i ∈ {1, . . . ,m},

can be implemented by projection onto the set Si :

z(k+1)
i := ΠSi

(x (k+1)
i + u(k)

i ), ∀i ∈ {1, . . . ,m}.

As an example, assume the variables are all matrices so we have X i , Z i , and U i . If the
set Si is the cone of orthogonal matrices, the constraint X i ∈ Si would be X⊤

i X i = I . In
this case, the update of matrix variable Z i would be done by setting the singular values of

(x (k+1)
i + u(k)

i ) to one (recall projection onto the cone of the orthogonal matrices).
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This example is in my own paper (Image Structural Component Analysis) [18].

Let image be divided into b blocks. Our goal is to find a p-dimensional subspace for
reconstruction of every image block (each block as q pixels and we have p ≪ q).

Considering all the b blocks in an image, the problem is:

minimize
U i∈Rq×p

b∑
i=1

||x̆ i − U iU⊤
i x̆ i ||S ,

subject to U⊤
i U i = I , ∀i ∈ {1, . . . , b},

(38)

where x̆ i ∈ Rq and U i ∈ Rq×p are the i-th block and the bases of its subspace,
respectively.
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We had:

minimize
U i∈Rq×p

b∑
i=1

||x̆ i − U iU⊤
i x̆ i ||S ,

subject to U⊤
i U i = I , ∀i ∈ {1, . . . , b},

We convert it to:

minimize
U i ,V i∈Rq×p

b∑
i=1

(
f (U i ) + h(V i )

)
,

subject to U − V = 0,

(39)

where f (U i ) := ||x̆ i − U iU⊤
i x̆ i ||S and h(V i ) := I(V⊤

i V i = I ).
The (squared) SSIM distance, which we denote by ||.||S , is [19]:

R ∋ ||x̆1 − x̆2||S := 1− SSIM(x̆1, x̆2) =
||x̆1 − x̆2||22

||x̆1||22 + ||x̆2||22 + c
, (40)

The I(.) denotes the indicator function which is zero if its condition is satisfied and is
infinite otherwise.

The U and V are defined as union of partitions to form an image-form array, i.e.,
U := ∪b

i=1U i and V := ∪b
i=1V i [17].
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Eq. (39) was:

minimize
U i ,V i∈Rq×p

b∑
i=1

(
f (U i ) + h(V i )

)
,

subject to U − V = 0.

The augmented Lagrangian for Eq. (39) is:

Lρ =
b∑

i=1

(
f (U i ) + h(V i )

)
+ tr

(
Λ⊤(U − V )

)
+ (ρ/2) ||U − V ||2F

=
b∑

i=1

(
f (U i ) + h(V i )

)
+ (ρ/2) ||U − V + J||2F − (ρ/2) ||Λ||2F ,

where ∥.∥F is the Frobenius norm, Λ := ∪b
i=1Λi is the Lagrange multiplier, ρ > 0 is a

parameter, and J := (1/ρ)Λ = (1/ρ) ∪b
i=1 Λi = ∪b

i=1J i .
Note that the term (ρ/2) ||Λ||2F is a constant with respect to U and V and can be
dropped. The updates of U, V , and J are done as [11, 17]:

U(k+1)
i := argmin

U i

(
f (U i ) + (ρ/2) ||U i − V (k)

i + J(k)
i ||2F

)
, (41)

V (k+1)
i := argmin

V i

(
h(V i ) + (ρ/2) ||U(k+1)

i − V i + J(k)
i ||2F

)
, (42)

J(k+1) := J(k) + U(k+1) − V (k+1). (43)
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