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Fundamental theorem of calculus

Lemma (Fundamental theorem of calculus for multivariate functions)

Consider a differentiable function f (.) with domain D. For any x , y ∈ D, we have:

f (y) = f (x) +∇f (x)⊤(y − x) +
∫ 1

0

(
∇f

(
x + t(y − x)

)
−∇f (x)

)⊤
(y − x)dt

= f (x) +∇f (x)⊤(y − x) + o(y − x),
(1)

where o(.) is the small-o complexity.

Lemma (Corollary of the fundamental theorem of calculus)

Consider a differentiable function f (.), with domain D, whose gradient is L-smooth:

|∇f (x)−∇f (y)| ≤ L ∥x − y∥2, ∀x , y ∈ D. (2)

For any x , y ∈ D, we have:

f (y) ≤ f (x) +∇f (x)⊤(y − x) +
L

2
∥y − x∥22. (3)
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Fundamental theorem of calculus

Proof for the corollary of the fundamental theorem of calculus:

f (y)
(1)
= f (x) +∇f (x)⊤(y − x) +

∫ 1

0

(
∇f

(
x + t(y − x)

)
−∇f (x)

)⊤
(y − x)dt

(a)

≤ f (x) +∇f (x)⊤(y − x) +
∫ 1

0
∥∇f

(
x + t(y − x)

)
−∇f (x)∥2∥y − x∥2dt

(b)

≤ f (x) +∇f (x)⊤(y − x) +
∫ 1

0
Lt∥y − x∥22dt

= f (x) +∇f (x)⊤(y − x) + L∥y − x∥22
∫ 1

0
tdt

= f (x) +∇f (x)⊤(y − x) +
L

2
∥y − x∥22,

where (a) is because of the Cauchy-Schwarz inequality and (b) is because, according to Eq. (2),
|∇f (x)−∇f (y)| ≤ L ∥x − y∥2,∀x , y ∈ D, we have:
∥∇f (x + t(y − x))−∇f (x)∥2 ≤ L∥x + t(y − x)− x∥2 = Lt∥y − x∥2. Q.E.D.
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Gradient Descent
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Gradient descent: introduction

Gradient descent is one of the fundamental first-order methods.

It was first suggested by Cauchy in 1874 [1] and Hadamard in 1908 [2] and its
convergence was later analyzed in [3].

Unconstrained optimization:
minimize

x
f (x). (4)

In numerical optimization for unconstrained optimization, we start with a random feasible
initial point and iteratively update it by step ∆x :

x (k+1) := x (k) +∆x . (5)

Continue until we converge to (or get sufficiently close to) the desired optimal point x∗.

The step ∆x is also denoted by p in the literature, i.e., p := ∆x .
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Gradient descent: step size
Let the function f (.) be differentiable and its gradient be L-smooth.

Recall Eq. (3) from the corollary of the fundamental theorem of calculus:

f (y) ≤ f (x) +∇f (x)⊤(y − x) +
L

2
∥y − x∥22.

If we set x = x (k) and y = x (k+1) = x (k) +∆x in this equation, we have:

f (x (k) +∆x) ≤ f (x (k)) +∇f (x (k))⊤∆x +
L

2
∥∆x∥22

=⇒ f (x (k) +∆x)− f (x (k)) ≤ ∇f (x (k))⊤∆x +
L

2
∥∆x∥22. (6)

Until reaching the minimum, we want to decrease the cost function f (.) in every iteration;
hence, we desire:

f (x (k) +∆x)− f (x (k)) < 0. (7)

According to Eq. (6), one way to achieve Eq. (7) is:

∇f (x (k))⊤∆x +
L

2
∥∆x∥22 < 0.
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Gradient descent: step size

We have:

∇f (x (k))⊤∆x +
L

2
∥∆x∥22 < 0.

Hence, we should minimize ∇f (x (k))⊤∆x + L
2
∥∆x∥22 w.r.t. ∆x :

minimize
∆x

∇f (x (k))⊤∆x +
L

2
∥∆x∥22. (8)

This function is convex w.r.t. ∆x and we can optimize it by setting its derivative to zero:

∂

∂∆x
(∇f (x (k))⊤∆x +

L

2
∥∆x∥22) = ∇f (x (k)) + L∆x set

= 0

=⇒ ∆x = −
1

L
∇f (x (k)). (9)

So, we have:

x (k+1) := x (k) −
1

L
∇f (x (k)).
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Gradient descent: step size

Recall Eqs. (9) and (6):

∆x = −
1

L
∇f (x (k)).

f (x (k) +∆x)− f (x (k)) ≤ ∇f (x (k))⊤∆x +
L

2
∥∆x∥22.

Using the first equation in the second equation gives:

f (x (k) +∆x)− f (x (k)) ≤ −
1

L
∇f (x (k))⊤∇f (x (k)) +

L

2
∥
−1
L
∇f (x (k))∥22

= −
1

L
∥∇f (x (k))∥22 +

L

2
∥
−1
L
∇f (x (k))∥22

= −
1

L
∥∇f (x (k))∥22 +

L

2
(
1

L
)2∥∇f (x (k))∥22

= −
1

2L
∥∇f (x (k))∥22 ≤ 0,

which satisfies Eq. (7). Eq. (9) means that it is better to move toward a scale of minus
gradient for updating the solution. This inspires the name of algorithm which is gradient
descent.
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Gradient descent: step size

The problem is that often we either do not know the Lipschitz constant L or it is hard to
compute. Hence, rather than Eq. (9), ∆x = − 1

L
∇f (x (k)), we use:

∆x = −η∇f (x (k)), i.e., x (k+1) := x (k) − η∇f (x (k)), (10)

where η > 0 is the step size, also called the learning rate in data science literature.

If the optimization problem is maximization rather than minimization, the step should be
∆x = η∇f (x (k)) rather than Eq. (10). In that case, the name of method is gradient
ascent.

Recall Eq. (6):

f (x (k) +∆x)− f (x (k)) ≤ ∇f (x (k))⊤∆x +
L

2
∥∆x∥22.

Using Eq. (10) in this equation gives:

f (x (k) +∆x)− f (x (k)) ≤ −η∥∇f (x (k))∥22 +
L

2
η2∥∇f (x (k))∥22 (11)

= η(
L

2
η − 1)∥∇f (x (k))∥22

First-Order Optimization 10 / 83



Gradient descent: step size

We found:

f (x (k) +∆x)− f (x (k)) ≤ η(
L

2
η − 1)∥∇f (x (k))∥22

If x (k) is not a stationary point, we have ∥∇f (x (k))∥22 > 0.

Recall Eq. (7):

f (x (k) +∆x)− f (x (k)) < 0.

Noticing η > 0, for satisfying this equation, we must set:

L

2
η − 1 < 0 =⇒ η <

2

L
. (12)
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Gradient descent: step size
Recall Eq. (11):

f (x (k) +∆x)− f (x (k)) ≤ −η∥∇f (x (k))∥22 +
L

2
η2∥∇f (x (k))∥22

On the other hand, we can minimize this equation by setting its derivative w.r.t. η to zero:

∂

∂η
(−η∥∇f (x (k))∥22 +

L

2
η2∥∇f (x (k))∥22) = −∥∇f (x (k))∥22 + Lη∥∇f (x (k))∥22

= (−1 + Lη)∥∇f (x (k))∥22
set
= 0 =⇒ η =

1

L
.

If we set:

η <
1

L
, (13)

then Eq. (11) becomes:

f (x (k) +∆x)− f (x (k)) ≤ −
1

L
∥∇f (x (k))∥22 +

1

2L
∥∇f (x (k))∥22 = −

1

2L
∥∇f (x (k))∥22 < 0

=⇒ f (x (k+1)) ≤ f (x (k))−
1

2L
∥∇f (x (k))∥22. (14)
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Gradient descent: step size
Recall Eqs. (13) and (14):

η <
1

L
,

f (x (k+1)) ≤ f (x (k))−
1

2L
∥∇f (x (k))∥22.

Eq. (13) means that there should be an upper-bound, dependent on the Lipschitz
constant, on the step size. Hence, L is still required.

Eq. (14) shows that every iteration of gradient descent decreases the cost function:

f (x (k+1)) ≤ f (x (k)), (15)

and the amount of this decrease depends on the norm of gradient at that iteration.

So, the series of solutions converges to the optimal solution while the function value
decreases iteratively until the local minimum:

{x (0), x (1), x (2), . . . } → x∗,

f (x (0)) ≥ f (x (1)) ≥ f (x (2)) ≥ · · · ≥ f (x∗).

If the optimization problem is a convex problem, the solution is the global solution;
otherwise, the solution is local.
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Gradient descent: cost versus iterations

{x (0), x (1), x (2), . . . } → x∗,

f (x (0)) ≥ f (x (1)) ≥ f (x (2)) ≥ · · · ≥ f (x∗).
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Line-Search
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Line-search

We saw the step size of gradient descent requires knowledge of the Lipschitz constant for
the smoothness of gradient. However, we may not know the exact Lipschitz constant.
Hence, we can find the suitable step size η by a search which is named the line-search.

In line-search of every optimization iteration, we start with η = 1 and if it does not satisfy
Eq. (7) with step ∆x = −η∇f (x (k)):

f (x (k) +∆x) < f (x (k)) =⇒ f (x (k) − η∇f (x (k))) < f (x (k)), (16)

we halve it, η ← η/2.

This halving step size is repeated until this equation is satisfied, i.e., until we have a
decrease in the objective function. Note that this decrease will happen when the step size
becomes small enough to satisfy Eq. (13):

η <
1

L
.

The algorithm of gradient descent with line-search is shown in Algorithm ??. As this
algorithm shows, line-search has its own internal iterations inside every iteration of
gradient descent.

First-Order Optimization 16 / 83



Gradient descent with line-search

The algorithm of gradient descent with line-search:

As this algorithm shows, line-search has its own internal iterations inside every iteration of
gradient descent.
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Backtracking line-search

A more sophisticated line-search method is the Armijo line-search [4], also called the
backtracking line-search. Rather than Eq. (16), it checks if the cost function is
sufficiently decreased:

f (x (k) + p) ≤ f (x (k)) + c p⊤f (x (k)), (17)

where c ∈ (0.0.5] is the parameter of Armijo line-search and p = ∆x is the search
direction for update.

The value of c should be small, e.g., c = 10−4 [5].

This condition is called the Armijo condition or the Armijo-Goldstein condition.

In gradient descent, the search direction is p = ∆x = −η∇f (x (k)) according to Eq. (10).
Hence, for gradient descent, it checks:

f (x (k) − η∇f (x (k))) ≤ f (x (k))− η c∥∇f (x (k))∥22. (18)

Another more sophisticated line-search is Wolfe conditions [6]. We will learn it later in
the course.
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Convergence criterion
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Convergence criteria
For all numerical optimization methods including gradient descent, there exist several
methods for convergence criterion to stop updating the solution and terminate
optimization.

Some of them are:
▶ Small norm of gradient:

∥∇f (x (k+1))∥2 ≤ ϵ,

where ϵ is a small positive number.

⋆ The reason for this criterion is the first-order optimality condition
(recall that at the local optimum, we have ∥∇f (x∗)∥2 = 0).

⋆ If the function is not convex, this criterion has the risk of stopping at a
saddle point.

▶ Small change of cost function:

|f (x (k+1))− f (x (k))| ≤ ϵ.

▶ Small change of gradient of function:

|∇f (x (k+1))−∇f (x (k))| ≤ ϵ.

▶ Reaching maximum desired number of iterations, denoted by

k < max
k

.

First-Order Optimization 20 / 83



Momentum
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Gradient descent with momentum
Gradient descent and other first-order methods can have a momentum term. Momentum,
proposed in [7], makes the change of solution ∆x a little similar to the previous change of
solution.

Hence, the change adds a history of previous change to Eq. (10):

(∆x)(k) := α(∆x)(k−1) − η(k)∇f (x (k)), (19)

where α > 0 is the momentum parameter which weights the importance of history
compared to the descent direction.

We use this (∆x)(k) in Eq. (5) for updating the solution:

x (k+1) := x (k) + (∆x)(k).

Because of faithfulness to the track of previous updates, momentum reduces the amount
of oscillation of updates in gradient descent optimization.
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Steepest Descent
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Steepest Descent
Steepest descent is similar to gradient descent but there is a difference between them.

In steepest descent, we move toward the negative gradient as much as possible to reach
the smallest function value which can be achieved at every iteration.

Hence, the step size at iteration k of steepest descent is calculated as [8]:

η(k) := argmin
η

f
(
x (k) − η∇f (x (k))

)
, (20)

and then, the solution is updated using Eq. (10) as in gradient descent:

x (k+1) := x (k) − η∇f (x (k)).

Another interpretation of steepest descent [9, Chapter 9.4]: The first-order Taylor
expansion of function is f (x + v) ≈ f (x) +∇f (x)⊤v . Hence, the step size in the
normalized steepest descent, at iteration k, is obtained as:

∆x = argmin
v
{∇f (x (k))⊤v | ∥v∥2 ≤ 1}, (21)

which is used in Eq. (5) for updating the solution:

x (k+1) := x (k) +∆x .
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Backpropagation
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Neural network
Neural network:

Every neuron in neural network:

Let xji denote the weight connecting neuron i to neuron j . Let ai and zi be the output of
neuron i before and after applying its activation function σi (.) : R→ R, respectively.

ai =
m∑

ℓ=1

xiℓzℓ, zi := σi (ai ).
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Backpropagation

Consider three neurons in three layers of a network:

We have ai =
∑

ℓ xiℓzℓ which sums over the neurons in layer ℓ. By chain rule, the
gradient of error e w.r.t. to the weight between neurons ℓ and i is:

∂e

∂xiℓ
=

∂e

∂ai
×

∂ai

∂xiℓ

(a)
= δi × zℓ, (22)

where (a) is because ai =
∑

ℓ xiℓzℓ and we define:

δi :=
∂e

∂ai
.
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Backpropagation

If layer i is the last layer, δi can be computed by derivative of error (loss function) w.r.t.
the output.

However, if i is one of the hidden layers, δi is computed by chain rule as:

δi =
∂e

∂ai
=

∑
j

( ∂e

∂aj
×

∂aj

∂ai

)
=

∑
j

(
δj ×

∂aj

∂ai

)
. (23)

The term ∂aj/∂ai is calculated by chain rule as:

∂aj

∂ai
=

∂aj

∂zi
×

∂zi

∂ai

(a)
= xji σ

′(ai ), (24)

where (a) is because aj =
∑

i xjizi and zi = σ(ai ) and σ′(.) denotes the derivative of
activation function. Putting Eq. (24) in Eq. (23) gives:

δi = σ′(ai )
∑
j

(δj xji ).
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Backpropagation

We found:

δi = σ′(ai )
∑
j

(δj xji ).

Putting this equation in Eq. (22), ∂e
∂xiℓ

= δi × zℓ, gives:

∂e

∂xiℓ
= zℓ σ

′(ai )
∑
j

(δj xji ). (25)

Backpropagation uses the gradient in Eq. (25) for updating the weight xiℓ, ∀i , ℓ by
gradient descent:

x
(k+1)
iℓ := x

(k)
iℓ − η(k)

∂e

∂xiℓ
.

This tunes the weights from last layer to the first layer for every iteration of optimization.

Therefore, backpropagation, proposed in 1986 [7], is actually gradient descent with chain
rule in derivatives because of having layers of parameters. It is the most well-known
optimization method used for training neural networks.
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Accelerated gradient method
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Accelerated Gradient method
It was shown in the literature that gradient descent is not optimal in convergence rate and
can be improved.

It was at that time that Nesterov proposed Accelerated Gradient Method (AGM) [10], in
1983, to make the convergence rate of gradient descent optimal [11, Chapter 2.2].

AGM is also called the Nesterov’s accelerated gradient method or Fast Gradient
Method (FGM). A series of Nesterov’s papers improved AGM [10, 12, 13, 14].

Consider a sequence {γ(k)} which satisfies:

k∏
i=0

(1− γ(i)) ≥ (γ(k))2, ∀k ≥ 0, γ(k) ∈ [0, 1]. (26)

An example sequence, satisfying this condition, is

γ(0) = γ(1) = γ(2) = γ(3) = 0, γ(k) = 2/k,∀k ≥ 4.

The AGM updates the solution iteratively as [10]:

x (k+1) := y (k) − η(k)∇f (y (k)), (27)

y (k+1) := (1− γ(k))x (k+1) + γ(k)x (k), (28)

until convergence.
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Comparison of convergences rates

Consider a convex and differentiable function f (.), with domain D, whose gradient is
L-smooth (see Eq. (2)). Let f ∗ be the minimum of cost function and x∗ be the
minimizer. Starting from the initial point x (0), after t iterations of the optimization
algorithm, we will have the following.

The convergence rate of gradient descent:

f (x (t+1))− f ∗ ≤
2L∥x (0) − x∗∥22

t + 1
= O(

1

t
). (29)

The convergence rate of accelerated gradient method:

f (x (t+1))− f ∗ ≤
2L∥x (0) − x∗∥22

(t + 1)2
= O(

1

t2
). (30)
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Stochastic gradient methods
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Stochastic gradient descent

Assume we have a dataset of n data points, {ai ∈ Rd}ni=1 and their labels {li ∈ R}ni=1.

Let the cost function f (.) be decomposed into summation of n terms {fi (x)}ni=1. Some
well-known examples for the cost function terms are:

▶ Least squares error: fi (x) = 0.5(a⊤
i x − li )

2,
▶ Absolute error: fi (x) = a⊤

i x − li ,
▶ Hinge loss (for li ∈ {−1, 1}): fi (x) = max(0, 1− lia⊤

i x).
▶ Logistic loss (for li ∈ {−1, 1}): log( 1

1+exp(−li a⊤i x)
).

The optimization problem becomes:

minimize
x

1

n

n∑
i=1

fi (x). (31)

In this case, the full gradient is the average gradient, i.e:

∇f (x) =
1

n

n∑
i=1

∇fi (x), (32)

so Eq. (9), ∆x = −(1/L)∇f (x (k)), becomes ∆x = −(1/(Ln))
∑n

i=1∇fi (x (k)). This is
what gradient descent uses for updating the solution at every iteration.
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Stochastic gradient descent

∇f (x) =
1

n

n∑
i=1

∇fi (x),

Calculation of this full gradient is time-consuming and inefficient for large values of n,
especially as it needs to be recalculated at every iteration.

Stochastic Gradient Descent (SGD), also called stochastic gradient method,
approximates gradient descent stochastically and samples (i.e. bootstraps) one of the
points at every iteration for updating the solution. Hence, it uses:

x (k+1) := x (k) − η(k)∇fi (x (k)), (33)

rather than Eq. (10), x (k+1) := x (k) − η∇f (x (k)).

The idea of stochastic approximation was first proposed in 1951 [15]. It was first used for
machine learning in 1998 [16].

As Eq. (33) states, SGD often uses an adaptive step size which changes in every iteration.
The step size can be decreasing because in initial iterations, where we are far away from
the optimal solution, the step size can be large; however, it should be small in the last
iterations which is supposed to be close to the optimal solution. Some well-known
adaptations for the step size are:

η(k) :=
1

k
, η(k) :=

1
√
k
, η(k) := η. (34)
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Stochastic gradient descent

Theorem (Convergence rates for SGD)

Consider a function f (x) =
∑n

i=1 fi (x) and which is bounded below and each fi is differentiable.
Let the domain of function f (.) be D and its gradient be L-smooth (see Eq. (2)). Assume
E[∥∇fi (xk )∥22 | xk ] ≤ β2 where β is a constant. Depending on the step size, the convergence
rate of SGD is:

O(
1

log t
) if η(k) =

1

k
, (35)

O(
log t
√
t
) if η(k) =

1
√
k
, (36)

O(
1

t
+ η) if η(k) = η, (37)

where t denotes the iteration index. If the functions fi ’s are µ-strongly convex, then the
convergence rate of SGD is:

O(
1

t
) if η(k) =

1

µk
, (38)

O
(
(1−

µ

L
)t + η

)
if η(k) = η. (39)
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Stochastic gradient descent

Recall Eqs. (37) and (39):

convex: O(
1

t
+ η) if η(k) = η,

strongly convex: O
(
(1−

µ

L
)t + η

)
if η(k) = η.

These equations show that with a fixed step size η, SGD converges sublinearly for a
non-convex function and linearly for a strongly convex function in the initial iterations.

However, in the late iterations, it stagnates to a neighborhood around the optimal point
and never reaches it. Hence, SGD has less accuracy than gradient descent (whose
convergence rate is O( 1

t2
)).

The advantage of SGD over gradient descent is that its every iteration is much faster than
every iteration of gradient descent because of less computations for gradient. This faster
pacing of every iteration shows off more when n is huge.

In summary, SGD has fast convergence to low accurate optimal point.

It is noteworthy that the full gradient is not available in SGD to use for checking
convergence, as discussed before. One can use other criteria or merely check the norm of
gradient for the sampled point.

SGD can be used with the line-search methods, too. SGD can also use a momentum term.
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Mini-batch stochastic gradient descent

Gradient descent uses the entire n data points and SGD uses one randomly sampled point
at every iteration. For large datasets, gradient descent is very slow and intractable in
every iteration while SGD will need a significant number of iterations to roughly cover all
data. Besides, SGD has low accuracy in convergence to the optimal point.

We can have a middle case where we use a batch of b randomly sampled points at every
iteration. This method is named the mini-batch SGD or the hybrid
deterministic-stochastic gradient method. This batch-wise approach is wise for large
datasets.

Usually, before start of optimization, the n data points are randomly divided into ⌊n/b⌋
batches of size b. This is equivalent to simple random sampling for sampling points into
batches without replacement. We denote the dataset by D (where |D| = n) and the i-th
batch by Bi (where |Bi | = b). The batches are disjoint:

⌊n/b⌋⋃
i=1

Bi = D, (40)

Bi ∩ Bj = ∅, ∀i , j ∈ {1, . . . , ⌊n/b⌋}, i ̸= j . (41)

Another less-used approach for making batches is to sample points for a batch during
optimization. This is equivalent to bootstrapping for sampling points into batches with
replacement. In this case, the batches are not disjoint anymore and Eqs. (40) and (41) do
not hold.
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Mini-batch stochastic gradient descent

Definition (Epoch)

In mini-batch SGD, when all ⌊n/b⌋ batches of data are used for optimization once, an epoch is
completed. After completion of an epoch, the next epoch is started and epochs are repeated
until convergence of optimization.

In mini-batch SGD, if the k-th iteration of optimization is using the k ′-th batch, the
update of solution is done as:

x (k+1) := x (k) − η(k)
1

b

∑
i∈Bk′

∇fi (x (k)). (42)

The scale factor 1/b is sometimes dropped for simplicity.

Mini-batch SGD is used significantly in machine learning, especially in neural networks
[16, 17].

Because of dividing data into batches, mini-batch SGD can be solved on parallel servers as
a distributed optimization method.
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Mini-batch stochastic gradient descent

Theorem (Convergence rates for mini-batch SGD)

Consider a function f (x) =
∑n

i=1 fi (x) which is bounded below and each fi is differentiable. Let
the domain of function f (.) be D and its gradient be L-smooth (see Eq. (2)) and assume
η(k) = η is fixed. The batch-wise gradient is an approximation to the full gradient with some
error et for the t-th iteration:

1

b

∑
i∈Bt′

∇fi (x (t)) = ∇f (x (t)) + et . (43)

The convergence rate of mini-batch SGD for non-convex and convex functions are:

O
(1
t
+ ∥et∥22

)
, (44)

where t denotes the iteration index. If the functions fi ’s are µ-strongly convex, then the
convergence rate of mini-batch SGD is:

O
(
(1−

µ

L
)t + ∥et∥22

)
. (45)

Therefore, the convergence rate of mini-batch gets closer to that of gradient descent, O(1/t), if
the batch size increases.
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Mini-batch stochastic gradient descent

If we sample the batches without replacement (i.e., sampling batches by simple random
sampling before start of optimization) or with replacement (i.e., bootstrapping during
optimization), the expected error is [18, Proposition 3]:

E[∥et∥22] = (1−
b

n
)
σ2

b
, (46)

E[∥et∥22] =
σ2

b
, (47)

respectively, where σ2 is the variance of whole dataset.

According to Eqs. (46) and (47), the accuracy of SGD by sampling without and with
replacement increases by b → n and b →∞, respectively.

However, this increase makes every iteration slower so there is trade-off between accuracy
and speed.
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Stochastic Average Gradient Methods
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Stochastic average gradient

SGD is faster than gradient descent but its problem is its lower accuracy compared to
gradient descent. Stochastic Average Gradient (SAG), proposed in 2012 [19], keeps a
trade-off between accuracy and speed.

Let ∇fi (x (k)) be the gradient of fi (.), evaluated in point x (k), at iteration k. According to
Eqs. (10) and (32), gradient descent updates the solution as:

x (k+1) := x (k) −
η(k)

n

n∑
i=1

∇fi (x (k)).

SAG randomly samples one of the points and updates its gradient among the gradient
terms. If the sampled point is the j-th one, we have:

x (k+1) := x (k) −
η(k)

n

(
∇fj (x (k))−∇fj (x (k−1)) +

n∑
i=1

∇fi (x (k−1))
)
. (48)

In other words, we subtract the j-th gradient from the summation of all n gradients in
previous iteration (k − 1) by

∑n
i=1∇fi (x (k−1))−∇fj (x (k−1)); then, we add back the new

j-th gradient in this iteration by adding ∇fj (x (k)).
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Stochastic average gradient

Theorem (Convergence rates for SAG [19, Proposition 1])

Consider a function f (x) =
∑n

i=1 fi (x) which is bounded below and each fi is differentiable. Let
the domain of function f (.) be D and its gradient be L-smooth (see Eq. (2)). The convergence
rate of SAG is:

O(
1

t
),

where t denotes the iteration index.

SAG has the same rate order as gradient descent; although, it usually needs some more
iterations to converge.

Practical experiments have shown that SAG requires many parameter fine-tuning to
perform perfectly.
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Stochastic variance reduced gradient

Another effective first-order method is the Stochastic Variance Reduced Gradient
(SVRG), proposed in 2013 [20].

The update of solution is similar to SAG but for every iteration, it updates the solution for
m times.

SVRG is an efficient method and its convergence rate is similar to that of SAG.

Both SAG and SVRG reduce the variance of solution to optimization [20].
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Adaptive Learning Rate
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Adaptive Gradient (AdaGrad)
We can adapt the learning rate in stochastic gradient methods. Three most well-known
methods for adapting the learning rate are AdaGrad, RMSProp, and Adam.

Adaptive Gradient (AdaGrad) method, proposed in 2011 [21], updates the solution
iteratively as:

x (k+1) := x (k) − η(k)G−1∇fi (x (k)), (49)

where G is a (d × d) diagonal matrix whose (j , j)-th element is:

G(j , j) :=

√√√√ε+
k∑

τ=0

(
∇j fiτ (x (τ))

)2
, (50)

where ε ≥ 0 is for stability (making G full rank), iτ is the randomly sampled point (from
{1, . . . , n}) at iteration τ , and ∇j fiτ (.) is the partial derivative of fiτ (.) w.r.t. its j-th
element (note that fiτ (.) is d-dimensional).

Putting Eq. (50) in Eq. (49) can simplify AdaGrad to:

x (k+1)
j := x (k)

j −
η(k)√

ε+
∑k

τ=0

(
∇j fiτ (x (τ))

)2∇fj (x (k)
j ). (51)

AdaGrad keeps a history of the sampled points and it takes derivative for them to use.
During the iterations so far, if a dimension has changed significantly, it dampens the
learning rate for that dimension (see the inverse in Eq. (49)); hence, it gives more weight
for changing the dimensions which have not changed noticeably.
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Root Mean Square Propagation (RMSProp)

Root Mean Square Propagation (RMSProp) was first proposed in 2012 [22] which is
unpublished.

It is an improved version of Rprop (resilient backpropagation), proposed in 1992 [23],
which uses the sign of gradient in optimization.

Inspired by momentum in Eq. (19):

(∆x)(k) := α(∆x)(k−1) − η(k)∇f (x (k)),

it updates a scalar variable v as [24]:

v (k+1) := γv (k) + (1− γ)∥∇fi (x (k))∥22, (52)

where γ ∈ [0, 1] is the forgetting factor (e.g., γ = 0.9). Then, it uses this v to weight the
learning rate:

x (k+1) := x (k) −
η(k)√

ε+ v (k+1)
∇fj (x

(k)
j ), (53)

where ϵ ≥ 0 is for stability not to have division by zero.

Comparing Eqs. (51) and (53) shows that RMSProp has a similar form to AdaGrad.
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Adaptive Moment Estimation (Adam)

Adam optimizer [25] improves over RMSProp by adding a momentum term.

It updates the scalar v and the vector m ∈ Rd as:

m(k+1) := γ1m(k) + (1− γ1)∇fi (x (k)), (54)

v (k+1) := γ2v
(k) + (1− γ2)∥∇fi (x (k))∥22, (55)

where γ1, γ2 ∈ [0, 1]. It normalizes these variables as:

m̂(k+1) :=
1

1− γk
1

m(k+1), v̂ (k+1) :=
1

1− γk
2

v (k+1).

Then, it updates the solution as:

x (k+1) := x (k) −
η(k)√

ε+ v̂ (k+1)
m̂(k+1), (56)

which is stochastic gradient descent with momentum while using RMSProp.

The Adam optimizer is one of the mostly used optimizers in neural networks.
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Coding a Neural Network
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Neural network: importing packages
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Neural network: defining the network
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Neural network: optimizer
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Neural network: data loader
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Neural network: dataset
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Neural network: training

First-Order Optimization 56 / 83



Neural network: test (evaluation)
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Proximal Methods
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Proximal Mapping

Definition (Proximal mapping/operator [26])

The proximal mapping or proximal operator of a convex function g(.) is:

proxg (x) := argmin
u

(
g(u) +

1

2
∥u − x∥22

)
. (57)

In case the function g(.) is scaled by a scalar λ, the proximal mapping is defined as:

proxλg (x) := argmin
u

(
g(u) +

1

2λ
∥u − x∥22

)
. (58)
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The Moreau-Yosida regularization

The proximal mapping:

proxg (x) := argmin
u

(
g(u) +

1

2
∥u − x∥22

)
,

is related to the Moreau-Yosida regularization defined below.

Definition (Moreau-Yosida regularization or Moreau envelope [27, 28])

The Moreau-Yosida regularization or the Moreau envelope of function g(.) is:

Mλg (x) := inf
u

(
g(u) +

1

2
∥u − x∥22

)
. (59)

This Moreau-Yosida regularized function has the same minimizer as the function g(.) [29].
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The Moreau decomposition

Lemma (Moreau decomposition [30])
We always have the following decomposition, named the Moreau decomposition:

x = proxg (x) + proxg∗ (x), (60)

x = proxλg (x) + λ prox 1
λ
g∗ (

x
λ
), (61)

where g(.) is a function in a space and g∗(.) is its corresponding function in the dual space
(e.g., if g(.) is a norm, g∗(.) is its dual norm or if g(.) is projection onto a cone, g∗(.) is
projection onto the dual cone).
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Projection onto set
In optimization, indicator function I(.) is zero if its condition is satisfied and is infinite
otherwise.

I(x ∈ S) =
{

0 if x ∈ S
∞ if x ̸∈ S. (62)

Lemma (Projection onto set)

The proximal mapping of the indicator function to a convex set S, i.e. I(x ∈ S), is projection of
the point x onto the set S. Hence, projection of x onto set S, denoted by ΠS(x), is defined as:

ΠS(x) := proxI(.∈S)(x) = arg min
u∈S

(1

2
∥u − x∥22

)
. (63)

This projection simply means projecting the point x onto the closest point of set from the
point x . Hence, the vector connecting the points x and ΠS(x) is orthogonal to the set S.
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Projection onto set

Lemma:

ΠS(x) := proxI(.∈S)(x) = arg min
u∈S

(1

2
∥u − x∥22

)
.

The proximal mapping:

proxg (x) := argmin
u

(
g(u) +

1

2
∥u − x∥22

)
,

Proof.

proxI(.∈S)(x)
(57)
= argmin

u

(
I(x ∈ S) +

1

2
∥u − x∥22

)
(a)
= arg min

u∈S

(1

2
∥u − x∥22

)
,

where (a) is because I(x ∈ S) becomes infinity if x ̸∈ S (see Eq. (62)).
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Moreau decomposition for norm

Recall Eq. (61) from the Moreau decomposition:

x = proxλg (x) + λ prox 1
λ
g∗ (

x
λ
) =⇒ proxλg (x) = x − λ prox 1

λ
g∗ (

x
λ
).

Corollary (Moreau decomposition for norm)

If the function is a scaled norm, g(.) = λ∥.∥, we have from this equation:

proxλ∥.∥(x) = x − λΠB(
x
λ
), (64)

where B is the unit ball of dual norm.

Derivation of proximal operator for various g(.) functions are available in [31, Chapter 6].
Here, we review the proximal mapping of some mostly used functions.

If g(x) = 0, proximal mapping becomes an identity mapping:

proxλ0(x)
(58)
= argmin

u

(
0 +

1

2λ
∥u − x∥22

)
= argmin

u

( 1

2λ
∥u − x∥22

)
= x .
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Proximal mapping of ℓ2 norm

Lemma (Proximal mapping of ℓ2 norm [31, Example 6.19])

The proximal mapping of the ℓ2 norm is:

proxλ∥.∥2 (x) =
(
1−

λ

max(∥x∥2, λ)

)
x =

{ (
1− λ

∥x∥2

)
x if ∥x∥2 ≥ λ

0 if ∥x∥2 < λ.
(65)

Proof.
Recall Eq. (64): proxλ∥.∥(x) = x − λΠB(

x
λ
).

Let g(.) = ∥.∥2 and B be the unit ℓ2 ball because ℓ2 is the dual norm of ℓ2. We have:

ΠB(x) =
{

x/∥x∥2 if ∥x∥2 ≥ 1
x if ∥x∥2 < 1.

=⇒ proxλ∥.∥2 (x)
(64)
= x − λΠB(

x
λ
) =

{ (
1− λ

∥x∥2

)
x if ∥x∥2 ≥ λ

x − λ(x/λ) = 0 if ∥x∥2 < λ.

First-Order Optimization 65 / 83



Proximal mapping of ℓ1 norm

Lemma (Proximal mapping of ℓ1 norm [31, Example 6.8])

Let xj denote the j-th element of x = [x1, . . . , xd ]
⊤ ∈ Rd and let [ proxλ∥.∥1 (x)]j denote the j-th

element of the d-dimensional proxλ∥.∥1 (x) mapping. The j-th element of proximal mapping of
the ℓ1 norm is:

[ proxλ∥.∥1 (x)]j = max(0, |xj | − λ) sign(xj ) = sλ(xj ) :=

 xj − λ if xj ≥ λ
0 if |xj | < λ
xj + λ if xj ≤ −λ,

(66)

for all j ∈ {1, . . . , d}. Eq. (66) is called the soft-thresholding function, denoted here by sλ(.).
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Proximal mapping of ℓ1 norm

Proof.
Let g(.) = ∥.∥1 and B be the unit ℓ∞ ball because ℓ∞ is the dual norm of ℓ1. The j-th element
of projection is:

[ΠB(x)]j =

 1 if xj ≥ 1
xj if |xj | < 1
−1 if xj ≤ −1

=⇒ [proxλ∥.∥1 (x)]j
(64)
= xj − λ [ΠB(

x
λ
)]j =

 xj − λ if xj ≥ λ
0 if |xj | < λ
xj + λ if xj ≤ −λ.
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Proximal point algorithm

Recall Eq. (58):

proxλg (x) := argmin
u

(
g(u) +

1

2λ
∥u − x∥22

)
.

The term g(u) + 1/(2λ)∥u − x∥22 in this equation is strongly convex; hence, the proximal point,
proxλg (x), is unique.

Lemma
The point x∗ minimizes the function f (.) if and only if x∗ = proxλf (x∗).
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Proximal point algorithm

Consider the following optimization problem:

minimize
x

f (x).

Proximal point algorithm, also called proximal minimization, was proposed in 1976 [32].
It finds the optimal point of this problem by iteratively updating the solution as:

x (k+1) := proxλf (x
(k))

(58)
= argmin

u

(
f (u) +

1

2λ
∥u − x (k)∥22

)
, (67)

until convergence.

λ can be seen as a parameter related to the step size.

In other words, proximal gradient method applies gradient descent on the Moreau
envelope Mλf (x), recall Eq. (59):

Mλg (x) := inf
u

(
g(u) +

1

2
∥u − x∥22

)
,

rather than on the function f (.) itself.
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Composite problems

Definition (Composite objective function [14])

In optimization, if a function is stated as a summation of two terms, f (x) + g(x), it is called a
composite function and its optimization is a composite optimization problem.

Consider the following optimization problem:

minimize
x

f (x) + g(x), (68)

where f (x) is a smooth function and g(x) is a convex function which is not smooth
necessarily. This is a composite optimization problem.

Composite problems are widely used in machine learning and regularized problems
because f (x) can be the cost function to be minimized while g(x) is the penalty or
regularization term [33].
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Proximal gradient method
For solving problem (68), minimize

x
f (x) + g(x), we can approximate the function f (.)

by its quadratic approximation around point x because it is smooth (differentiable):

f (u) ≈ f (x) +∇f (x)⊤(u − x) +
1

2η
∥u − x∥22,

where we have replaced ∇2f (x) with scaled identity matrix, (1/η)I .
Hence, the solution of problem (68) can be approximated as:

x = argmin
u

(
f (u) + g(u)

)
≈ argmin

u

(
f (x) +∇f (x)⊤(u − x) +

1

2η
∥u − x∥22 + g(u)

)
(a)
= argmin

u

(
∥∇f (x)∥22 +∇f (x)⊤(u − x) +

1

2η
∥u − x∥22 + g(u)

)
(b)
= argmin

u

( 1

2η
∥(u − x) + η∇f (x)∥22 + g(u)

)
= argmin

u

( 1

2η
∥u − (x − η∇f (x))∥22 + g(u)

)
, (69)

where (a) is because f (x) is a constant in minimization w.r.t. u, so it can be simply
replaced with another constant ∥∇f (x)∥22, and (b) is because of writing the three first
terms as the binomial square term.
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Proximal gradient method

We found Eq. (69):

x = argmin
u

( 1

2η
∥u − (x − η∇f (x))∥22 + g(u)

)
.

The first term in this equation keeps the solution close to the solution of gradient descent
for minimizing the function f (.) (see Eq. (10)) and the second term in this equation
makes the function g(.) small.

Proximal gradient method, also called proximal gradient descent, uses Eq. (69) for
solving the composite problem (68). It was first proposed in 2013 [14] and also in [34] for
g = ∥.∥1. It finds the optimal point by iteratively updating the solution as:

x (k+1) (69):= argmin
u

( 1

2η(k)
∥u − (x (k) − η(k)∇f (x (k)))∥22 + g(u)

)
(58)
= proxη(k)g

(
x (k) − η(k)∇f (x (k))

)
, (70)

until convergence, where η(k) is the step size which can be fixed or found by line-search.

In Eq. (68), minimize
x

f (x) + g(x), the function g(.) can be a regularization term such as

ℓ2 or ℓ1 norm. In these cases, we use Lemmas 12 and 13 for calculating Eq. (70).
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Constrained First-order Optimization
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Projected gradient method
Projected gradient method, proposed in 2003 [35], also called gradient projection
method and projected gradient descent, considers g(x) to be the indicator function
I(x ∈ S) in problem (68), minimize

x
f (x) + g(x).

This optimization problem is a constrained problem which can be restated to:

minimize
x

f (x) + I(x ∈ S), (71)

because the indicator function becomes infinity if its condition is not satisfied.

Recall Eq. (70) in proximal gradient method:

x (k+1) := proxη(k)g

(
x (k) − η(k)∇f (x (k))

)
.

According to this equation, the solution is updated as:

x (k+1) (70)
:= proxη(k)I(.∈S)

(
x (k) − η(k)∇f (x (k))

)
(63)
= ΠS

(
x (k) − η(k)∇f (x (k))

)
. (72)

So, projected gradient method performs a step of gradient descent and then projects the
solution onto the set of constraint. This procedure is repeated until convergence of
solution.
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Projected gradient method

Although most often projected gradient method is used for Eq. (72), there are few other
variants of projected gradient methods such as the following proposed in 2004 [36]:

y (k) := ΠS
(
x (k) − η(k)∇f (x (k))

)
, (73)

x (k+1) := x (k) + γ(k)(y (k) − x (k)), (74)

where η(k) and γ(k) are positive step sizes at iteration k.

In this alternating approach, we find an additional variable y by gradient descent followed
by projection and then update x to get close to the found y while staying close to the
previous solution by line-search.
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Projection onto the cone of orthogonal matrices
Singular Value Decomposition (SVD) decomposes the matrix X ∈ X ∈ Rd1×d2 as:

X = UΣV⊤,

where U ∈ Rd1×d1 and V ∈ Rd2×d2 are the matrices of left and right singular vectors of
X , respectively.

Consider the constraint for projection onto the cone of orthogonal matrices, i.e.,
X⊤X = I . In this constraint, the constraint deals with the singular values of X , because:

X SVD
= UΣV⊤ =⇒ X⊤X = UΣV⊤VΣU⊤ (a)

= UΣ2U⊤ set
= I

=⇒ UΣ2U⊤U = U
(b)
=⇒ UΣ2 = U =⇒ Σ = I ,

where (a) and (b) are because U and V are orthogonal matrices.

Therefore, the constraint X⊤X = I (i.e., projecting onto the cone of orthogonal matrices)
can be modeled by setting all singular values of X to one:

proxλ,g (X ) = ΠO = UIV⊤, (75)

where I ∈ Rd1×d2 is a rectangular identity matrix and O denotes the cone of orthogonal
matrices.

If the constraint is scaled orthogonality, i.e. X⊤X = λI with λ as the scale, the projection
is setting all singular values to λ by U(λI )V⊤ = λUIV⊤.
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Projection onto convex sets (POCS)

Assume we want to project a point onto the intersection of c closed convex sets, i.e.,⋂c
j=1 Sj .

We can model this by an optimization problem with a fake objective function:

minimize
x

x ∈ Rd

subject to x ∈ S1, . . . , x ∈ Sc .
(76)

Projection Onto Convex Sets (POCS) solves this problem, similar to projected gradient
method, by projecting onto the sets one-by-one [37]:

x (k+1) := ΠS1
(ΠS2

(. . .ΠSc (x
(k)) . . . )), (77)

and repeating it until convergence.

Another similar method for solving problem (76) is the averaged projections which
updates the solution as:

x (k+1) :=
1

c

(
ΠS1

(x (k)) + · · ·+ΠSc (x
(k))

)
. (78)
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