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Linear programming

A linear programming problem is of the form:

minimize
x

linear function in x

subject to affine inequality constraints in x ,
affine equality constraints in x .
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Standard linear programming

A standard linear programming problem is of the form:

Maximization:
maximize

x=[x1,...,xn ]⊤
α⊤x

subject to Gx ⪯ h,
x ⪰ 0,

Minimization:
minimize

x=[x1,...,xn ]⊤
α⊤x

subject to Gx ⪰ h,
x ⪰ 0,

where G ∈ Rm×n and h ∈ Rm.
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Standard linear programming

Equivalently:
minimize/maximize

x1,...,xn

α1x1 + · · ·+ αnxn

subject to linear inequality constraint 1,

...

linear inequality constraint m,

x1, . . . , xn ≥ 0,

where m ≥ n.

For example:

minimize
x1,x2

12x1 + 16x2

subject to x1 + 2x2 ≥ 40,

x1 + x2 ≥ 30,

x1, x2 ≥ 0.

maximize
x1,x2

40x1 + 30x2

subject to x1 + 2x2 ≤ 12,

2x1 + x2 ≤ 16,

x1, x2 ≥ 0.
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Practical Examples
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Practical Example 1

A company has two products. Let x1 and x2 denote the amount of the first and second
products to be produced (with some scale), respectively. Therefore, x1, x2 ≥ 0.

The company has profits $60 and $30 for the first and second products. Therefore, the
total profit of company:

c = $(60x1 + 30x2).

The resources for these products are limited, so we have the following restrictions:
▶ We do not want the first product, with proportion 8, and the second product, with

proportion 3, to spend more than $48, so: 8x1 + 3x2 ≤ $48.
▶ For four of the first product and three of the second product, we have the budget to

spend at least $25, so: 4x1 + 2x2 ≥ $25.

The optimization becomes:
maximize

x1,x2
c = 60x1 + 30x2

subject to 8x1 + 3x2 ≤ 48,

4x1 + 2x2 ≥ 25,

x1, x2 ≥ 0.
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Practical Example 2

We have two 2D tanks of water which are connected from their bottom. Let x1 and x2
denote the height of water (with some scale) in the first and second tanks, respectively.
Therefore, x1, x2 ≥ 0.

The widths of the two tanks are 60 and 30 (with some scale), respectively. Therefore, the
total amount of water in these tanks is c = 60x1 + 30x2.

There are some linear physical restrictions on the amount of water poured in these tanks
(because of previous tanks which water has passed to reach these tanks): 8x1 + 3x2 ≤ 48
and 4x1 + 2x2 ≥ 25.

The optimization becomes:
maximize

x1,x2
c = 60x1 + 30x2

subject to 8x1 + 3x2 ≤ 48,

4x1 + 2x2 ≥ 25,

x1, x2 ≥ 0.
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Solving linear programming by visualization
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Visualization: example 1

Minimization example:
minimize

x1,x2
12x1 + 16x2

subject to x1 + 2x2 ≥ 40,

x1 + x2 ≥ 30,

x1, x2 ≥ 0.
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Visualization: example 2

Maximization example:
maximize

x1,x2
40x1 + 30x2

subject to x1 + 2x2 ≤ 12,

2x1 + x2 ≤ 16,

x1, x2 ≥ 0.
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Visualization: example 3
Example with more number of constraints:

minimize
x1,x2

2x1 + 3x2

subject to x1 + 2x2 ≥ 8,

2x1 + 0.5x2 ≥ 4,

x1 + x2 ≤ 8,

x1 ≤ 5,

x2 ≤ 10,

x1, x2 ≥ 0.
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Simplex Method Description
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Simplex method description

As you saw in the pictures, the feasible set (determined by the constraints) in the linear
programming has affine/linear boundaries.

It is because the constraints are affine/linear.

Therefore, the feasible set is like a simplex with linear edges and some corners.

The corners of the feasible set are named the extreme points.

The images are taken from Wikipedia.
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Simplex method description

The simplex algorithm was initially proposed in 1947 [1].

It works on the linear boundaries (edges) and extreme points of the simplex feasible set.

Obviously, the solution is at one of the extreme points.

Linear Programming 15 / 59



Simplex method description

The simplex algorithm starts from an extreme point and it goes to one of its neighbor
extreme points having the smallest/largest cost function at that point (only if the neighbor
extreme point has smaller/larger cost value compared to the current extreme point).

It continues this procedure until we reach an extreme point whose neighbor extreme
points do not have smaller/larger cost value.

The images are taken from Wikipedia.
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One of the methods for Simplex Algorithm:
Tableau Method for Maximization
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Slack variables

Consider this example:
maximize
x1,x2,x3

6x1 + 5x2 + 4x3

subject to 2x1 + x2 + x3 ≤ 240,

x1 + 3x2 + 2x3 ≤ 360,

2x1 + x2 + 2x3 ≤ 300,

x1, x2, x3 ≥ 0.

We convert each inequality ≤ constraint to an equality constraint by adding slack
variables.

Slack variables are non-negative scalars which are added to the left hand side of
inequality ≤ constraint to make it equality.

Example:

2x1 + x2 + x33 ≤ 240 =⇒ 2x1 + x2 + x3 + s1 = 240,

x1 + 3x2 + 2x3 ≤ 360 =⇒ x1 + 3x2 + 2x3 + s2 = 360,

2x1 + x2 + 2x3 ≤ 300 =⇒ 2x1 + x2 + 2x3 + s3 = 300,

s1, s2, s3 ≥ 0.
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Slack variables

So, this problem:
maximize
x1,x2,x3

6x1 + 5x2 + 4x3

subject to 2x1 + x2 + x3 ≤ 240,

x1 + 3x2 + 2x3 ≤ 360,

2x1 + x2 + 2x3 ≤ 300,

x1, x2, x3 ≥ 0.

is converted to:

maximize
x1,x2,x3,s1,s2,s3

6x1 + 5x2 + 4x3

subject to 2x1 + x2 + x3 + s1 = 240,

x1 + 3x2 + 2x3 + s2 = 360,

2x1 + x2 + 2x3 + s3 = 300,

x1, x2, x3, s1, s2, s3 ≥ 0.
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Forming equalities

maximize
x1,x2,x3,s1,s2,s3

6x1 + 5x2 + 4x3

subject to 2x1 + x2 + x3 + s1 = 240,

x1 + 3x2 + 2x3 + s2 = 360,

2x1 + x2 + 2x3 + s3 = 300,

x1, x2, x3, s1, s2, s3 ≥ 0.

The cost function is: c := 6x1 + 5x2 + 4x3 =⇒ c − 6x1 − 5x2 − 4x3 = 0.
Therefore:

2x1 + x2 + x3 + s1 = 240,

x1 + 3x2 + 2x3 + s2 = 360,

2x1 + x2 + 2x3 + s3 = 300,

c − 6x1 − 5x2 − 4x3 = 0.
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Forming the table in the tableau method

2x1 + x2 + x3 + s1 = 240,

x1 + 3x2 + 2x3 + s2 = 360,

2x1 + x2 + 2x3 + s3 = 300,

c − 6x1 − 5x2 − 4x3 = 0.
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Pivot and min test

1 In maximization problem, choose the most negative value, in the row of cost, for the
pivot column.

2 Do the min test: divide RHS values (of rows except the c row) to the values of the pivot
column. Ignore the negative or zero values in min test.

3 Get the minimum division value for the pivot row. The intersection of pivot row and pivot
column gives the pivot value.
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Simplifying the pivot column

1 Make the pivot value one and other values zero in the pivot column.

2 For every row, use the row itself and the pivot row only.

3 Replace the name of the pivot row with the name of the pivot column.
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Continuing the table

In the maximization problem, we continue the table until all the values in the c row are
non-negative (positive or zero).
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Continuing the table
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Basic and non-basic variables

Once the table is over:

A column with having only one 1 and the rest 0 is a basic variable.

The other columns are non-basic variables.
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Checking the optimal values

Once the table is over, the RHS of the c row is the optimal cost function. Here it is
c∗ = 912.

The optimal values for the variables are the RHS of the rows. In other words, the
optimum basic variables are the RHS of rows. Here they are x∗1 = 72, x∗2 = 96, s∗3 = 60.

The optimum value for the rest of the variables (the non-basic variables) is zero. Here
they are x∗3 = 0, s∗1 = 0, s∗2 = 0.

We can check if the optimal cost is correct:

c := 6x1 + 5x2 + 4x3 =⇒ c∗ = 6x∗1 + 5x∗2 + 4x∗3 = 6(72) + 5(96) + 4(0) = 912
√
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Big M method
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When to use the big M method
We should use the big M method when there are one or some ≥ constraints and/or =
constraints. In other words, whenever we have mixed constraints.

Consider this example with ≤ and ≥ constraints:

maximize
x1,x2

c = 3x1 + 4x2

subject to 2x1 + x2 ≤ 600,

x1 + x2 ≤ 225,

5x1 + 4x2 ≤ 1000,

x1 + 2x2 ≥ 150,

x1, x2 ≥ 0.

For ≤ constraints, we use slack variables as before:

2x1 + x2 ≤ 600 =⇒ 2x1 + x2 + s1 = 600,

x1 + x2 ≤ 225 =⇒ x1 + x2 + s2 = 225,

5x1 + 4x2 ≤ 1000 =⇒ 5x1 + 4x2 + s3 = 1000,

s1, s2, s3 ≥ 0.
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Big M method: ≥ constraints

maximize
x1,x2

c = 3x1 + 4x2

subject to 2x1 + x2 ≤ 600,

x1 + x2 ≤ 225,

5x1 + 4x2 ≤ 1000,

x1 + 2x2 ≥ 150,

x1, x2 ≥ 0.

For ≥ constraints, we can’t use slack variables because the slack variable will not be
non-negative anymore:

x1 + 2x2 ≥ 150 =⇒ x1 + 2x2 + s4 = 150 =⇒ s4 ≤ 0.

For ≥ constraints, we use excess variables e and artificial variables a:

x1 + 2x2 ≥ 150 =⇒ x1 + 2x2 + a4 − e4 = 150,

a4, e4 ≥ 0.

We want the additional variable to be very small (a4 = ϵ) so we add it to the cost
function with a very big multiplication factor M ≫ 1:

maximize
x1,x2,x3

c = 3x1 + 4x2 −Ma4,

because if M ≫ 1, then a4 → 0 to cancel its effect in the cost function.

Linear Programming 30 / 59



Tableau method with the big M method

maximize
x1,x2,s1,s2,s3,a4,e4

c = 3x1 + 4x2 −Ma4

subject to 2x1 + x2 + s1 = 600,

x1 + x2 + s2 = 225,

5x1 + 4x2 + s3 = 1000,

x1 + 2x2 + a4 − e4 = 150,

x1, x2, s1, s2, s3, a4, e4 ≥ 0.

We make zero the column value of additional variable in the c row, because the value of
a4 should be about zero rather than M.
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Tableau method with the big M method
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Tableau method with the big M method

Therefore: s∗1 = 375, e∗4 = 300, s∗3 = 100, x∗2 = 225, x∗1 = 0, s∗2 = 0, s∗3 = 0, a∗4 = 0, c∗ = 900.
Check: c∗ = 3x∗1 + 4x∗2 = 3(0) + 4(225) = 900

√
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Example 2 for mixed constraints
Consider another example with mixed constraints:

maximize
x1,x2,x3

c = x1 − x2 + 3x3 + 4

subject to x1 + x2 ≤ 20,

x1 + x3 = 5,

x2 + x3 ≥ 10,

x1, x2, x3 ≥ 0.

We drop the DC value from the cost for now:

c = x1 − x2 + 3x3.

We have:

x1 + x2 ≤ 20 =⇒ x1 + x2 + s1 = 20,

x1 + x3 = 5 =⇒ x2 + x3 + a1 = 5,

x2 + x3 ≥ 10 =⇒ x2 + x3 + a2 + e2 = 10,

s1, a1, a2, e2 ≥ 0.
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Example 2 for mixed constraints

The problem is converted to:

maximize
x1,x2,x3

c = x1 − x2 + 3x3 −Ma1 −Ma2

subject to x1 + x2 + s1 = 20,

x2 + x3 + a1 = 5,

x2 + x3 + a2 + e2 = 10,

s1, a1, a2, e2 ≥ 0.
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Example 2 for mixed constraints
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Example 2 for mixed constraints

Therefore: s∗1 = 15, x∗3 = 5, x∗2 = 5, c∗ = 10, x∗1 = a∗1 = a∗2 = e∗2 = 0.
Check: c∗ = x∗1 − x∗2 + 3x∗3 = 0− 5 + 3(5) = 10

√

The final answer for maximum actual cost is (we add back the DC value): c∗ = 10 + 4 = 14.

Linear Programming 37 / 59



The Reason for the Tableau Method

Linear Programming 38 / 59



The reason for the tableau method

maximize
x1,x2,x3,x4

c = 4x1 + 6x2 − 5x4

subject to x1 + x2 + x3 ≤ 50,

2x1 + 3x2 + x4 ≤ 42,

3x3 − x4 ≤ 250,

x1, x2, x3, x4 ≥ 0.

is converted to:
maximize

x1,x2,x3,x4,s1,s2,s3
c = 4x1 + 6x2 − 5x4

subject to x1 + x2 + x3 + s1 = 50,

2x1 + 3x2 + x4 + s2 = 42,

3x3 − x4 + s3 = 250,

x1, x2, x3, x4, s1, s2, s3 ≥ 0.

# variables: 7, # equations: 3

We can set 7− 3 = 4 variables to zero (non-basic variables) and find the other 3 variables
(basic variables).

How many ways can we choose the three variables out of the 7 variables?
(7
3

)
= 35.
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Example variables to choose

One of the ways:

non-basic variables: x1 = x2 = x3 = x4 = 0,

basic variables: s1, s2, s3.

maximize
s1,s2,s3

c = 0

subject to s1 = 50,

s2 = 42,

s3 = 250,

s1, s2, s3 ≥ 0.

Therefore, s1 = 50, s2 = 42, s3 = 250.
The cost function becomes: c = 0.
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Example variables to choose

One of the ways:

non-basic variables: x1 = x4 = s1 = s2 = 0,

basic variables: x2, x3, s3.

maximize
x2,x3,s3

c = 6x2

subject to x2 + x3 = 50,

3x2 = 42,

3x3 + s3 = 250,

x2, x3, s3 ≥ 0.

Therefore, x2 = 14, x3 = 36, s3 = 142.
The cost function becomes: c = 6(14) = 84.
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The reason for the pivot column

Which variable should we increase which maximizes the cost function the most?

c = 4x1 + 6x2 − 5x4.

Increasing the variable x2 has the most effect because it has the biggest multiplication factor,
i.e., 6.
Recall that we had:

c − 4x1 − 6x2 + 5x4 = 0.

That is why, in the tableau method, we find the most negative value in the c row. This is the
reason for the pivot column.
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The reason for the min test

maximize
x1,x2,x3,x4,s1,s2,s3

c = 4x1 + 6x2 − 5x4

subject to x1 + x2 + x3 + s1 = 50,

2x1 + 3x2 + x4 + s2 = 42,

3x3 − x4 + s3 = 250,

x1, x2, x3, x4, s1, s2, s3 ≥ 0.

How much can we increase the x2 variable?

In the first constraint, the worst case scenario is x1 = x3 = s1 = 0 and the most we can
increase x2: x2 = 50

In the second constraint, the worst case scenario is x1 = x4 = s2 = 0 and the most we can
increase x2: 3x2 = 42 =⇒ x2 = 42/3 = 14

In the third constraint, the worst case scenario is x3 = x4 = s3 = 0 and the most we can
increase x2: 30x2 = 250 =⇒ x2 = ∞
Therefore, the minimum increase we can have for x2 is: min(50, 42,∞) = 42.
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Solving the Dual Problem for Minimization
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Dual problem for minimization

An example minimization linear problem is:

minimize
x1,x2

12x1 + 16x2

subject to x1 + 2x2 ≥ 40,

x1 + x2 ≥ 30,

x1, x2 ≥ 0.

When we have a minimization linear programming, we can convert the minimization
problem to a maximization problem.

We should find the dual problem for the minimization problem. The dual for the
minimization is a maximization problem. We will learn the dual problem of linear
programming soon.
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Dual problem for minimization
An example minimization linear problem is:

minimize
x1,x2

12x1 + 16x2

subject to x1 + 2x2 ≥ 40,

x1 + x2 ≥ 30,

x1, x2 ≥ 0.

Consider the constraints:

x1 + 2x2 ≥ 40
×y1=⇒ y1x1 + 2y1x2 ≥ 40y1,

x1 + x2 ≥ 30
×y2=⇒ y2x1 + y2x2 ≥ 30y2,

where y1, y2 ≥ 0. Summing the sides together gives:

(y1 + y2)x1 + (2y1 + y2)x2 ≥ 40y1 + 30y2.

On the other hand, the cost of dual problem is a lower bound on the cost of the primal problem:

12x1 + 16x2 ≥ (y1 + y2)x1 + (2y1 + y2)x2.
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Dual problem for minimization
Summing the sides together gives:

(y1 + y2)x1 + (2y1 + y2)x2 ≥ 40y1 + 30y2.

On the other hand, the cost of dual problem is a lower bound on the cost of the primal problem:

12x1 + 16x2 ≥ (y1 + y2)x1 + (2y1 + y2)x2.

Therefore:

12x1 + 16x2 ≥ (y1 + y2)x1 + (2y1 + y2)x2 ≥ 40y1 + 30y2.

Hence:

y1 + y2 ≤ 12,

2y1 + y2 ≤ 16.

We want to find the best (maximum) lower bound, so:

maximize
y1,y2

40y1 + 30y2.
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Dual problem for minimization

Therefore:
maximize

y1,y2
40y1 + 30y2

subject to y1 + y2 ≤ 12,

2y1 + y2 ≤ 16,

y1, y2 ≥ 0.

is the dual problem for the following problem:

minimize
x1,x2

12x1 + 16x2

subject to x1 + 2x2 ≥ 40,

x1 + x2 ≥ 30,

x1, x2 ≥ 0.

This maximization problem can be solved as explained before.
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Solving the problem by tableau method

maximize
y1,y2

c = 40y1 + 30y2

subject to y1 + y2 + s1 = 12,

2y1 + y2 + s2 = 16,

y1, y2 ≥ 0.
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Solving the problem by tableau method

Therefore: y∗
2 = 8, y∗

1 = 4, s∗1 = 0, s∗2 = 0, c∗ = 400.
Check: c∗ = 40y∗

1 + 30y∗
2 = 40(4) + 30(8) = 400

√

The strong duality holds for linear programming, so:

c∗ = 400 for the primal problem, too.
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Dual Simplex Method
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Why we need the dual simplex method?

We converted the minimization linear problem to its dual problem which is the
maximization linear problem. Then, we solved it using the simplex method for
maximization.

However, it only gave us the optimal cost function c∗ and not the optimum primal
variables {x∗1 , . . . , x∗n }.
For finding these optimum primal variables in the minimization linear programming, we
can use the dual simplex method.

The dual simplex method only works for the minimization linear problem if:
▶ all its multiplication factors in the cost function are non-negative.
▶ at least one of the inequality constraints is ≥.

Linear Programming 52 / 59



Dual simplex method: example

minimize
x1,x2

c = 3x1 + 4x2

subject to 2x1 + x2 ≤ 600,

x1 + x2 ≤ 225,

5x1 + 4x2 ≤ 1000,

x1 + 2x2 ≥ 150,

x1, x2 ≥ 0.

For inequality ≥, we have:

x1 + 2x2 ≥ 150 =⇒ −x1 − 2x2 ≤ −150

Using slack variables:
minimize

x1,x2
c − 3x1 + 4x2 = 0

subject to 2x1 + x2 + s1 = 600,

x1 + x2 + s2 = 225,

5x1 + 4x2 + s3 = 1000,

− x1 − 2x2 + s4 = −150,

x1, x2 ≥ 0.
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Dual simplex method: example

minimize
x1,x2

c − 3x1 + 4x2 = 0

subject to 2x1 + x2 + s1 = 600,

x1 + x2 + s2 = 225,

5x1 + 4x2 + s3 = 1000,

− x1 − 2x2 + s4 = −150,

x1, x2 ≥ 0.

1 Pivot row: Pick the most negative value in RHS

2 min test: Divide the non-zero values of c row by the negative values of the pivot row.
Take absolute value in division.
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Dual simplex method: example

Therefore: s∗1 = 525, s∗2 = 150, s∗3 = 700, x∗2 = 75, c∗ = 300, x∗1 = 0, s∗4 = 0.
Check: c∗ = 3x∗1 + 4x∗2 = 3(0) + 4(75) = 300

√
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Dual simplex method for ≥ constraints in maximization
We can also use the dual simplex method for handling ≥ constraints in maximization. Example:

maximize
x1,x2,x3

c = 60x1 + 30x2 + 20x3

subject to 8x1 + 6x2 + x3 ≤ 48,

4x1 + 2x2 + 1.5x3 ≤ 20,

2x1 + 1.5x2 + 0.5x3 ≤ 8,

x2 ≥ 1,

x1, x2, x3 ≥ 0.

We can convert the ≥ constraints to ≤ constraints by multiplying the sides of inequality by −1:

x2 ≥ 1 =⇒ −x2 ≤ −1 =⇒ −x2 + s4 = −1.

So, the problem is converted to:

maximize
x1,x2,x3,s1,s2,s3,s4

c = 60x1 + 30x2 + 20x3

subject to 8x1 + 6x2 + x3 + s1 = 48,

4x1 + 2x2 + 1.5x3 + s2 = 20,

2x1 + 1.5x2 + 0.5x3 + s3 = 8,

− x2 + s4 = −1,

x1, x2, x3, s1, s2, s3, s4 ≥ 0.
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Dual simplex method for ≥ constraints in maximization

maximize
x1,x2,x3,s1,s2,s3,s4

c = 60x1 + 30x2 + 20x3

subject to 8x1 + 6x2 + x3 + s1 = 48,

4x1 + 2x2 + 1.5x3 + s2 = 20,

2x1 + 1.5x2 + 0.5x3 + s3 = 8,

− x2 + s4 = −1,

x1, x2, x3, s1, s2, s3, s4 ≥ 0.
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