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Linear programming

A linear programming problem is of the form:

minimize linear function in x
X

subject to  affine inequality constraints in x,

affine equality constraints in x.
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Standard linear programming

A standard linear programming problem is of the form:

Maximization:

maximize o’ x
X=[X1,..05Xn]
subject to Gx < h,
x =0,
Minimization:
minimize a'x
X=[x1,...,xn]
subject to Gx = h,
x =0,

where G € R™%" and h € R™.
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Standard linear programming

Equivalently:
minimize/maximize  aixy + - -+ + anXn
X1 y++e3Xn
subject to linear inequality constraint 1,
linear inequality constraint m,
X155 Xn >0,
where m > n.
For example:
minimize 12x1 + 16x2 maximize  40x; + 30x2
X1 ,X2 X1,X2
subject to  x1 + 2xp > 40, subject to  x1 + 2xp < 12,
x1 + x2 > 30, 2x1 + xp < 16,
x1,x2 > 0. x1,x2 2> 0.
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Practical Examples
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Practical Example 1

@ A company has two products. Let x; and x» denote the amount of the first and second
products to be produced (with some scale), respectively. Therefore, x1, x> > 0.

@ The company has profits $60 and $30 for the first and second products. Therefore, the
total profit of company:

c= $(60X1 + 30X2).

@ The resources for these products are limited, so we have the following restrictions:
> We do not want the first product, with proportion 8, and the second product, with
proportion 3, to spend more than $48, so: 8x; + 3xx < $48.
> For four of the first product and three of the second product, we have the budget to
spend at least $25, so: 4x; + 2x; > $25.

The optimization becomes:
maximize ¢ = 60x; + 30x2
X15X2
subject to  8x3 + 3xp < 48,
4x1 + 2xp > 25,

x1,x2 2> 0.

Linear Programming 7/59



Practical Example 2

@ We have two 2D tanks of water which are connected from their bottom. Let x; and x»
denote the height of water (with some scale) in the first and second tanks, respectively.
Therefore, x1,x2 > 0.

@ The widths of the two tanks are 60 and 30 (with some scale), respectively. Therefore, the
total amount of water in these tanks is ¢ = 60x; + 30x>.

@ There are some linear physical restrictions on the amount of water poured in these tanks
(because of previous tanks which water has passed to reach these tanks): 8x; + 3x < 48
and 4x; + 2xp > 25.
The optimization becomes:
maximize ¢ = 60x; + 30x
X1,X2
subject to  8x1 + 3x2 < 48,
4x1 + 2xp > 25,

x1,x2 > 0.
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Solving linear programming by visualization
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Visualization: example 1

Minimization example:
minimize 12x; + 16x0

X1,X2

subject to  x3 + 2xp > 40,
x1 + x2 > 30,
x1,x2 > 0.
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Visualization: example 2

Maximization example:
maximize  40x; + 30x2

X15X2
subject to  x1 + 2xp < 12
2x1 + x2 < 16,
x1,x2 > 0.
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Visualization: example 3

Example with more number of constraints:

minimize  2x1 + 3x2
X1,%2

subject to  x; +2x2 > 8,
2x1 + 0.5x; > 4,
x1 +x2 <8,

x; <5,
x2 <10,

x1,x2 > 0.
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Simplex Method Description
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Simplex method description

@ As you saw in the pictures, the feasible set (determined by the constraints) in the linear
programming has affine/linear boundaries.

@ It is because the constraints are affine/linear.
@ Therefore, the feasible set is like a simplex with linear edges and some corners.

@ The corners of the feasible set are named the extreme points.

Optimal
solution

Starting

vertex _‘

The images are taken from Wikipedia.
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Simplex method description

@ The simplex algorithm was initially proposed in 1947 [1].
@ It works on the linear boundaries (edges) and extreme points of the simplex feasible set.

@ Obviously, the solution is at one of the extreme points.
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Simplex method description
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@ The simplex algorithm starts from an extreme point and it goes to one of its neighbor
extreme points having the smallest/largest cost function at that point (only if the neighbor
extreme point has smaller/larger cost value compared to the current extreme point).

@ It continues this procedure until we reach an extreme point whose neighbor extreme
points do not have smaller/larger cost value.

Optimal
solution

Starting

vertex _4

The images are taken from Wikipedia.
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One of the methods for Simplex Algorithm:
Tableau Method for Maximization J
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Slack variables

Consider this example:
maximize  6x1 + 5x> + 4x3
X1,X2,X3
subject to  2x1 + x2 + x3 < 240,
x1 + 3x2 + 2x3 < 360,
2x1 4+ x2 + 2x3 < 300,

X1, x2,x3 > 0.

@ We convert each inequality < constraint to an equality constraint by adding slack
variables.

@ Slack variables are non-negative scalars which are added to the left hand side of
inequality < constraint to make it equality.

@ Example:

2x1 4+ x2 + x33 < 240 = 2x1 + x2 + x3 + 51 = 240,
x1 + 3x2 + 2x3 < 360 = x1 + 3x2 + 2x3 + sp = 360,
2x1 4+ x2 + 2x3 < 300 = 2x1 + x2 + 2x3 + s3 = 300,
s1,52,s3 > 0.
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Slack variables

So, this problem:

maximize  6x; + 5xp + 4x3
X1,X2,X3

subject to  2x1 + x2 + x3 < 240,
x1 4+ 3x0 4+ 2x3 < 360,
2x1 + x2 + 2x3 < 300,

X1, X2, x3 > 0.

is converted to:

maximize 6x1 + bxo + 4x3
X1,X2,X3,51,52,53
subject to 2x1 4+ x2 + x3 + s1 = 240,

x1 + 3x2 + 2x3 + so = 360,
2x1 + x2 + 2x3 4+ s3 = 300,

X1, X2, X3, 51, 52,53 > 0.
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Forming equalities

maximize 6x1 + 5xp + 4x3
X15X2,X3,51,52,53

subject to 2x1 + x2 + x3 + s1 = 240,
x1 + 3x2 + 2x3 + s = 360,
2x1 + x2 4+ 2x3 4+ s3 = 300,
X1,X2,X3,51,52,53 2 0.

The cost function is: ¢ := 6x3 +5x2 +4x3 — ¢ —6x3 — 5xp —4x3 = 0.
Therefore:

2x1 + x2 + x3 + s1 = 240,
x1 + 3x2 4+ 2x3 + sp = 360,
2x1 + xo + 2x3 + s3 = 300,
c—6x; —5x2 —4x3 =0.

Linear Programming 20/59



Forming the table in the tableau method

2x1 + x2 + x3 + s1 = 240,
x1 + 3x2 + 2x3 + s = 360,
2x1 + x2 + 2x3 + s3 = 300,
c—6x) —bxp —4x3 =0.
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Pivot and min test

o In maximization problem, choose the most negative value, in the row of cost, for the

pivot column.
@ Do the min test: divide RHS values (of rows except the c row) to the values of the pivot

column. Ignore the negative or zero values in min test.
© Get the minimum division value for the pivot row. The intersection of pivot row and pivot

column gives the pivot value.
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Simplifying the pivot column

@ Make the pivot value one and other values zero in the pivot column.
@ For every row, use the row itself and the pivot row only.

© Replace the name of the pivot row with the name of the pivot column.
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Continuing the table

@ In the maximization problem, we continue the table until all the values in the c row are
non-negative (positive or zero).
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Continuing the table
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Basic and non-basic variables

Once the table is over:
@ A column with having only one 1 and the rest 0 is a basic variable.

@ The other columns are non-basic variables.
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Checking the optimal values

@ Once the table is over, the RHS of the ¢ row is the optimal cost function. Here it is

c* =0912.

@ The optimal values for the variables are the RHS of the rows. In other words, the
optimum basic variables are the RHS of rows. Here they are x;" = 72, x5 = 96, s3 = 60.

@ The optimum value for the rest of the variables (the non-basic variables) is zero. Here

they are x; = 0,s; = 0,s3 = 0.

@ We can check if the optimal cost is correct:

ci=6x1+5x + 4x3 = ¢* = 6x7 +5x3 +4x§ = 6(72) +5(96) +4(0) =912/
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Big M method
—_—
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When to use the big M method

We should use the big M method when there are one or some > constraints and/or =
constraints. In other words, whenever we have mixed constraints.

Consider this example with < and > constraints:
maximize ¢ = 3x1 + 4xp
X150

subject to  2x3 + x2 < 600,
x1 4+ x2 < 225,
5x1 + 4x> < 1000,
x1 + 2x2 > 150,
x1,x2 > 0.

@ For < constraints, we use slack variables as before:

2x1 4+ xp < 600 = 2x1 + x2 + 51 = 600,
x1+x2 <225 = x1 + x2 + sp = 225,

5x1 4+ 4x2 < 1000 = 5x7 + 4x2 + s3 = 1000,
s1,52,53 > 0.
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Big M method: > constraints

maximize ¢ = 3x1 + 4x
X1,X2

subject to  2x3 + x2 < 600,
x1 + x2 < 225,
5x1 + 4x> < 1000,
x1 + 2xp > 150,
Xx1,x2 > 0.

@ For > constraints, we can't use slack variables because the slack variable will not be
non-negative anymore:

x1+2x2 > 150 = x1 +2x0 + 54 =150 = s4 < 0.
@ For > constraints, we use excess variables e and artificial variables a:
X1+ 2x2 > 150 = x1 + 2xp + a4 — e4 = 150,
ag, eq > 0.

@ We want the additional variable to be very small (as = €) so we add it to the cost
function with a very big multiplication factor M > 1:

maximize ¢ = 3x; + 4xo — May,
X1,X2,X3

because if M > 1, then a; — 0 to cancel its effect in the cost function.
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Tableau method with the big M method

maximize c =3x1 +4xo — May
X1,X2,51,52,53,34 €4
subject to 2x1 + x2 + s1 = 600,

X1 + X2 + 53 = 225,
5x1 + 4x2 4+ s3 = 1000,
X1 + 2x2 + ag — e4 = 150,

X1,X2, 51,52, 53,34, € > 0.

@ We make zero the column value of additional variable in the ¢ row, because the value of
ag should be about zero rather than M.
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Tableau method with the big M method
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Tableau method with the big M method
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Therefore: s = 375, ¢ = 300, s; = 100,x; = 225,x{ = 0,s3 = 0,s3 = 0,a; = 0, c* = 900.
Check: c* = 3x" +4x5 = 3(0) +4(225) =900 ,/
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Example 2 for mixed constraints

Consider another example with mixed constraints:
maximize c=x3 —x2+3x3+4
X1,X2,X3
subject to  x1 4+ x2 < 20,
X1 +x3 =5,
x2 +x3 > 10,

X1, X2, x3 > 0.
@ We drop the DC value from the cost for now:
c=x1 —x2+ 3x3.
@ We have:

x1+x2 <20 = x1 +x2+ 51 =20,
x1+x3=5 = x2+x3+a =5,
x2+x3 > 10 = x2+x3 + a2 + e = 10,
s1,a1,a, e > 0.
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Example 2 for mixed constraints

The problem is converted to:
maximize ¢ =x3 —x» + 3x3 — Ma; — May
X1,X2,X3
subject to  x1 + x2 + 51 = 20,
x2+x3+a1 =5,
X2+ x3 + ax + e =10,

s1,a1,a2, € > 0.
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Example 2 for mixed constraints
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Example 2 for mixed constraints

all v\.vvﬂgﬁ’)"" !

Therefore: sf = 15,x7 =5,x5 =5,c* =10,x{ = a] = a; =e; = 0.
Check: ¢* =x{ —x3 +3x; =0—-5+3(5) =10
The final answer for maximum actual cost is (we add back the DC value): ¢c* =10+ 4 = 14.
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The Reason for the Tableau Method
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The reason for the tableau method

maximize ¢ =4x; + 6xp —5xa
X1,X2,X3,X4

subject to  x1 + x» + x3 < 50,
2x1 + 3x2 + x4 < 42,
3x3 — xg < 250,

X1, X2, X3, x4 2 0.

is converted to:

maximize c =4x; + 6x2 — 5xq
X13X2,X3,X4,51,52,53
subject to x1 + x2 + x3 + s1 = 50,

2x1 +3x2 + x5 + 52 = 42,
3x3 — xa4 + s3 = 250,

X1, X2, X3, X4, 51, 52,53 = 0.

@ # variables: 7, # equations: 3

@ We can set 7 — 3 = 4 variables to zero (non-basic variables) and find the other 3 variables
(basic variables).

@ How many ways can we choose the three variables out of the 7 variables? (;) = 35.
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Example variables to choose

One of the ways:

non-basic variables: x; = xp = x3 = x4 =0,
basic variables: s;, sy, s3.
maximize c¢=0
51,52,53
subject to s; =50,
sp =42,
53 = 2507
51,52,53 Z 0.

Therefore, s; = 50, s, = 42, s3 = 250.
The cost function becomes: ¢ = 0.
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Example variables to choose

One of the ways:

non-basic variables: x; = x4 = s1 = s =0,
basic variables: x», x3, s3.
maximize ¢ = 6x
X2,X3,53
subject to  x» + x3 = 50,
3xp = 42,
3x3 + s3 = 250,
X2,x3,53 > 0.

Therefore, x, = 14, x3 = 36, s3 = 142.
The cost function becomes: ¢ = 6(14) = 84.
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The reason for the pivot column

Which variable should we increase which maximizes the cost function the most?
c =4x; + 6x2 — 5xg.

Increasing the variable x> has the most effect because it has the biggest multiplication factor,
i.e., 6.
Recall that we had:

c—4x3 —6x2 +5x4 = 0.

That is why, in the tableau method, we find the most negative value in the c row. This is the
reason for the pivot column.
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The reason for the min test

maximize c=4x; +6x2 — 5xy
X1,X2,X3,X4,51,52,53
subject to x1 + x2 + x3 + 51 = 50,

2x1 + 3x2 + xa + sp = 42,
3x3 — xa4 + s3 = 250,

X1, X2, X3, X4, 51, 52,53 > 0.
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How much can we increase the x» variable?

@ In the first constraint, the worst case scenario is x; = x3 = s; = 0 and the most we can
increase x2: x» = 50

@ In the second constraint, the worst case scenario is x; = x4 = sp = 0 and the most we can
increase xp: 3xo =42 = xx =42/3 =14

@ In the third constraint, the worst case scenario is x3 = x4 = s3 = 0 and the most we can
increase x2: 30x; =250 — x» = ©

@ Therefore, the minimum increase we can have for xz is: min(50, 42, c0) = 42.
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Solving the Dual Problem for Minimization
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Dual problem for minimization

An example minimization linear problem is:

minimize 12x1 + 16x2

X13X2
subject to  x1 + 2xp > 40,
x1 + x2 > 30,
x1,x2 > 0.

@ When we have a minimization linear programming, we can convert the minimization
problem to a maximization problem.

@ We should find the dual problem for the minimization problem. The dual for the
minimization is a maximization problem. We will learn the dual problem of linear
programming soon.

Linear Programming 45 /59



Dual problem for minimization

An example minimization linear problem is:

minimize 12x; + 16x7

X1,X2
subject to  x1 + 2x2 > 40,
x1 + x2 > 30,
Xx1,Xx2 > 0.

Consider the constraints:

x142x0 > 40 2B yix 4 2y1x0 > 40y,

x1+x2 >30 22 yoxi + yoxe > 30y,
where y1, y» > 0. Summing the sides together gives:

(v1 +y2)x1 + (2y1 + y2)x2 > 40y1 + 30y2.

On the other hand, the cost of dual problem is a lower bound on the cost of the primal problem:

12x1 + 16x2 > (y1 + y2)x1 + (2y1 + y2)xo.
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Dual problem for minimization

Summing the sides together gives:
(y1 4+ y2)x1 + (2y1 + y2)x2 > 40y1 + 30y2.
On the other hand, the cost of dual problem is a lower bound on the cost of the primal problem:

12x; + 16x2 > (y1 + y2)x1 + (2y1 + y2)x2.

Therefore:
12x1 +16x2 > (y1 + y2)x1 + (2y1 + y2)x2 > 40y1 + 30y2.
Hence:
yi+y2 <12,
2y1 +y2 < 16.

We want to find the best (maximum) lower bound, so:

maximize 40y; + 30y».
Yisy2
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Dual problem for minimization

Therefore:

maximize  40y; + 30y,
2%

subject to  y; + y» < 12,
2yl + y2 < 167
y1,y2 2 0.

is the dual problem for the following problem:

minimize 12x; + 16xp

X1,X2
subject to  x1 + 2x2 > 40,
x1 +x2 > 30,
x1,x2 > 0.

This maximization problem can be solved as explained before.
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Solving the problem by tableau method

maximize ¢ = 40y; + 30y»
y1:y2

subject to  y; + y2 + 51 = 12,
2y1 +y2 + 52 = 16,

y1,¥2 2 0.

Linear Programming 49 /59



Solving the problem by tableau method

2

Al pesire

Therefore: y; =8,y =4,s7 =0,s; =0,c* = 400.
Check: c¢* = 40y; + 30y; = 40(4) + 30(8) = 400 ./

The strong duality holds for linear programming, so:

c* = 400 for the primal problem, too.
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Dual Simplex Method
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Why we need the dual simplex method?

@ We converted the minimization linear problem to its dual problem which is the
maximization linear problem. Then, we solved it using the simplex method for
maximization.

@ However, it only gave us the optimal cost function c* and not the optimum primal
variables {x;,...,x;}.

@ For finding these optimum primal variables in the minimization linear programming, we
can use the dual simplex method.

@ The dual simplex method only works for the minimization linear problem if:

> all its multiplication factors in the cost function are non-negative.
> at least one of the inequality constraints is >.
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Dual simplex method: example

minimize c=3x1 + 4x
X1,%2

subject to  2x3 + x2 < 600,
x1 + xp < 225,
5x1 + 4x2 < 1000,
x1 + 2xp > 150,
x1,xp > 0.

For inequality >, we have:
X1+ 2xp > 150 = —x1 — 2xp < —150

Using slack variables:
minimize c—3x1+4x =0
X1,X2

subject to  2x3 + x2 + 51 = 600,
X1 + x2 + sp = 225,
5x1 + 4x2 4+ s3 = 1000,
— X1 — 2x2 + s4 = —150,
x1,x2 2> 0.
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Dual simplex method: example
minimize c—3x1+4x =0
X1,X2

subject to  2x1 + x2 + 53 = 600,
x1 + x2 + 55 = 225,
5x1 4+ 4x2 4+ s3 = 1000,
— x1 — 2xp + s4 = —150,
x1,x2 > 0.

@ Pivot row: Pick the most negative value in RHS
@ min test: Divide the non-zero values of ¢ row by the negative values of the pivot row.
Take absolute value in division.
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Dual simplex method: example
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Therefore: s; = 525,55 = 150,53 = 700, x5 = 75,c* = 300,x = 0,s; = 0.
Check: ¢* = 3x{" +4x; = 3(0) + 4(75) = 300 i
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Dual simplex method for > constraints in maximization

We can also use the dual simplex method for handling > constraints in maximization. Example:

maximize ¢ = 60x; + 30x2 + 20x3
X1 5X2,X3

subject to  8x1 + 6x2 + x3 < 48,
4x1 4+ 2x2 4+ 1.5x3 < 20,
2x1 + 1.5x2 4+ 0.5x3 < 8,
x2 2> 1,
X1,x2,x3 > 0.
We can convert the > constraints to < constraints by multiplying the sides of inequality by —1:

xx>1 = —x< -1 = —xp+s3=-—1.

So, the problem is converted to:

maximize c = 60x; + 30x2 + 20x3
X1,X2,X3,51,52,53,54
subject to 8x1 + 6x2 + x3 + 51 = 48,

4x1 4+ 2x2 4+ 1.5x3 4+ sp = 20,
2x1 + 1.5x2 4+ 0.5x3 + s3 = 8,
—x2 454 = —1,

X1, X2, X3, 51, 52,53, 54 > 0.
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Dual simplex method for > constraints in maximization

maximize ¢ = 60x; + 30x + 20x3
X15X2,X3,51,52,53,54
subject to 8x1 + 6x2 + x3 + 51 = 48,

4x1 + 2xp + 1.5x3 + sp = 20,
2x1 + 1.5x2 4+ 0.5x3 + s3 = 8,
— X2+ 54 =—1,
X1,X2,X3,51,52,53,54 > 0.
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