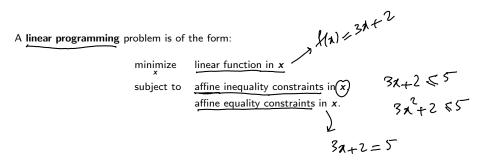
Linear Programming

Optimization Techniques (ENGG*6140)

School of Engineering, University of Guelph, ON, Canada

Course Instructor: Benyamin Ghojogh Winter 2023 Linear Programming

Linear programming



Standard linear programming

A standard linear programming problem is of the form:

Maximization:

Minimization:

programming
programming problem is of the form:

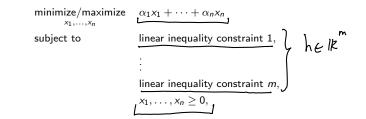
$$\begin{array}{c}
\chi = \begin{bmatrix} x_{1} \\ \vdots \\ x_{m} \end{bmatrix}, \quad \chi = \begin{bmatrix} x_{1} \\ \vdots \\ x_{m} \end{bmatrix}, \quad \chi = \begin{bmatrix} x_{1} \\ \vdots \\ x_{m} \end{bmatrix}, \quad \chi = \begin{bmatrix} x_{1} \\ \vdots \\ y_{1} \\ \vdots \\ y_{m} \end{bmatrix}, \quad \chi = \begin{bmatrix} x_{1} \\ \vdots \\ y_{1} \\ \vdots \\ y_{m} \end{bmatrix}, \quad \chi = \begin{bmatrix} x_{1} \\ \vdots \\ y_{1} \\ \vdots \\ y_{m} \end{bmatrix}, \quad \chi = \begin{bmatrix} x_{1} \\ \vdots \\ y_{1} \\ \vdots \\ y_{m} \end{bmatrix}, \quad \chi = \begin{bmatrix} x_{1} \\ \vdots \\ y_{1} \\ \vdots \\ y_{m} \end{bmatrix}, \quad \chi = \begin{bmatrix} x_{1} \\ \vdots \\ y_{m} \\ \vdots \\ \vdots \\ y_{m} \end{bmatrix}, \quad \chi = \begin{bmatrix} x_{1} \\ \vdots \\ y_{m} \\ y_{m} \\ \vdots \\ y_{m} \\ y_{m} \\ y_{m} \\ \vdots \\ y_{m} \\ y$$

 $\begin{array}{c} \text{maximize} \\ \mathbf{x} = [x_1, \dots, x_n]^\top \end{array}$

where $\boldsymbol{G} \in \mathbb{R}^{m \times n}$ and $\boldsymbol{h} \in \mathbb{R}^{m}$.

Standard linear programming

Equivalently:



where $m \ge n$.

For example:

$$\begin{array}{ccc} \underset{x_{1},x_{2}}{\text{minimize}} & \underline{12x_{1}+16x_{2}}\\ \text{subject to} & x_{1}+2x_{2} \geq 40, \\ & x_{1}+x_{2} \geq 30, \\ \hline & x_{1},x_{2} \geq 0. \end{array}$$

$$\begin{array}{ccc} \underset{x_{1},x_{2}}{\text{maximize}} & \underbrace{40x_{1} + 30x_{2}} \\ \text{subject to} & x_{1} + 2x_{2} \leq 12, \\ & 2x_{1} + x_{2} \leq 16, \\ & \hline & x_{1}, x_{2} \geq 0. \end{array}$$

Practical Examples

Practical Example 1

 A company has two products. Let x₁ and x₂ denote the amount of the first and second products to be produced (with some scale), respectively. Therefore, x₁, x₂ ≥ 0.

• The company has profits \$60 and \$30 for the first and second products. Therefore, the total profit of company:

$$c = (60x_1 + 30x_2).$$

The resources for these products are limited, so we have the following restrictions:

- ▶ We do not want the first product, with proportion 8, and the second product, with proportion 3, to spend more than \$48, so: $8x_1 + 3x_2 \le$ \$48.
- For four of the first product and three of the second product, we have the budget to spend at least \$25, so: $4x_1 + 2x_2 \ge 25 .

The optimization becomes:

$$\begin{cases} \underset{x_{1},x_{2}}{\underset{x_{2},x_{2}}{\underset{x_{1},x_{2}}{\underset{x_{2}}{\underset{x_{1},x_{2}}{\underset{x_{1}+3x_{2} \leq 48,}{\underset{x_{1}+2x_{2} \geq 25,}{\underset{x_{1},x_{2} \geq 0.}{\underset{x_{1},x_{2} \geq 0.}{\underset{x_{2}}{x_{2}}{x_{2}}{x_{2}}{x_{2}}{x_{2}}{x_{2}}{x_{2}}{x_{2$$

Practical Example 2

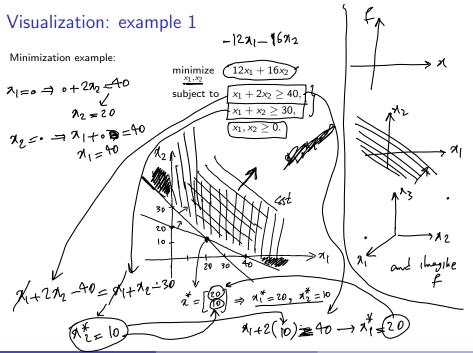
- We have two <u>2D tanks</u> of water which are connected from their bottom. Let x_1 and x_2 denote the height of water (with some scale) in the first and second tanks, respectively. Therefore, $x_1, x_2 \ge 0$.
- The widths of the two tanks are 60 and 30 (with some scale), respectively. Therefore, the total amount of water in these tanks is $c = 60x_1 + 30x_2$.

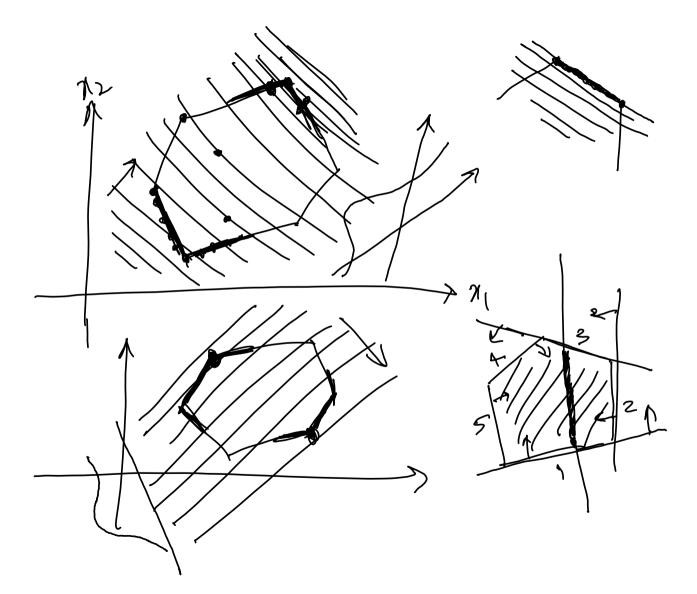
• There are some linear <u>physical restrictions</u> on the amount of water poured in these tanks (because of previous tanks which water has passed to reach these tanks): $8x_1 + 3x_2 \le 48$, and $4x_1 + 2x_2 \ge 25$.

The optimization becomes:

$$\begin{array}{ll} \underset{x_{1},x_{2}}{\text{maximize}} & c = 60x_{1} + 30x_{2} \\ \text{subject to} & 8x_{1} + 3x_{2} \leq 48, \\ & 4x_{1} + 2x_{2} \geq 25, \\ & \overbrace{x_{1},x_{2} \geq 0.} \end{array}$$

Solving linear programming by visualization



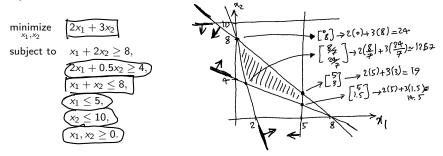


Visualization: example 2

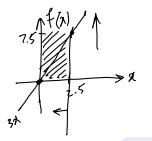
Maximization example: $40x_1 + 30x_2$ maximize x_1, x_2 subject to $x_1 + 2x_2 \leq 12$, $2x_1+x_2\leq 16,$ $x_1, x_2 \ge 0.$ X2 $\pi x^{*} = \begin{bmatrix} 4 \\ 8 \end{bmatrix} \Rightarrow x_{1}^{*} = 4, x_{2}^{*} = 8$ > 11 12 St

Visualization: example 3

Example with more number of constraints:



$$\begin{array}{c} \chi_{1+2}\chi_{2} - g = 2\chi_{1} + 0.5\chi_{2} - 4 \\ \swarrow & 1.5\chi_{2} = \chi_{1} + 4 \rightarrow \chi_{1} - 1.5\chi_{2} + 4 = \circ \\ & & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & &$$

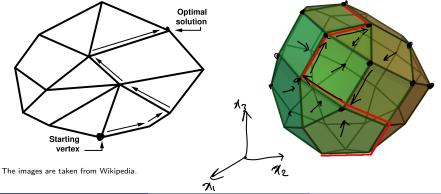


 $\begin{array}{l} man \\ man \\ math. \\ 3n = f(n) \\ s.t. \\ 2n < 5 \implies n \leq \frac{5}{2} = 2.5 \end{array}$ 7.5

Simplex Method Description

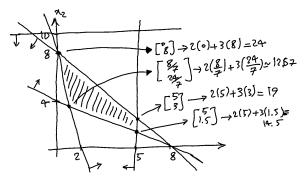
Simplex method description

- As you saw in the pictures, the feasible set (determined by the <u>constraints</u>) in the <u>linear</u> programming has affine/linear <u>boundaries</u>.
- It is because the constraints are affine/linear.
- Therefore, the feasible set is like a **simplex** with linear edges and some corners.
- The corners of the feasible set are named the extreme points.

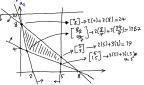


Simplex method description

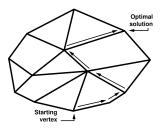
- The simplex algorithm was initially proposed in 1947 [1].
- It works on the linear boundaries (edges) and extreme points of the simplex feasible set.
- Obviously, the solution is at one of the extreme points.

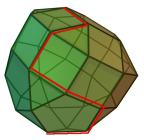


Simplex method description



- The simplex algorithm starts from an extreme point and it goes to one of its neighbor extreme points having the smallest/largest cost function at that point (only if the neighbor extreme point has smaller/larger cost value compared to the current extreme point).
- It continues this procedure until we reach an extreme point whose neighbor extreme points do not have smaller/larger cost value.





The images are taken from Wikipedia.

One of the methods for Simplex Algorithm: Tableau Method for Maximization

fable

Slack variables

Consider this example:

$$\begin{array}{ll} & \underset{x_1, x_2, x_3}{\text{maximize}} & 6x_1 + 5x_2 + 4x_3 \\ & \text{subject to} & 2x_1 + x_2 + x_3 \leq 240, \\ & x_1 + 3x_2 + 2x_3 \leq 360, \\ & 2x_1 + x_2 + 2x_3 \leq 300, \\ & x_1, x_2, x_3 \geq 0. \end{array}$$

- We convert each inequality sconstraint to an equality constraint by adding slack variables.
- Slack variables are **pointive scalars** which are added to the left hand side of inequality \leq constraint to make it equality. $30 \ll 50 \implies 30 + (20) = 50$

• Example:

$$\begin{array}{c} \overbrace{2x_1 + x_2 + x_3 3 \leq 240} \implies 2x_1 + x_2 + x_3 + s_1 = 240, \\ x_1 + 3x_2 + 2x_3 \leq 360 \implies x_1 + 3x_2 + 2x_3 + s_2 = 360, \\ 2x_1 + x_2 + 2x_3 \leq 300 \implies 2x_1 + x_2 + 2x_3 + s_3 = 300, \\ \hline s_1, s_2, s_3 \geq 0. \end{array}$$

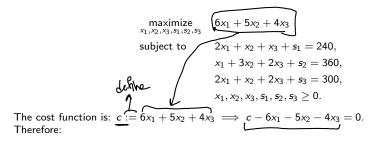
Slack variables

So, this problem:

is converted to:

 $6x_1 + 5x_2 + 4x_3$ maximize x1,x2,x3 subject to $2x_1 + x_2 + x_3 \le 240$, $x_1 + 3x_2 + 2x_3 < 360$, $2x_1 + x_2 + 2x_3 \le 300,$ $x_1, x_2, x_3 \ge 0.$ maximize $6x_1 + 5x_2 + 4x_3$ $x_1, x_2, x_3, s_1, s_2, s_3$ $2x_1 + x_2 + x_3 + s_1 = 240,$ subject to $x_1 + 3x_2 + 2x_3 + s_2 = 360,$ $2x_1 + x_2 + 2x_3 + s_3 = 300,$ $x_1, x_2, x_3, s_{1, s_2, s_3} \ge 0.$

Forming equalities



$$2x_1 + x_2 + x_3 + s_1 = 240,$$

$$x_1 + 3x_2 + 2x_3 + s_2 = 360,$$

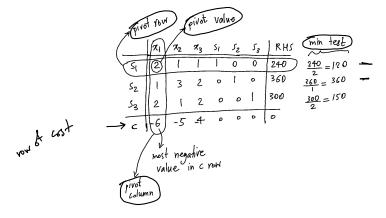
$$2x_1 + x_2 + 2x_3 + s_3 = 300,$$

$$c - 6x_1 - 5x_2 - 4x_3 = 0.$$

Forming the table in the tableau method

Pivot and min test in row & ust

- In maximization problem, choose the most negative value for the pivot column.
- 2 Do the **min test**: divide RHS values (of rows except the c row) to the values of the pivot column. **Ignore** the negative or zero values in min test.
- **3** Get the minimum division value for the **pivot row**. The intersection of pivot row and pivot column gives the **pivot value**.

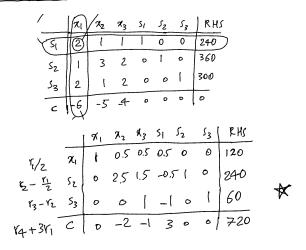


Simplifying the pivot column

- Make the pivot value one and other values zero in the pivot column.
 For every row, use the row itself and the pivot row only.
- **8** Replace the name of the pivot row with the name of the pivot column.

Continuing the table

 In the maximization problem, we continue the table until all the values in the c row are non-negative (positive or zero).



Continuing the table

RHS min test 51 52 ۶з R 3 ×11 120 = 240 0.5 0.5 0.5 0 0 120 ł χ_i ſ 240 = 96 2,5 1.5 -0.5 1 0 240 25 0 رژکی 52 ſ 60 Š3 0 0 0 720 -2 ٥ 3 С -1 0 D RHS 53 11 S۱ 72 $r_1 - \frac{r_2}{5}$ 315 0 15 \$1 ٢ 0 % ٥ Y2/2.5 Y3 F4+45Y2 3/5 o (Az 60 Š3 o D 45 912 と 13/2 0 c maximum cost function (c*)

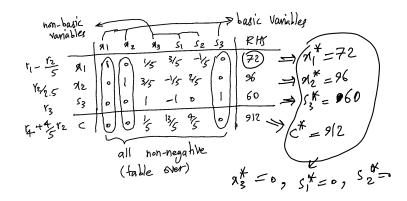
non-negative

all

Basic and non-basic variables

Once the table is over:

- A ready with having only one 1 and the rest 0 is a basic variable.
- The other columns are non-basic variables.



Checking the optimal values

- Once the table is over, the RHS of the c row is the <u>optimal cost function</u>. Here it is $c^* = (912)$
- The optimal values for the variables are the RHS of the rows. In other words, the optimum basic variables are the RHS of rows. Here they are x₁^{*} = 72, x₂^{*} = 96, s₃^{*} = 60.
- The optimum value for the rest of the variables (the non-basic variables) is zero. Here they are $x_3^* = 0, s_1^* = 0, s_2^* = 0$.
- We can check if the optimal cost is correct:

$$c := 6x_1 + 5x_2 + 4x_3 \implies c^* = 6x_1^* + 5x_2^* + 4x_3^* = 6(72) + 5(96) + 4(0) = 912 \sqrt{2}$$

,

Big M method

When to use the big M method

We should use the big M method when there are one or some \geq constraints and/or = constraints. In other words, whenever we have **mixed constraints**.

Consider this example with and
$$\geq$$
 constraints:

$$\begin{array}{c}
 maximize \\
 x_{1},x_{2} \\
 subject to \\
 x_{1} + x_{2} \leq 600, \\
 x_{1} + x_{2} \leq 225, \\
 5x_{1} + 4x_{2} \leq 1000, \\
 x_{1} + 2x_{2} \geq 150, \\
 (x_{1}, x_{2} \geq 0.) \\
 \end{array}$$

• For \leq constraints, we use slack variables as before:

$$2x_1 + x_2 \le 600 \implies 2x_1 + x_2 + s_1 = 600,$$

$$x_1 + x_2 \le 225 \implies x_1 + x_2 + s_2 = 225,$$

$$5x_1 + 4x_2 \le 1000 \implies 5x_1 + 4x_2 + s_3 = 1000,$$

$$\overbrace{s_1, s_2, s_3 \ge 0.}$$

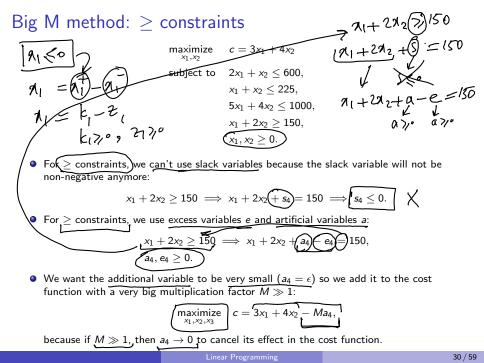


Tableau method with the big M method

d with the big M method

$$\begin{array}{c} \underset{x_{1},x_{2},s_{1},s_{2},s_{3},a_{4},e_{4}}{\underbrace{x_{1},x_{2},s_{1},s_{2},s_{3},a_{4},e_{4}} \\ subject to \end{array} \xrightarrow{c = 3x_{1} + 4x_{2} \underbrace{Ma_{4}}_{x_{4}} \\ c = 3x_{1} + 4x_{2} \underbrace{Ma_{4}}_{x_{4}} \\ 2x_{1} + x_{2} + s_{1} = 600, \\ x_{1} + x_{2} + s_{2} = 225, \\ 5x_{1} + 4x_{2} + s_{3} = 1000, \\ x_{1} + 2x_{2} + a_{4} - e_{4} = 150, \\ \underbrace{x_{1}, x_{2}, s_{1}, s_{2}, s_{3}, a_{4}, e_{4} \ge 0.} \end{array}$$

• We make zero the column value of additional variable in the c row, because the value of a_4 should be about zero rather than M.

Tableau method with the big M method

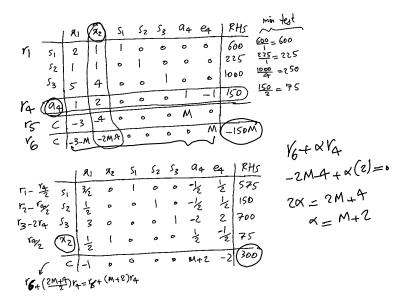
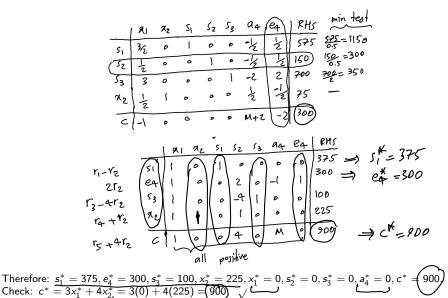
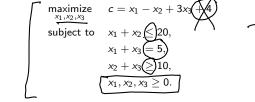


Tableau method with the big M method



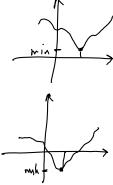
Example 2 for mixed constraints

Consider another example with mixed constraints:



• We drop the <u>DC</u> value from the cost for now:

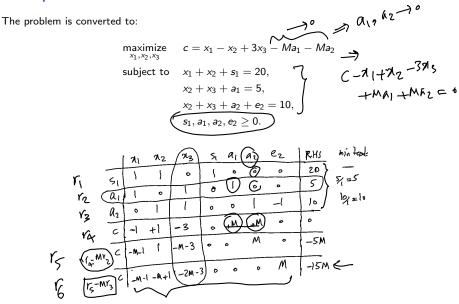
$$c = x_1 - x_2 + 3x_3.$$



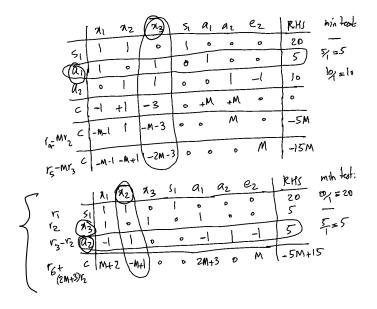
We have:

$$\begin{array}{c} x_1 + x_2 \leq 20 \implies x_1 + x_2 + s_1 = 20, \\ x_1 + x_3 = 5 \implies x_2 + x_3 + a_1 = 5, \\ x_2 + x_3 \geq 10 \implies x_2 + x_3 + a_2 + e_2 = 10, \\ \hline s_1, a_1, a_2, e_2 \geq 0. \end{array}$$

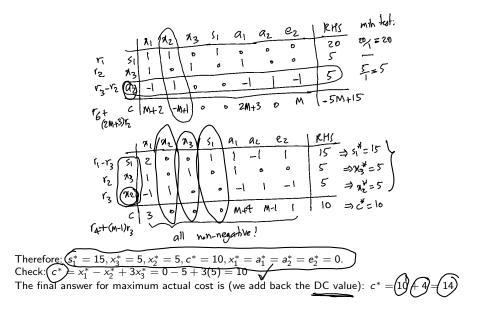
Example 2 for mixed constraints



Example 2 for mixed constraints



Example 2 for mixed constraints



The Reason for the Tableau Method

The reason for the tableau method

 $c = 4x_1 + 6x_2 - 5x_4$ maximize x_1, x_2, x_3, x_4 subject to $x_1 + x_2 + x_3 < 50$, $2x_1 + 3x_2 + x_4 \leq 42$, $3x_3 - x_4 < 250$, $x_1, x_2, x_3, x_4 \ge 0.$ is converted to. $c = 4x_1 + 6x_2 - 5x_4$ maximize X1, X2, X3, X4, 51, 52, 53 $\begin{cases} x_1 + x_2 + x_3 + s_1 = 50, \\ 2x_1 + 3x_2 + x_4 + s_2 = 42, \\ 3x_3 - x_4 + s_3 = 250, \\ x_1, x_2, x_3, x_4, s_1, s_2, s_3 \ge 0. \end{cases}$ subject to • # variables: 7, # equations: 3

• We can set 7 - 3 = 4 variables to zero (non-basic variables) and find the other 3 variables (basic variables).

• How many ways can we choose the three variables out of the 7 variables? $\binom{7}{2} = 3$

Example variables to choose

One of the ways:

non-basic variables:
$$x_1 = x_2 = x_3 = x_4 = 0$$
,
basic variables: s_1, s_2, s_3
maximize $c = 0$
subject to $s_1 = 50$,
 $s_2 = 42$,
 $s_3 = 250$,
 $s_1, s_2, s_3 \ge 0$.

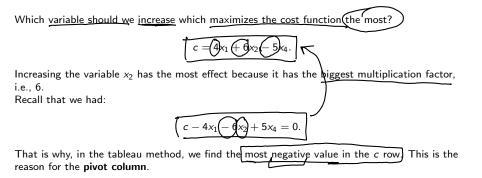
Therefore, $s_1 = 50$, $s_2 = 42$, $s_3 = 250$. The cost function becomes: c = 0.

Example variables to choose

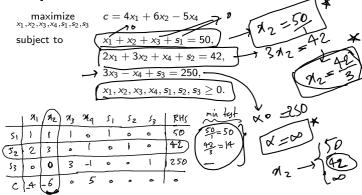
One of the ways:

non-basic variables:
$$x_1 = x_4 = s_1 = s_2 = 0$$
,
basic variables: x_2, x_3, s_3 .
maximize $c = 6x_2$
subject to $x_2 + x_3 = 50$, $x_3 + s_3 = 250$, $x_2 + x_3 = 50$, $x_2 + x_3 = 50$, $x_2 + x_3 = 50$, $x_3 + s_3 = 250$, $x_2 + x_3 = 50$, $x_2 + x_3 = 50$, $x_2 + x_3 = 50$, $x_3 + s_3 = 250$, $x_2 + x_3 = 50$, $x_2 + x_3 = 50$, $x_3 + s_3 = 250$, $x_2 + x_3 = 50$, $x_3 + s_3 = 250$, x

The reason for the pivot column



The reason for the min test



How much can we increase the x_2 variable?

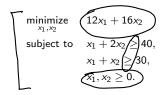
- In the first constraint, the worst case scenario is $x_1 = x_3 = s_1 = 0$ and the most we can increase $x_2: x_2 = 50$
- In the second constraint, the worst case scenario is $x_1 = x_4 = s_2 = 0$ and the most we can increase x_2 : $3x_2 = 42 \implies x_2 = 42/3 = 14$
- In the third constraint, the worst case scenario is $x_3 = x_4 = s_3 = 0$ and the most we can increase x_2 : $30x_2 = 250 \implies x_2 = \infty$

• Therefore, the minimum increase we can have for x_2 is: min(50, 42, ∞) = 42.

Solving the Dual Problem for Minimization

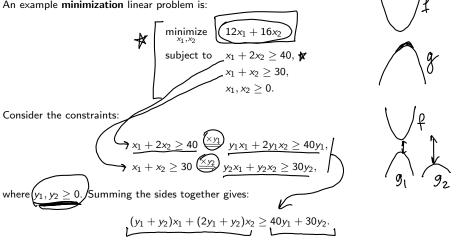
 $\int_{f} g \int_{f} f$

An example minimization linear problem is:



- When we have a minimization linear programming, we can **convert** the minimization problem to a maximization problem.
- We should find the **dual problem** for the minimization problem. The dual for the minimization is a maximization problem. We will learn the dual problem of linear programming soon.

An example minimization linear problem is:



On the other hand, the cost of dual problem is a lower bound on the cost of the primal problem:

$$\underbrace{(12x_1+16x_2)} \ge (y_1+y_2)x_1+(2y_1+y_2)x_2.$$

Summing the sides together gives:

$$(y_1 + y_2)x_1 + (2y_1 + y_2)x_2 \ge 40y_1 + 30y_2.$$
On the other hand, the cost of dual problem is a lower bound on the cost of the primal problem:

$$12x_1 + 16x_2 \ge (y_1 + y_2)x_1 + (2y_1 + y_2)x_2.$$
Therefore:

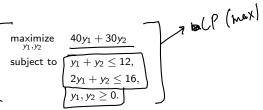
$$(2x_1 + 16x_2 \ge (y_1 + y_2)x_1 + (2y_1 + y_2)x_2 \ge 40y_1 + 30y_2.$$
Hence:

$$(x_1 + (x_1) + (x_2) \ge (y_1 + y_2)x_1 + (2y_1 + y_2)x_2 \ge 40y_1 + 30y_2.$$

We want to find the best (maximum) lower bound, so:

$$\max_{y_1, y_2} 40y_1 + 30y_2.$$

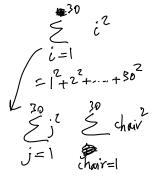
Therefore:



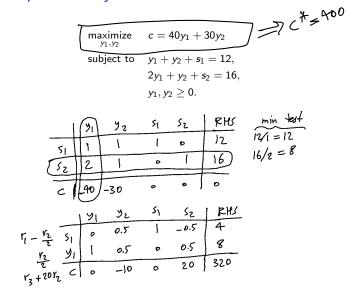
is the dual problem for the following problem:

 $\begin{array}{ll} \underset{x_{1},x_{2}}{\text{minimize}} & 12x_{1}+16x_{2} \\ \text{subject to} & x_{1}+2x_{2} \geq 40, \\ & x_{1}+x_{2} \geq 30, \\ & x_{1},x_{2} \geq 0. \end{array}$

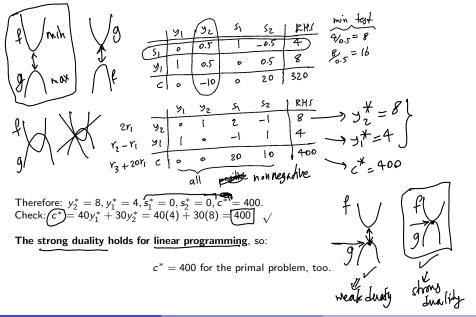
This maximization problem can be solved as explained before.



Solving the problem by tableau method



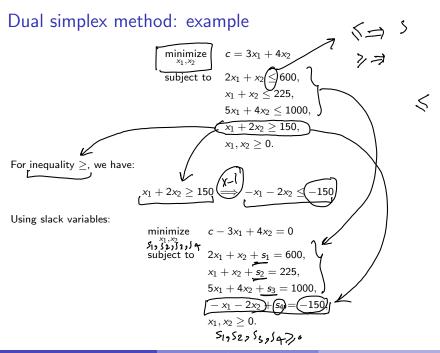
Solving the problem by tableau method



Dual Simplex Method

Why we need the dual simplex method?

- We converted the minimization linear problem to its dual problem which is the maximization linear problem. Then, we solved it using the simplex method for maximization.
- However, it only gave us the **optimal cost function** c^* and not the **optimum primal** variables $\{x_1^*, \dots, x_n^*\}$.
- For finding these optimum primal variables in the minimization linear programming, we can use the **dual simplex method**.
- The dual simplex method only works for the **minimization** linear problem if:
 - all its multiplication factors in the cost function are non-negative.
 - ▶ at least one of the inequality constraints is(≥)



Dual simplex method: example

$$\begin{array}{ll} \underset{x_{1},x_{2}}{\text{minimize}} & c - 3x_{1} + 4x_{2} = 0\\ \text{subject to} & \overbrace{2x_{1} + x_{2} + s_{1}}^{2} = 600,\\ & x_{1} + x_{2} + s_{2} = 225,\\ & 5x_{1} + 4x_{2} + s_{3} = 1000,\\ & -x_{1} - 2x_{2} + s_{4} = -150,\\ & x_{1}, x_{2} \geq 0. \end{array}$$

Pivot row: Pick the most negative value in RHS

Imin test: Divide the non-zero values of c row by the negative values of the pivot row. Take absolute value in division.

Dual simplex method: example

Check: c*

Dual simplex method for <u>Constraints</u> in maximization

We can also use the **dual simplex method** for handling **<u><u></u></u> constraints** in **maximization**. Example:

$$\begin{array}{ll} \underset{x_{1},x_{2},x_{3}}{\text{maximize}} & c = 60x_{1} + 30x_{2} + 20x_{3} \\ \text{subject to} & 8x_{1} + 6x_{2} + x_{3} \leq 48, \\ & 4x_{1} + 2x_{2} + 1.5x_{3} \leq 20, \\ & 2x_{1} + 1.5x_{2} + 0.5x_{3} \leq 8, \\ & \overbrace{x_{2} \geq 1, \\ & x_{1}, x_{2}, x_{3} \geq 0. \end{array}$$

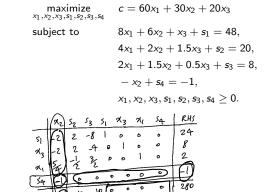
We can convert the \geq constraints to \leq constraints by multiplying the sides of inequality by -1:

$$\underbrace{x_2 \ge 1}_{x_2 x_2} \stackrel{\text{X-I}}{\Longrightarrow} \underbrace{-x_2}_{x_2} \stackrel{\text{Z-I}}{\Longrightarrow} \xrightarrow{-x_2} + \underbrace{s_4}_{x_4} = -1.$$

So, the problem is converted to:

$$\begin{cases} \begin{array}{c} \underset{x_1, x_2, x_3, s_1, s_2, s_3, s_4}{\text{maximize}} & c = 60x_1 + 30x_2 + 20x_3 \\ \text{subject to} & 8x_1 + 6x_2 + x_3 + s_1 = 48, \\ & 4x_1 + 2x_2 + 1.5x_3 + s_2 = 20, \\ & 2x_1 + 1.5x_2 + 0.5x_3 + s_3 = 8, \\ & -x_2 + \underline{s_4} = -1, \\ & x_1, \underline{x_2}, \underline{x_3}, \underline{s_1}, \underline{s_2}, s_3, \underline{s_4} \ge 0. \end{cases} \end{cases}$$

Dual simplex method for \geq constraints in maximization



Acknowledgment

This lecture is inspired by the lectures of Prof. Shokoufeh Mirzaei on linear programming: [Link]

References

 G. B. Dantzig, "Reminiscences about the origins of linear programming," in Mathematical Programming The State of the Art, pp. 78–86, Springer, 1983.