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A linear programming problem is of the form: Mﬂ <
I\_/—\
minimize linear function in x
% —_ e 2
—
subject to  affine inequality constraints in@ {;7(4'2 <
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Standard linear programming

A standard linear programming problem is of the form:

Maximization:

maximize
[X17 xn) T

subject to

Minimization:
minimize
x=[xq,..

subject to

where G € R™%" and h € R™.
L [ )
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Standard linear programming

Equivalently:
minimize/maximize  aixy + - -+ + anXn
X1, sXn )
. . . . . m
subject to linear inequality constraint 1, 1\& ”Z
—_—

linear inequality constraint m,

X1y ...y Xn 20,
where m > n.
For example:
minimize 12x; + 16xp maximize  40x; + 30x»
X1,X2 _——— X1 ,X2 —_—
subject to  x1 + 2xp > 40, subject to  x1 + 2xp < 12,
x1 + x2 > 30, 2x1 + xp < 16,
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Practical Examples
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Practical Example 1

@ A company has two products. Let x; and x> denote ther
products to be produced (with some scale), respectively. Therefore, x1,x2 > 0.
—_— —_— | e |

@ The company has profits $60 and $30 for the first and second products. Therefore, the
total profit of company:

c= $(60X1 + 30X2).

@ The resources for these products are limited, so we have the following restrictions:

> We do not want the first product, with proportion 8, and the second product, with
proportion 3, to spend more than $48, so: 8x; + 3xx < $48.

> For four of the first product and three of the second product, we have the budget to
spend at least $25, so: 4x; + 2xp > $25.
—_— LD

J he optimization becomes:
maximize | ¢ = 60x; + 30X2!
X1,X2

1_9_
subject to  8x3 + 3xp < 48,
> 4xq 4 2x0 > 25,
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Practical Example 2

@ We have two 2D tanks of water which are connected from their bottom. Let x; and x»
denote the height of water (with some scale) in the first and second tanks, respectively.
Therefore, x1,x2 > 0.

@ The widths of the two tanks are 60 and 30 (with some scale), respectively. Therefore, the
total amount of water in these tanks is ¢ = 60x; + 30x>.
-

@ There are some linear physical restrictions on the amount of water poured in these tanks
(because of previous tanks which water has passed to reach these tanks): 8x; + 3x; < 48
3

and 4x; + 2xp > 25.
— ="

The optimization becomes:
maximize ¢ = 60x; + 30x
X1,%2

subject to  8x1 + 3x2 < 48,
4x1 + 2xp > 25,
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Solving linear programming by visualization
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Visualization: example 1 £
.—17.11.-.167\’),
Minimization example: A
o Mimee (2u 165
Al=o 3 o+29"22

x1 + 2x2 > 40,175

Ay =20 X1+ % > 30, Ar
‘lzf' = %|+°-a=q'0
Ay =0 7
A .
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Visualization: example 2

Maximization example:

maximize ‘ 40x1 + 30xzz
X1,X2

subject to  x1 + 2x0 < 12,
2x1 + x2 < 16,
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Linear Programming

Visualization: example 3

Example with more number of constraints:

minimize 2x1 + 3x2
X1,%2 ‘:

subject to  x; +2x2 > 8,

(%) >e(eh3(8) =2

o
[% |ouglelzee
’ o usk3(3)=19

[,”;3 _,z(r)-n\(tss_ %=

ANt lhy —& = 24,405 1%

< LS Ay = A+ _.;;\l—)f?fz—{-‘)-:_.,b

A 2% -F=e

(I.S?lz——q‘) +?,'}\2__8:;4>___) ?.;llsll-exl.__'?:t
Z

12
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Simplex Method Description
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Simplex method description

@ As you saw in the pictures, the feasible set (determined by the constraints) in the linear

programming has affine/linear boundaries.
@ It is because the constraints are affine/linear.

@ Therefore, the feasible set is like a simplex with linear edges and some corners.
—

@ The corners of the feasible set are named the extreme points.

Optimal
solution

Starting

vertex _‘

The images are taken from Wikipedia. 'ﬁz_

N
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Simplex method description g

@ The simplex algorithm was initially proposed in 1947 [1].

@ It works on the linear boundaries (edges) and extreme points of the simplex feasible set.
_— —_—

@ Obviously, the solution is at one of the extreme points.

Az

—_— [vgj = Z(")—P 3(3) =24
LAY
L[5 o5

o 2s3()=19

[z ]
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Simplex method description

%) 52(e)43(8) =24
[3; }z(;la( = 1262

C% L u3=19
H .
~ [)s;] ,,-.rrm\(i:sr)-

@ The simplex algorithm starts from an extreme point and it goes to one of its neighbor
extreme points having the smallest/largest cost function at that point (only if the neighbor
extreme point has smaller/larger cost value compared to the current extreme point).

@ It continues this procedure until we reach an extreme point whose neighbor extreme
points do not have smaller/larger cost value.

Optimal
solution

Starting

vertex _4

The images are taken from Wikipedia.
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One of the methods for Simplex Algorithm:
Tableau Method for Maximization J

Lavle
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Slack variables

Consider this example:
! maximizei 6x1 + 5x0 + 4x3
X1,X2,X3
subject to  2x1 + x2 + x3 < 240,
x1 + 3x2 + 2x3 < 360,
2x1 4+ x2 + 2x3 < 300,

x1,x2,x3 2 0.
@ We convert each inequality/<)constraint to an equality constraint by adding slack
L_———-@\ ) O —

variables. roA R GJ'\\J‘C
@ Slack variables are n@ﬁ" ve scalars which are added to the left hand side of inequality <

constraint to make it equality. _
WA 050 = 30429= So
@ Example:

|2x1+x2+X33§240 = 2x1 + x2 + x3 + 51 = 240,
x1 + 3x2 + 2x3 < 360 = x1 + 3x2 + 2x3 + sp = 360,
2x1 +x0 +2x3 < 300 = 2x3 + x2 + 2x3 + s3 = 300,
s1,52,53 > 0.
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Slack variables

So, this problem:

maximize  6x; + 5xp + 4x3
X1,X2,X3

subject to  2x1 + x2 + x3 < 240,
x1 4+ 3x0 4+ 2x3 < 360,
2x1 + x2 + 2x3 < 300,
(X17X2,X3 > 0. l

is converted to:

maximize 6x1 + bxo + 4x3
X1,X2,X3,51,52,53

|l it atd |

subject to 2x1 4+ x2 + x3 + s1 = 240,
x1 + 3x2 + 2x3 + so = 360,
2x1 + x2 + 2x3 4+ s3 = 300,

X1, X2, X3, 51, 52,53 > 0.
252,23
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Forming equalities

maximize
X15X2,X3,51,52,53

2x1 + x2 + x3 + 51 = 240,
x1 + 3x2 + 2x3 + s = 360,
2x1 + x2 4+ 2x3 4+ s3 = 300,

X1,X2,X3,51,52,53 > 0.

subject to

defiva-

~
The cost function is: ¢"=6x; +5x2 +4x3 — ¢ —6x1 — 5xp —4x3 = 0.
Therefore: - e

2x1 + x2 + x3 + s1 = 240,

x1 4+ 3x2 + 2x3 + s» = 360,

2x1 + xo + 2x3 + s3 = 300,
c—6x1 —5x0 —4x3 = 0. =—
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Forming the table in the tableau method

x1 + 3x2 + 2x3 + s = 360,

2x1 + x2 4+ 2x3 4+ s3 = 300, H
c—6x1 —5xp —4x3 = 0. &= @\\H'
Jaehve vanilly /\/

m
X % A3 S Sy fglKHf

2X1+X2+X3+51—240,‘]

s 2 I 1 o 0 (240
3 L - A
i\aﬁmﬂga\m , | 2 o ol |30
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Pivot and min test oo k

@ n maximization problem, choose the most negative value for the pivot column.

@ Do the min test: divide RHS values (of rows except the c row) to the values of the pivot
column. Ignore the negative or zero values in min test.

© Get the minimum division value for the pivot row. The intersection of pivot row and pivot
column gives the pivot value.

S S5 | RHs
T 0 0 [200) M0_jp0 ~—
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Simplifying the pivot column

@ Make the pivot value one and other values zero in the pivot column. -
— —

@ For every row, use the row itself and the pivot row only.

© Replace the name of the pivot row with the name of the pivot column.

/ ﬁﬂ % A3 S 5 5 | RHS £

REB T T o o w0 \2©
3+l
Z‘l'b((?’):b
o(s—’\

-2 =\ 3 e
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Continuing the table

@ In the maximization problem, we continue the table until all the values in the c row are
non-negative (positive or Zero!.

/

% A3 s 5 5 | RHS

I I 1 o 07240)
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Continuing the table

KHI‘ Y’I\{V\ -Le‘{é
q ;T 120 m
40 ) 3‘
g2 @ X
Sy -

C -l 3 e »° 720
Ay £ S Sz 53 Z"‘K
n- g e ¥ g oo | 7
s Ve ¥, - 3
Yo Yo Vs %
.5 €0
Y
a& (. C @
W% t
maXW"”" ‘4

all hon—na(quf\\’ﬁ Lochion (¢*)

Linear Programming 25 /59



Basic and non-basic variables

Once thp\ table is over:
ALY A i . . .
@ A e with having only one 1 and the rest 0 is a basic variable.

@ The other columns are non-basic variables.
e

nén-basic \sul'(_ le)q
Nonab\es S
2 33
& 3y Y
Y- —7‘? Al I

73 e e

all hah’ha(jq)‘\)e-
(dalle over)
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Checking the optimal values

@ Once _ e.table is over, the RHS of the c row is the optimal cost function. Here it is
C*

@ The optimal values for the variables are the RHS of the rows. In other words, the
optimum basic variables are the RHS of rows. Here they are x;" = 72, x5 = 96, s3 = 60.

o S S It B
@ The optimum value for the rest of the variables (the non-basic variables) is zero. Here

they are x3 = 0,s; = 0,s; = 0.

@ We can check if the optimal cost is correct:

€= 6x1 +5x2 + 4x3| => ™ = 6x] +5x; + 4x3 = 6(72) + 5(96) + 4(0) /

RH

Ay 43 S Sz 532
N~ % R e
Y o Loy %
: o | ~( |
3
| A
Q_‘-—l-“’/gﬁ. < ;/5 2

all hon—nﬁql"\)&
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Big M method
—_—
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When to use the big M method

We should use the big M method when there are one or some > constraints and/or =
constraints. In other words, whemRever we have mixed constraints.
e

Consider this example witl@nd > constraints:

c=3x1 4+ 4x

subject to  2x3 + x2 < 600,
x1 + xp < 225,
5x1 + 4x2 < 1000,

X1 + 2% > 150, &—
@ For < constraints, we use slack variables as before:

2x1 4+ xp < 600 = 2x1 + x2 + 51 = 600,
x1+x2 <225 = x1 + x2 + sp = 225,
5x1 4+ 4x2 < 1000 = 5x7 + 4x2 + s3 = 1000,
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Big M method: > constraints

@ maximize

A

A+ 2@ 50

-+ ) =17
2x1 + x2 < 600, J

x1 + x2 < 225,

_e =%
5xi +4x, < 1000, AL +UH’£ C\L’

I ( x1 -+ 2x > 150, ay: &
b4 ~
ke a1y

Fowe can’t use slack variables because the slack variable will not be
non-negative anymore:
X1+ 2x > 150 = xq + 2X2: 150 :> X

For > constraints, we use excess variables e and artificial variables a:

X1+ 20 > X1+ 2x 150,
‘
@ We want the additional variable to be very small (a4 = €) so we add it to the cost
function with a very big multiplication factor M > 1:

. Iy Y —
maximize | ¢ = 3x1; + 4xo — May,
X1,X2,X3

c=3

N

(\

because if M > 1, then a; — 0 to cancel its effect in the cost function.
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A(ﬁz,—(/mﬂ‘\?u

Tableau method with the big M method "
=3

i = e ()T
subject to 2x1 + x2 + s1 = 600,
X1 + X2 + 53 = 225,
5x1 + 4x2 4+ s3 = 1000,
x1 + 2xp + a4 — e4 = 150,

X1, X2, 51, 52, 53, 34, €4 > 0.

@ We make zero the column value of additional variable in the ¢ row, becguse the value of
aq should be about zero rather than M.

A % S Sz S Qe e | FHS
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Tableau method with the big M method

G (2=
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Tableau method with the big M method

in tead
A % S S2 S Qe feR\] RHs s

slw o o 2 ‘fj’” A
’?_Z,_ L ) (%;
Qr_ 700 702z 350
2 2

x 7?5 -

n-Ye 300 —s e&(’ =200
YAP) \
rz—“frz
5 "TVZ v‘
o AT, .% =900
< 2

7
all p"J]‘tl\"'ﬂ

Therefore: s = 375, e = 300, s; = 100,x; = 225,x{ =0,s3 =0,s3 =0,a; =0,c*
Check: ¢* =3x7 + 4x3 = 3(0) + 4(225) \/t—d (S
| S
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Example 2 for mixed constraints

Consider another example with mixed constraints:
maximize c¢=x3 —xp + 3x
X1,X2,X3
subject to  x; + X2
x1 + X3

xo + X3 10,
- J
| /

@ We drop the DC value from the cost for now:

-
s\
c=x1 —x2+ 3x3.

\

x4 <20 = x1 + x5 s)= 20, £
| S
T eEE —(aTs EgE]  °

X2 + X3 = X2 + x3 + a» + e,= 10,

¢ s1,a1,a2,€ > 0.

Linear Programming 34 /59
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Example 2 for mixed constraints

ko’
The problem is converted to: _° 2 A\ L
mxa1>7<)i2n71jsze c=x1 —x2 4+ 3x3 — Ma; — May ___7
subject to  x1; + x2 4 51 = 20, C A +Ag —37s
x2+x3+ a1 =5, +MA) X MRy =

x2 +x3+ax + e =10,
s1,a1,a2, € > 0.
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Example 2 for mixed constraints

7 ~CMIS
e clma\m] o o o o mo-E

amidn
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Example 2 for mixed constraints

Therefore: (s

Check: @t = -
The final answer for maximum actual cost is (we add back the DC value): c* *@@:O
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The Reason for the Tableau Method
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The reason for the tableau method

maximize ¢ :‘ 4x1 + 6x0 — 5x4 ‘

X15X23X3,X4

subject to  x1 + x2 + x3 < 50,
2x1 4+ 3x2 + x4 < 42,
3x3 — xg < 250,
X1, X2, X3, X4 > 0.

is converted to:

maximize c =4x; + 6x2 — 5xq
X13X2,X3,X4,51,52,53
subject to x1 + x2 + x3 + s1 = 50,

¥

2x1 + 3xo + X4~+ s =42,
3x3 — xa4 + s3 = 250,

X1, X2, X3, X4, 51, 52,53 = 0.
3 — J

@ +# variables: 7, # equations: 3
L— 3
@ We can set 7 — 3= 4 variables to zero (non-basic variables) and find the other 3 variables

(basic variables).

@ How many ways can we choose the three variables out of the 7 variables?
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Example variables to choose

One of the ways:

non-basic variables: x; = xp = x3 = x4 =0,
. . — e
basic varlables:

maximize c¢=0
51,52,53

subject to | s; =50,
sp =42,
s3 = 250,
51,582,583 > 0.

Therefore, s; =50, s, = 42,53 = 250.
The cost function becomes{¢c =
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Example variables to choose

One of the ways:

basic variables: x», x3, s3.
g

maximize ¢
Mg
subject to  xp + x3 = 50,

3xp = 42,
3x3 + s3 = 250,

Therefore, ko = 14, x3 = 36, s3 = 142.
The cost function becomes: ¢ = 6(14

Linear Programming
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The reason for the pivot column

Which variable should we increase which
c :@Xl @Xz 4.

Increasing the variable x> has the most effect because it has the

i.e., 6.
Recall that we had:
Cj)q‘: §:9+ 5x4 = 0. l
That is why, in the tableau method, we find th most‘negativle value in the ¢ row] This is the
———

reason for the pivot column.

iggest multiplication factor,
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The reason for the min test
maximize c=4x; +6x2 — 5xy
X1,X2,X3,X4,51,52,53
subject to Gfﬁﬁ-ﬁ% ’ 2L
PX1+3X2+X4+52—42 A \
— 3X37X4+S3—250 &
Xl,x2,X3,X4,sl,52,53>0 V

S %O ﬁ«so*

How much can we increase the x» variable?

@ In the first constraint, the worst case scenario is x1 = x3 = s; = 0 and the most we can
. S M St
increase xp:

@ In the second constraint, the worst case scenario is x1 = x4 = sp = 0 and the most we can
. | |
increase xp: 3xp =42 — xp =42/3 =14

@ In the third constraint, the worst case scenario is and the most we can
increase xp: 30xp = 250 —

@ Therefore, the minimum increase we can have for xz is: min(50, 42, co) = 42.
L —— 4
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Solving the Dual Problem for Minimization
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Dual problem for minimization

An example minimization linear problem is: /:‘-\2' /\f
minimize @
X1,%
x1 + 2x

@ When we have a minimization linear programming, we can convert the minimization
problem to a maximization problem.

subject to

@ We should find the dual problem for the minimization problem. The dual for the
minimization is a maximization problem. We will learn the dual problem of linear
programming soon.
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Dual problem for minimization

An example minimization linear problem is: i
% X1,X2 [ j

subject to _x1 +2x2 > 40, i ?{
x1 + x2 > 30,
x1,x2 > 0.

Consider the constraints:

x1 + 2xp > 40 @ yix1 +2y1xp > 40y,

x1+x2 > 30 @ y2x1 + yaxa > 30y2,
————— e ——

whereSumming the sides together gives:
T—

(1 + y2)x1 + (2y1 + y2)x2 > 40y1 + 30y5».
L — 1

On the other hand, the cost of dual problem is a lower bound on the cost of the primal problem:

Z.(y1 + yo)x1 + (2y1 + y2)X2~|'

|
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Dual problem for minimization

Summing the sides together gives:

¥ (1 +y2)xi + (2y1 + y2)x2 > 40y1 + 30y».

On the other hand, the cost of dual problem is a lower bound on the cost\of the primal problem:

K 12x + 160 > (y1 4+ yo)xa W (21 + y2)X;

L—
Therefore: L

12)q +@><2 (y1 +y2)x + W)&E}wﬂ + 30y2. \‘/
Hence: ; M‘/“( ) /\%’
¢ (%) J

ﬁ

We want to find the best (maximum) lower bound, so:

40y1 ’ 30y2
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Dual problem for minimization

¥
Therefore: b(/() (‘N‘"’
maximize  40y; + 30y,

Y1.Y2 _—
n+y < 12,
2yl +y2 < 16,

subject to

is the dual problem for the following problem: ‘:}O
minimize  12x; + 16x 2 C
X1,X2
subject to  x1 + 2x2 > 40, (,:‘
x1 + x2 > 30, - IVL 'L’L_'_’. . +§bz
x1,x2 > 0. =t
20 39 %
This maximization problem can be solved as explained before. .z CLMV
b)

J= \ fm‘r:l
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Solving the problem by tableau method

maximize ¢ = 40y; + 30y»
Y1:¥2

subject to  y1 + y2 + 51 = 12,
2y1 + y2 + 52 = 16,

y1,¥2 2 0.
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Solving the problem by tableau method

~— .
all wa oM ﬂqjh/!‘/ﬁ
P b
Therefore: y3 =8,y; =4,sf =0,s5 =0,c* = 400.

Check:(€7)= 40y +30y; = 40(4) + 30(8) =300 ,fi U

The strong duality holds for linear programming, so: —_—

c* = 400 for the primal problem, too.
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Dual Simplex Method
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Why we need the dual simplex method?

@ We converted the minimization linear problem to its dual problem which is the
maximization linear problem. Then, we solved it using the simplex method for
maximization.

@ However, it only gave us the optimal cost function c* and not the optimum primal

. —_— —_—
variables {x;.....x;}.

@ For finding these optimum primal variables in the minimization linear programming, we

can use the dual simplex method.

@ The dual simplex method only works for thlinear problem if:

> aII its multiplication factors in the cost functi fn are non-negatiye.

> at least one of the inequalit constraints is
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Dual simplex method: example

A
i}

ml)r?ll!rglze c =3x1 +4x >/ }j
subject to  2x71 + xp( <)600,

x1 + xp < 225,
5x1 + 4xp < 1000,

x1,x2 > 0.

x1 + 2xp > 150 @Xl — 2xp | —150
| —— |

minimize c—3x1+4x2 =0

X1 35X
S5 5_1-7%17"\'
subject to  2x3 4+ x2 + s1 = 600,

—
X1 + x2 + sp = 225,
—
5x1 + 4xo +_S_3: 1000,
oy -(1%
x1,x2 2> 0.
S14S2, 55,5%'7/5

Linear Programming 53/59
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Using slack variables:



Dual simplex method: example

minimize c—3x1+4x =0
X1,X2

subject to : 600,
x1 + x2 + 55 = 225,
5x1 + 4x2 4+ s3 = 1000,
— X1 — 2x2 + 54 = —150,
Xx1,Xx2 > 0.

@ Pivot row: Pick the most negative value in RHS
—_ — e =

@ min test: Divide the non-zero values of ¢ row by the negative values of the pivot row.

—_—

Take absolute value in division.

SU Sy S3 Sa | RHS
600
2eS
Jooo

@—% (’,vm[ rW

° 3
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Dual simplex method: example

2 53 SA( \ RMy *__ XS
° ° 525‘ —/) | [g-o
( o 15-0 7; =
o % 400
® ° .-DLS'
° o -1 I?oo
555}"/&
f c*;?oo

Therefore: s; = 525,55 = 150,53 = 700, x5 = 75,c* = 300,x = 0,s; = 0.
Check: ¢* = 3x; + 4x} = 3(0) + 4(75) = 300 \/

Linear Programming
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Dual simplex method fo in maximization
We can also use the dual simplex method-forhandling > constraints in maximization. Example:

maximize ¢ = 60x; + 30x2 + 20x3

X1,X2,X3

subject to  8x3 + 6x2 + x@48,
4x1; + 2xp + 1.5%: 20,

2x1 + 1.5x2 4+ 0.5x3(<) 8,

X1, x2,x3 > 0.
We can convert the > constraints to < constraints by multiplying the sides of inequality by —1:

!xz21i_;l—x§ :>—XQ—1A

So, the problem is converted to:

maximize ¢ = 60x; + 30x2 + 20x3
X1,X2,X3,51,52,53,54
subject to 8x1 + 6x2 + x3 + 51 = 48,

4x1 4+ 2x2 4+ 1.5x3 4+ sp = 20,
2x1 + 1.5x2 4+ 0.5x3 + s3 = 8,
- x+s=-1,
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Dual simplex method for > constraints in maximization

maximize ¢ = 60x; + 30x + 20x3
X15X2,X3,51,52,53,54
subject to 8x1 + 6x2 + x3 + 51 = 48,

4x1 + 2x2 + 1.5x3 + sp = 20,
2x1 + 1.5x2 4+ 0.5x3 + s3 = 8,
— X2+ 54 =—1,
X1,X2,X3,51,52,53,54 > 0.

L
:9.?5‘7 ﬂgg (,C:Z?‘.{

3
g\*;lé,quw; %
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https://www.youtube.com/watch?v=YRPENlGqfs0&list=PLTrfnl2vPj4qMNHvLuu0tNJefmuHjZ-K3
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