
Search-based (Metaheuristic) Optimization

Optimization Techniques (ENGG*6140)

School of Engineering,
University of Guelph, ON, Canada

Course Instructor: Benyamin Ghojogh
Winter 2023

Search-based (Metaheuristic) Optimization 1 / 41



Introduction

Search-based (Metaheuristic) Optimization 2 / 41



Optimization versus search
If the objective problem is simple enough, we can solve it using classic optimization
methods. We will learn important classic methods.

If the objective function is complicated or if we have too many constraints, we can use
search for finding a good solution (credit of third image: [1]).

Search-based (Metaheuristic) Optimization 3 / 41



When to use search-based (metaheuristic) optimization

When we have a complicated (highly con-convex) optimization landscape:

or when the gradient of function is hard to compute,

or when the function is not known but it works as a black-box, i.e., it outputs a value for
each input fed to it.

In these cases, we need:
▶ either non-convex optimization,
▶ or search-based optimization (metaheuristic optimization).

Search-based (Metaheuristic) Optimization 4 / 41



Search for optimization
We can do grid search or brute-force search.

Or we can search wisely by metaheuristic optimization. We will learn several important
metaheuristic optimization methods.

Search-based (Metaheuristic) Optimization 5 / 41



Heuristic and Metaheuristic Methods

When the problem is complicated, a heuristic method approximates its solution.

It gives a good enough guess of the solution to the problem, but that you may not really
know how good it is.

Heuristics are often problem-dependent, i.e., you define a heuristic for a given problem.

Metaheuristics are problem-independent techniques that can be applied to a broad range
of problems.

Metaheuristic optimization methods can solve various complicated optimization problems
using wise search.

Metaheuristic methods are considered as a family of methods in soft computing.

Search-based (Metaheuristic) Optimization 6 / 41



Exploration vs. Exploitation

Some things need to be defined:

Optimization landscape: the optimization cost function

Local best vs. global best in the landscape

Exploitation: local search around the solution because the global optimum might be close
to the current solution.

Exploration: search far away from the solution (explore the landscape) because the global
optimum might be far away from the current solution. It helps not to get stuck in local
optimum.

Search-based (Metaheuristic) Optimization 7 / 41



Genetic Algorithm (GA)

Search-based (Metaheuristic) Optimization 8 / 41



Genetic Algorithm: Natural Selection and Darwinism

According to natural selection, every generation tries to adapt better to the environment
compared to the previous generation.

Genetic Algorithm (GA), almost proposed by John H. Holland in 1975 [2], is inspired by
natural selection and Darwinism. It is one of the evolutionary algorithms.

Credit of image: https://www.zmescience.com/science/what-is-natural-selection/

Search-based (Metaheuristic) Optimization 9 / 41

https://www.zmescience.com/science/what-is-natural-selection/


Genetic Algorithm: Chromosomes

The candidate solutions are called the chromosomes.

Every chromosome has several genes. The genes are the features/dimensions of the
candidate solutions.

Possible ways to create the chromosomes:
▶ value encoding: the genes are float values of the features/dimensions of vector

solutions.
▶ binary encoding: every solution is a scalar and the scalar is converted to a binary

string. Every gene is binary {0, 1}.
▶ order encoding: the genes are integers if we want to find an optimal order of some

integers.

Search-based (Metaheuristic) Optimization 10 / 41



Genetic Algorithm: Fitness function

Fitness function is the evaluation of function at a candidate solution.

Usually we want to maximize the fitness function and minimize the cost function. In other
words, fitness function is minus cost function.

We do it iteratively.

Fitness calculation: at every iteration, we calculate the fitness of chromosomes to see
how good they are.

Natural selection: at every iteration, we select the best chromosomes to be the parents
of the next generation. The other chromosomes which are not selected will die without
having offspring (children).

Search-based (Metaheuristic) Optimization 11 / 41



Genetic Algorithm: Natural selection

The ways for natural selection of chromosomes to be parents of the next generation:

Elitism selection: selecting the top k chromosomes with the best fitness values. It has the
risk of getting stuck in local optimum.

Roulette wheel selection: for every chromosome, we calculate a probability of being good
(compatible with the environment / having good fitness value):

pi =
fi∑n
j=1 fj

, ∀i ∈ {1, . . . , n}, (1)

where fi is the fitness value for the i-th chromosome and n is the population of
chromosomes at the generation. Every chromosome gets a part of the roulette wheel
based on its probability.

Search-based (Metaheuristic) Optimization 12 / 41



Genetic Algorithm: Natural selection

Stochastic Universal Sampling (SUS) selection: it is similar to the roulette wheel but
with more than one selection pointer. It gives more chance to chromosomes with less
fitness value.

Tournament selection: first we randomly select k1 chromosomes and then, we select k2
best chromosomes among them with best fitness values.

Search-based (Metaheuristic) Optimization 13 / 41



Genetic Algorithm: Natural selection

Rank selection: Close to the termination, the probabilities in the roulette wheel with
probabilities will become very close to each other. So, it will be better to rank the
chromosomes by their fitness values in the late iterations. Then, we create the roulette
wheel using the probabilities proportional to the ranks. This gives more chance to all
chromosomes.

Search-based (Metaheuristic) Optimization 14 / 41



Genetic Algorithm: Cross-over

Cross-over: Mating of parent chromosomes to generate offsrpings (children). Useful for
exploration.

One-point cross-over:

Multi-point cross-over:

Search-based (Metaheuristic) Optimization 15 / 41



Genetic Algorithm: Cross-over
Uniform cross-over:

Whole arithmetic cross-over:

offspring1 = αx1 + (1− α)x2, (2)

offspring2 = αx2 + (1− α)x1, (3)

where α ∈ (0, 1).

Search-based (Metaheuristic) Optimization 16 / 41



Genetic Algorithm: Mutation

Mutation: Random changes to the offsprings after cross-over. Useful for exploitation.

Bit-flip mutation:

Swap mutation:

Scramble mutation:

Inversion mutation:

Search-based (Metaheuristic) Optimization 17 / 41



Genetic Algorithm: Termination and Flowchart
Termination criterion:

▶ reaching maximum number of iterations
▶ reaching maximum elapsed (passed) time
▶ reaching small enough cost (large enough fitness) compared to a known threshold

Search-based (Metaheuristic) Optimization 18 / 41



Particle Swarm Optimization (PSO)

Search-based (Metaheuristic) Optimization 19 / 41



Particle Swarm Optimization: the Idea

Particle Swarm Optimization (PSO) was proposed in 1995 [3].

The idea of PSO is like finding a treasure by a group of people.

It is inspired a flock of birds or group of fish. Hence, it can be seen as one of the
bio-inspired metaheuristic algorithms or swarm optimization.

Many other bio-inspired or swarm metaheuristic algorithms exist such as:
▶ Ant colony: 1996 [4, 5]
▶ Grey wolf optimizer: 2014 [6]
▶ Whale optimization algorithm: 2016 [7]
▶ A scholar in this area: Seyedali Mirjalili, Torrens University Australia, Australia,

https://scholar.google.com/citations?user=TJHmrREAAAAJ&hl=en&oi=sra

Search-based (Metaheuristic) Optimization 20 / 41

https://scholar.google.com/citations?user=TJHmrREAAAAJ&hl=en&oi=sra


Particle Swarm Optimization: the Formula

The candidate solutions are the particles (vectors).

Every particle searches locally in a local neighborhood.

Three components for the velocity vector for updating the solution:

▶ the momentum (history) of previous velocity (fro exploitation): α1v
(k)
i

▶ update according to the local best in the iteration: α2(x
(k)
localBest − x (k)

i )

▶ update according to the global best in the iteration: α3(x
(k)
globalBest − x (k)

i )

The update of every particle:

x (k+1)
i := α1v

(k)
i + α2(x

(k)
localBest − x (k)

i ) + α3(x
(k)
globalBest − x (k)

i ), (4)

where α1, α2, and α3 are weight (regularization) hyper-parameters.

Search-based (Metaheuristic) Optimization 21 / 41



Particle Swarm Optimization: Visualizing the Formula

x (k+1)
i := α1v

(k)
i + α2(x

(k)
localBest − x (k)

i ) + α3(x
(k)
globalBest − x (k)

i ),

Search-based (Metaheuristic) Optimization 22 / 41



Particle Swarm Optimization: Flowchart

Search-based (Metaheuristic) Optimization 23 / 41



Simulated Annealing

Search-based (Metaheuristic) Optimization 24 / 41



Simulated Annealing: Idea

The Boltzmann distribution [8], also called the Gibbs distribution [9], can show the
probability that a physical system can have a specific state. i.e., every of the particles has
a specific state. The probability mass function of this distribution is [10]:

P(x) =
e−

E(x)
t

Z
, (5)

where E(x) is the energy of variable x , and t is the Kelvin temperature, and Z is the
normalization constant so that the probabilities sum to one. We can write it as:

P(∆E) =
e−

∆E
t

Z
, (6)

where ∆E is the difference of energy.

Simulated annealing was proposed in 1983 [11] and is inspired by the annealing schedule
in high-energy physics for forming the shape of materials.

It starts with high temperature and cools down the temperature gradually.
▶ linear reduction rule: t = t − α
▶ geometric reduction rule: t = t × α, where α ∈ (0, 1)
▶ slow-decrease rule: t = t

1+βt
, where β is a hyper-parameter

Search-based (Metaheuristic) Optimization 25 / 41



Simulated Annealing: algorithm

step 1: choose some random initial candidates and an initial temperature

step 2: in every iteration, do a local search in a neighborhood of candidates and choose a
neighbor point for every candidate.

▶ for every candidate, if the fitness of neighbor solution is better than the candidate:
accept it and replace the candidate with that.

▶ otherwise, accept it with some Boltzmann probability:

P(∆E) =

{
1 if ∆E ≤ 0

e−
∆E
t if ∆E > 0

(7)

where ∆E is the change of cost (cost of neighbor minus cost of candidate) (or
fitness of candidate minus fitness of neighbor).

This gives a chance to even worse candidates for exploration (not to get stuck in local
optimum).

Search-based (Metaheuristic) Optimization 26 / 41



Simulated Annealing: Analysis of temperature

P(∆E) =

{
1 if ∆E ≤ 0

e−
∆E
t if ∆E > 0

The e−
1
t graph:

Analysis of temperature:

In initial iterations, temperature t is high so e−
∆E
t is large (closer to one) so we give more

chance to worse candidates so we have more exploration.

In the end iterations, temperature t is low so e−
∆E
t is small (closer to zero) so we give

less chance to worse candidates so we have more exploitation.

It is like starting with large learning rate in gradient descent initially and then decrease the
learning rate gradually.

Search-based (Metaheuristic) Optimization 27 / 41



Nelder-Mead Simplex Algorithm

Search-based (Metaheuristic) Optimization 28 / 41



Nelder-Mead Simplex Algorithm

The Nelder-Mead simplex algorithm, also called the Nelder-Mead method, was proposed
by John A. Nelder and Roger Mead in 1965 [12].

Used in “fminsearch” function of MATLAB:
https://www.mathworks.com/help/matlab/ref/fminsearch.html

Its idea:
▶ If the dimensionality of optimization variable is d , choose d + 1 random points in

the feasible set to make a simplex.

▶ Update this simplex iteratively until it converges to the optimal solution (it
gradually moves toward the solution and shrinks to the solution.)

Search-based (Metaheuristic) Optimization 29 / 41

https://www.mathworks.com/help/matlab/ref/fminsearch.html


Nelder-Mead Method: initial simplex

If the dimensionality of
optimization variable is d , choose d+1 random points in the feasible set to make a simplex.

This initial simplex is important. A too small simplex may get stuck in a local optimum
(cannot do enough exploration).

It is suggested in [12] to select the initial simplex as the following:
▶ a random point for x1 = [x11, x12, . . . , x1d ]

⊤

▶ each of {x2, . . . , xd+1} is a fixed step along each dimension in turn:

x2 = [x11 + δ, x12, . . . , x1d ]
⊤,

x3 = [x11, x12 + δ, . . . , x1d ]
⊤,

...

xd+1 = [x11, x12, . . . , x1d + δ]⊤,

where δ > 0 is a not-too-small number.

Search-based (Metaheuristic) Optimization 30 / 41



Nelder-Mead Method: order

We want to minimize the function f (.). In the feasibility set, we make some simplex and
change it in the feasibility set iteratively to converge to the solution.

order: at the start of every iteration, order (sort) the corners of simplex:

f (x1) ≤ f (x2) ≤ · · · ≤ f (xd+1),

where we denote the best and worst corners by x1 and xd+1, respectively.

Search-based (Metaheuristic) Optimization 31 / 41



Nelder-Mead Method: order and reflection

centroid: the centroid of all points except xd+1 as: xo = 1
d

∑d
i=1 x i .

reflection:
▶ the reflected point:

x r = xo + α(xo − xd+1).

▶ α > 0, usually α = 1.
▶ if f (x1) ≤ f (x r ) < f (xd ):

⋆ replace the worst point with the reflected point, xd+1 := x r .
⋆ go to the next iteration and order the points again.

it has some connection with opposition learning proposed in 2005 [13] and used in
metaheuristic optimization in 2008 [14].

Search-based (Metaheuristic) Optimization 32 / 41



Nelder-Mead Method: expansion

expansion: if f (x r ) ≤ f (x1):
▶ the expanded point:

xe = xo + γ(x r − xo).

▶ γ > 1, usually γ = 2.

Search-based (Metaheuristic) Optimization 33 / 41



Nelder-Mead Method: expansion

if the expanded point is better than the reflected point, f (xe) < f (x r ):
▶ replace the worst point with the expanded point, xd+1 := xe .

else, f (xe) ≥ f (x r ):
▶ replace the worst point with the reflected point, xd+1 := x r .

go to the next iteration and order the points again.

Search-based (Metaheuristic) Optimization 34 / 41



Nelder-Mead Method: contraction & shrinking
contraction: if f (x r ) ≥ f (xd ):

▶ if f (x r ) < f (xd+1):

⋆ the contracted point outside:

x c = xo + ρ(x r − xo).

⋆ 0 < ρ ≤ 0.5, usually ρ = 0.5.
⋆ if the contracted point is better than the reflected point, f (x c) < f (x r ):

replace the worst point with the contracted point, xd+1 := x c .
⋆ else, f (x c) ≥ f (x r ):

shrinking: replace all points (except the best point x1) with the
reflected point, x i := x1 + σ(x i − x1), where σ = 0.5.

⋆ go to the next iteration and order the points again.

Search-based (Metaheuristic) Optimization 35 / 41



Nelder-Mead Method: contraction & shrinking
contraction: if f (x r ) ≥ f (xd ):

▶ if f (x r ) ≥ f (xd+1):

⋆ the contracted point inside:

x c = xo + ρ(xd+1 − xo).

⋆ 0 < ρ ≤ 0.5, usually ρ = 0.5.
⋆ if the contracted point is better than the worst point, f (x c) < f (xd+1):

replace the worst point with the contracted point, xd+1 := x c .
⋆ else, f (x c) ≥ f (xd+1):

shrinking: replace all points (except the best point x1) with the
reflected point, x i := x1 + σ(x i − x1), where σ = 0.5.

⋆ go to the next iteration and order the points again.

Search-based (Metaheuristic) Optimization 36 / 41



Nelder-Mead Method: summary

Search-based (Metaheuristic) Optimization 37 / 41



Nelder-Mead Method: summary

Search-based (Metaheuristic) Optimization 38 / 41



Acknowledgement

Some slides of this slide deck are inspired by the teachings of Prof. Saeed Sharifian at
Amirkabir University of Technology, Tehran, Iran (his course “Biological intelligence”).

Some slides of this slide deck are inspired by:
▶ Genetic algorithm: https:

//medium.com/@AnasBrital98/genetic-algorithm-explained-76dfbc5de85d
▶ Particle swarm optimization: https://www.analyticsvidhya.com/blog/2021/10/

an-introduction-to-particle-swarm-optimization-algorithm/
▶ Simulated annealing: https://towardsdatascience.com/

optimization-techniques-simulated-annealing-d6a4785a1de7
▶ Nelder-Mean method:

https://en.wikipedia.org/wiki/Nelder%E2%80%93Mead_method

Search-based (Metaheuristic) Optimization 39 / 41

https://medium.com/@AnasBrital98/genetic-algorithm-explained-76dfbc5de85d
https://medium.com/@AnasBrital98/genetic-algorithm-explained-76dfbc5de85d
https://www.analyticsvidhya.com/blog/2021/10/an-introduction-to-particle-swarm-optimization-algorithm/
https://www.analyticsvidhya.com/blog/2021/10/an-introduction-to-particle-swarm-optimization-algorithm/
https://towardsdatascience.com/optimization-techniques-simulated-annealing-d6a4785a1de7
https://towardsdatascience.com/optimization-techniques-simulated-annealing-d6a4785a1de7
https://en.wikipedia.org/wiki/Nelder%E2%80%93Mead_method


References

[1] H. Li, Z. Xu, G. Taylor, C. Studer, and T. Goldstein, “Visualizing the loss landscape of
neural nets,” Advances in neural information processing systems, vol. 31, 2018.

[2] J. H. Holland, “Adaptation in natural and artificial systems, univ. of mich. press,” Ann
Arbor, vol. 7, pp. 390–401, 1975.

[3] J. Kennedy and R. Eberhart, “Particle swarm optimization,” in Proceedings of
ICNN’95-international conference on neural networks, vol. 4, pp. 1942–1948, IEEE, 1995.

[4] M. Dorigo, V. Maniezzo, and A. Colorni, “Ant system: optimization by a colony of
cooperating agents,” IEEE Transactions on Systems, Man, and Cybernetics, Part B
(Cybernetics), vol. 26, no. 1, pp. 29–41, 1996.

[5] M. Dorigo, M. Birattari, and T. Stutzle, “Ant colony optimization,” IEEE computational
intelligence magazine, vol. 1, no. 4, pp. 28–39, 2006.

[6] S. Mirjalili, S. M. Mirjalili, and A. Lewis, “Grey wolf optimizer,” Advances in engineering
software, vol. 69, pp. 46–61, 2014.

[7] S. Mirjalili and A. Lewis, “The whale optimization algorithm,” Advances in engineering
software, vol. 95, pp. 51–67, 2016.

[8] L. Boltzmann, “Studien uber das gleichgewicht der lebenden kraft,” Wissenschafiliche
Abhandlungen, vol. 1, pp. 49–96, 1868.

Search-based (Metaheuristic) Optimization 40 / 41



References (cont.)

[9] J. W. Gibbs, Elementary principles in statistical mechanics.
Courier Corporation, 1902.

[10] K. Huang, Statistical Mechanics.
John Wiley & Sons, 1987.

[11] S. Kirkpatrick, C. D. Gelatt Jr, and M. P. Vecchi, “Optimization by simulated annealing,”
science, vol. 220, no. 4598, pp. 671–680, 1983.

[12] J. A. Nelder and R. Mead, “A simplex method for function minimization,” The computer
journal, vol. 7, no. 4, pp. 308–313, 1965.

[13] H. R. Tizhoosh, “Opposition-based learning: a new scheme for machine intelligence,” in
International conference on computational intelligence for modelling, control and
automation and international conference on intelligent agents, web technologies and
internet commerce (CIMCA-IAWTIC’06), vol. 1, pp. 695–701, IEEE, 2005.

[14] S. Rahnamayan, H. R. Tizhoosh, and M. M. Salama, “Opposition-based differential
evolution,” IEEE Transactions on Evolutionary computation, vol. 12, no. 1, pp. 64–79,
2008.

Search-based (Metaheuristic) Optimization 41 / 41


