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Non-convex function

We might have non-convex cost functions (recall the preliminaries) (credit of second
image: [1]):

In these cases, we need non-convex optimization.

Non-convex Optimization 3 / 22



Non-convex optimization

Consider the following optimization problem:

minimize
x

f (x)

subject to yi (x) ≤ 0, i ∈ {1, . . . ,m1},
hi (x) = 0, i ∈ {1, . . . ,m2},

(1)

where the functions f (.), yi (.), and hi (.) are not necessarily convex.

The introduced optimization methods can also work for non-convex problems but they do
not guarantee to find the global optimum.

They can find local minimizers which depend on the random initial solution.

For example, the optimization landscape of neural network is highly nonlinear and
non-convex but backpropagation works very well for it.
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Non-convex optimization in neural networks
The optimization landscape of neural network is highly nonlinear and non-convex but
backpropagation works very well for it.

▶ Question: Assume the loss function of neural network is the mean squared error:

1

b

b∑
i=1

∥y i − l i∥22,

where b is the mini-batch size, y i is the output of network, and l i is the one-hot
encoded label for the i-th data in the mini-batch.

▶ This loss is clearly quadratic and convex. Then, why is the neural network highly
non-convex? (credit of image: [1])

The reason for this is explained in this way: every layer of neural network pulls data to the
feature space such as in kernels [2]. In the high-dimensional feature space, all local
minimizers are almost global minimizers because the local minimum values are almost
equal in that space [3]. Also see [4, 5, 6] to understand why backpropagation optimization
works well even in highly non-convex optimization.
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Non-convex optimization
As was explained, the already introduced first-order and second-order optimization
methods can work fairly well for non-convex problems by finding local minimizers
depending on the initial solution.

However, there exist some specific methods for non-convex programming, divided into
two categories.

▶ The local optimization methods are faster but do not guarantee to find the global
minimizer.

▶ The global optimization methods find the global minimizer but are usually slow to
find the answer [7].

Example for local optimization methods:
▶ Sequential Convex Programming (SCP) [8] is an example for local optimization

methods.
▶ It is based on a sequence of convex approximations of the non-convex problem.
▶ It is closely related to Sequential Quadratic Programming (SQP) [9] which is used

for constrained nonlinear optimization.

Example for global optimization methods:
▶ Branch and bound method, first proposed in 1960 [10], is an example for the

global optimization methods.
▶ It divides the optimization landscape, i.e. the feasible set, into local parts by a

binary tree and solves optimization in every part.
▶ It checks whether the solution of a part is the global solution or not.

In this slide deck, we explain SCP which is a faster but local method.

Note that another approach for highly non-convex optimization is metaheuristic
(search-based) optimization which will be briefly introduced later.
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Convex Approximation
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Convex Approximation
Recall Eq. (1):

minimize
x

f (x)

subject to yi (x) ≤ 0, i ∈ {1, . . . ,m1},
hi (x) = 0, i ∈ {1, . . . ,m2}.

SCP iteratively solves a convex problem where, at every iteration, it approximates the
non-convex problem (1) with a convex problem, based on the current solution, and
restricts the variable to be in a so-called trust region [11].
The trust region makes sure that the variable stays in a locally convex region of the
optimization problem.
At the iteration k of SCP, we solve the following convex problem:

minimize
x

f̂ (x)

subject to ŷi (x) ≤ 0, i ∈ {1, . . . ,m1},

ĥi (x) = 0, i ∈ {1, . . . ,m2},

x ∈ T (k),

(2)

where f̂ (.), ŷi (.), and ĥi (.), are convex approximations of functions f (.), yi (.), and hi (.),
and T (k) is the trust region at iteration k.
This approximated convex problem is also solved iteratively itself using one of the
previously introduced methods such as the interior-point method.
There exist several approaches for convex approximation of the functions. In the
following, we introduce some of these approaches.
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Convex Approximation by Taylor Series Expansion

The non-convex functions f (.), yi (.), and hi (.) can be approximated by affine functions
(i.e., first-order Taylor series expansion) to become convex. For example, the function
f (.) is approximated as:

f̂ (x) = f (x (k)) +∇f (x (k))⊤(x − x (k)). (3)

The functions can also be approximated by quadratic functions (i.e., second-order Taylor
series expansion) to become convex. For example, the function f (.) is approximated as:

f̂ (x) = f (x (k)) +∇f (x (k))⊤(x − x (k)) +
1

2
(x − x (k))⊤P(x − x (k)), (4)

where P = ΠSd+
(∇2f (x (k))) is projection of Hessian onto the symmetric positive

semi-definite cone. This projection is performed by setting the negative eigenvalues of
Hessian to zero.

The same approaches can be used for approximation of functions yi (.) and hi (.) using
first- or second-order Taylor expansion.
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Convex Approximation by Particle Method

We can approximate the functions f (.), yi (.), and hi (.) in the domain of trust region using
regression. This approach is named the particle method [7].

Let {x i ∈ T (k)}mi=1 be m points which lie in the trust region. We can use least-squares
quadratic regression to make the functions convex in the trust region:

minimize
a∈R,b∈Rd ,P∈Sd++

m∑
i=1

(1

2
(x i − x (k))⊤P(x i − x (k)) + b⊤(x i − x (k)) + a− f (x i )

)2

subject to P ⪰ 0.

(5)

Then, the function f (.) is replaced by its convex approximation:

f̂ (x) = (1/2)(x i − x (k))⊤P(x i − x (k)) + b⊤(x i − x (k)) + a.

The same approach can be used for approximation of functions yi (.) and hi (.).
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Convex Approximation by Quasi-linearization

Another approach for convex approximation of functions f (.), yi (.), and hi (.) is
quasi-linearization.

We should state the function f (.) in the form f (x) = A(x) x + c(x).
For example, we can use the second-order Taylor series expansion to do this:

f (x) ≈
1

2
x⊤Px + b⊤x + a = (

1

2
Px + b)⊤x + a,

so we use A(x) := ((1/2)Px + b)⊤ and c(x) := a which depend on the Taylor expansion
of f (x).
Hence, the convex approximation of function f (.) can be:

f̂ (x) = A(x (k)) x + c(x (k)) = (
1

2
Px (k) + b)⊤x + a. (6)

The same approach can be used for approximation of functions yi (.) and hi (.).
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Trust Region
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Formulation of Trust Region

The trust region can be a box around the point at that iteration:

T (k) := {x | |xj − x
(k)
j | ≤ ρi ,∀j ∈ {1, . . . , d}}. (7)

where xj and x
(k)
j are the j-th element of x and x (k), respectively, and ρi is the bound of

box for the j-th dimension.

Another option for trust region is an ellipse around the point to have a quadratic trust
region:

T (k) := {x | (x − x (k))⊤P−1(x − x (k)) ≤ ρ}, (8)

where P ∈ Sd++ (is symmetric positive definite) and ρ > 0 is the radius of ellipse.

Non-convex Optimization 13 / 22



Updating Trust Region

The trust region gets updated in every iteration of SCP. In the following, we explain how
the trust region can be updated.

Recall Eq. (1):
minimize

x
f (x)

subject to yi (x) ≤ 0, i ∈ {1, . . . ,m1},
hi (x) = 0, i ∈ {1, . . . ,m2}.

First, we embed the constraints in the objective function of problem (1):

minimize
x

ϕ(x) := f (x) + λ
( m1∑

i=1

(
max(yi (x), 0)

)2
+

m1∑
i=1

|hi (x)|2
)
, (9)

where λ > 0 is the regularization parameter. This is called the exact penalty method
(1994) [12] because it penalizes violation from the constraints.

For large enough regularization parameter (which gives importance to violation of
constraints), the solution of problem (9) is exactly equal to the solution of problem (1).
That is the reason for the term “exact” in the name “exact penalty method”.
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Updating Trust Region
Recall Eq. (2):

minimize
x

f̂ (x)

subject to ŷi (x) ≤ 0, i ∈ {1, . . . ,m1},

ĥi (x) = 0, i ∈ {1, . . . ,m2},

x ∈ T (k),

We found Eq. (9):

minimize
x

ϕ(x) := f (x) + λ
( m1∑

i=1

(
max(yi (x), 0)

)2
+

m1∑
i=1

|hi (x)|2
)
.

Similar to Eq. (9), we define:

ϕ̂(x) := f̂ (x) + λ
( m1∑

i=1

(
max(ŷi (x), 0)

)2
+

m1∑
i=1

|ĥi (x)|2
)
, (10)

for the problem (2). At the iteration k of SCP, let x̂(k) be the solution of the convex
approximated problem (2) using any method such as the interior-point method.

We calculate the predicted and exact decreases which are δ̂ := ϕ(x (k))− ϕ̂(x̂) and
δ := ϕ(x (k))− ϕ(x̂), respectively.
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Updating Trust Region
We calculate the predicted and exact decreases which are δ̂ := ϕ(x (k))− ϕ̂(x̂) and
δ := ϕ(x (k))− ϕ(x̂), respectively.
Two cases may happen:

▶ We have progress in optimization if αδ̂ ≤ δ where 0 < α < 1 (e.g., α = 0.1). In this
case, we accept the approximate solution:

x (k+1) := x̂ ,

and we increase the size of trust region, for the next iteration of SCP, by:

ρ(k+1) := βρ(k),

where β ≥ 1 (e.g., β = 1.1).
▶ We do not have progress in optimization if αδ̂ > δ. In this case, we reject the

approximate solution:

x (k+1) := x (k),

and we decrease the size of trust region, for the next iteration of SCP, by:

ρ(k+1) := γρ(k),

where 0 < γ < 1 (e.g., γ = 0.5).

In summary, the trust region is expanded if we find a good solution; otherwise, it is made
smaller.
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Branch and
Bound Method
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Branch and Bound Method

Branch and bound method, proposed in 1960 [10], is a global optimization method, which
is slow but find the global optimum.

The idea of this method:
▶ divide the feasibility set region into two convex sets (e.g., rectangular (hyper-cubic)

regions).
▶ in each region, find an upper bound and a lower bound.
▶ choose the better region among these two.
▶ do it iteratively until convergence.

Approximation of lower bound of optimal value f ∗ in a region:
▶ it can be the solution of the convex relaxation of the optimization problem.

Approximation of upper bound of optimal value f ∗ in a region:
▶ it can be the function value at any point in the region.

The more we progress in the algorithm, the closer (tighter) the lower bound and the upper
bound get to each other.
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Branch and Bound Method
The algorithm of branch and bound method:

1 start with the feasibility set as the region.

2 calculate the lower bound l and upper bound u of the feasibility set. Set the overall lower
bound and overall upper bound to the lower bound and upper bound, respectively:

loverall = l , uoverall = u

3 loop over iterations:

1 split the region into left and right regions.
2 calculate the lower bound and upper bound of the left and right regions,

lleft, uleft, lright, uright.
3 Update the overall lower bound if the largest lower bound among left and right

regions is larger than the overall lower bound.

loverall = max(lleft, lright, loverall).

4 Update the overall upper bound if the smallest upper bound among left and right
regions is smaller than the overall upper bound.

uoverall = min(uleft, uright, uoverall).

5 if uoverall − loverall < ϵ: terminate and, for minimization, return lleft and its
corresponding x∗ if lleft < lright. But return lright and its corresponding x∗ if
lright < lleft.
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