
Non-smooth Optimization

Optimization Techniques (ENGG*6140)

School of Engineering,
University of Guelph, ON, Canada

Course Instructor: Benyamin Ghojogh
Winter 2023

Non-smooth Optimization 1 / 36

Non-smooth Function

Non-smooth Optimization 2 / 36

Non-smooth function

When we have non-smooth function, the gradient is not defined at the non-smooth
point(s).

In these cases, we need non-smooth optimization.

Non-smooth Optimization 3 / 36

Lasso Regularization

Non-smooth Optimization 4 / 36

Lasso Regularization
The ℓ1 norm can be used for sparsity [1]. Sparsity is very useful and effective because of
betting on sparsity principal [2] and the Occam’s razor [3].

If x = [x1, . . . , xd]
⊤, for having sparsity, we should use subset selection for the

regularization of a cost function Ω0(x):

minimize
x

Ω(x) := Ω0(x) + λ ||x ||0, (1)

where:

||x ||0 :=
d∑

j=1

I(xj ̸= 0) =

{
0 if xj = 0,
1 if xj ̸= 0,

(2)

is the “ℓ0” norm, which is not a norm (so we use “.” for it) because it does not satisfy
the norm properties [4]. The “ℓ0” norm counts the number of non-zero elements so when
we penalize it, it means that we want to have sparser solutions with many zero entries.

According to [5], the convex relaxation of “ℓ0” norm (subset selection) is ℓ1 norm.
Therefore, we write the regularized optimization as:

minimize
x

Ω(x) := Ω0(x) + λ ||x ||1. (3)

The ℓ1 regularization is also referred to as lasso (least absolute shrinkage and selection
operator) regularization [6, 7]. Different methods exist for solving optimization having ℓ1
norm, such as its approximation by Huber function [8], proximal algorithm and soft
thresholding [9], coordinate descent [10, 11], and subgradients. In the following, we
explain these methods.

Non-smooth Optimization 5 / 36

Convex Conjugate and
the Huber function

Non-smooth Optimization 6 / 36

Convex Conjugate

Consider this figure showing a line which supports the function f meaning that it is
tangent to the function and the function upper-bounds it. In other words, if the line goes
above where it is, it will intersect the function in more than a point.

Now let the support line be multi-dimensional to be a support hyperplane. For having this
tangent support hyperplane with slope y ∈ Rd and intercept β ∈ R, we should have:

y⊤x + β = f (x) =⇒ β = f (x)− y⊤x .

We want the smallest intercept for the support hyperplane:

β∗ = min
x∈Rd

(
f (x)− y⊤x

)
= − max

x∈Rd

(
y⊤x − f (x)

)
.

Non-smooth Optimization 7 / 36

Convex Conjugate

We found:

β∗ = min
x∈Rd

(
f (x)− y⊤x

)
= − max

x∈Rd

(
y⊤x − f (x)

)
.

Definition (Convex conjugate of function)

The conjugate gradient of function f (.) is defined as:

f ∗(y) := sup
x∈Rd

(
y⊤x − f (x)

)
. (4)

Therefore, we define f ∗(y) := −β∗ to have the convex conjugate defined above.

The convex conjugate of a function is always convex, even if the function itself is not
convex, because it is point-wise maximum of affine functions.

Non-smooth Optimization 8 / 36

Convex Conjugate

Recall the convex conjugate: f ∗(y) := supx∈Rd

(
y⊤x − f (x)

)
.

Lemma (Conjugate of convex conjugate)
The conjugate of convex conjugate of a function is:

f ∗∗(x) = sup
y∈dom(f ∗)

(
x⊤y − f ∗(y)

)
. (5)

It is always a lower-bound for the function, i.e., f ∗∗(x) ≤ f (x).
If the function f (.) is convex, we have f ∗∗(x) = f (x); hence, for a convex function, we have:

f (x) = sup
y∈dom(f ∗)

(
x⊤y − f ∗(y)

)
. (6)

Non-smooth Optimization 9 / 36

Huber Function: Smoothing L1 Norm by Convex
Conjugate

Lemma (The convex conjugate of ℓ1 norm)

The convex conjugate of f (.) = ∥.∥1 is:

f ∗(y) =
{

0 if ∥y∥∞ ≤ 1
∞ Otherwise.

(7)

Proof.
We can write ℓ1 norm as:

f (x) = ∥x∥1 = max
∥z∥∞≤1

x⊤z .

Using this in Eq. (4), f ∗(y) := supx∈Rd

(
y⊤x − f (x)

)
, results in Eq. (7) because:

f ∗(y) := sup
x∈Rd

(
y⊤x − max

∥z∥∞≤1
x⊤z

)
= sup

x∈Rd

(
y⊤x − max

∥z∥∞≤1
z⊤x

)
=

{
0 if ∥y∥∞ ≤ 1
∞ Otherwise.

Non-smooth Optimization 10 / 36

Huber Function: Smoothing L1 Norm by Convex
Conjugate

Lemma (Gradient in terms of convex conjugate)

For any function f (.), we have:

∇f (x) = arg max
y∈dom(f ∗)

(
x⊤y − f ∗(y)

)
. (8)

We saw that the convex conjugate of f (.) = ∥.∥1 is:

f ∗(y) =
{

0 if ∥y∥∞ ≤ 1
∞ Otherwise.

According to Eq. (8), we have ∇f (x) = argmax∥y∥∞≤1 x⊤y for f (.) = ∥.∥1.
For x = 0, we have ∇f (x) = argmax∥y∥∞≤1 0 which has many solutions. Therefore, at
x = 0, the function ∥.∥1 norm is not differentiable and not smooth because the gradient
at that point is not unique.

Non-smooth Optimization 11 / 36

Huber Function: Smoothing L1 Norm by Convex
Conjugate

We can smooth the ℓ1 norm at x = 0 using convex conjugate.

We saw that the convex conjugate of f (.) = ∥.∥1 is:

f ∗(y) =
{

0 if ∥y∥∞ ≤ 1
∞ Otherwise.

Let x = [x1, . . . , xd]
⊤. As we have f (x) = ∥x∥1 =

∑d
j=1 |xj |, we can use the convex

conjugate for every dimension f (xj) = |xj |:

f ∗(yj) =

{
0 if |yj | ≤ 1
∞ Otherwise.

(9)

According to Eq. (6), f (x) = supy∈dom(f ∗)
(
x⊤y − f ∗(y)

)
, we have:

|xj | = sup
y∈R

(
xjyj − f ∗(yj)

) (9)
= max

|yj |≤1
xjyj .

This is not unique for xj = 0. Hence, we add a µ-strongly convex function to the above
equation to make the solution unique at xj = 0 also.

This added term is named the proximity function defined below.

Non-smooth Optimization 12 / 36

Huber Function: Smoothing L1 Norm by Convex
Conjugate

Definition (Proximity function [12])

A proximity function p(y) for a closed convex set S ∈ dom(p) is a function which is continuous
and strongly convex. We can change Eq. (6), f (x) = supy∈dom(f ∗)

(
x⊤y − f ∗(y)

)
, to:

f (x) ≈ fµ(x) := sup
y∈dom(f ∗)

(
x⊤y − f ∗(y)− µ p(y)

)
, (10)

where µ > 0.

Recall Eq. (9): f ∗(yj) =

{
0 if |yj | ≤ 1
∞ Otherwise.

Using Eq. (10), we can have:

|xj | ≈ sup
y∈R

(
xjyj − f ∗(yj)−

µ

2
y2
j

) (9)
= max

|yj |≤1
(xjyj −

µ

2
y2
j) =

{
x2j
2µ

if |xj | ≤ µ

|xj | − µ
2

if |xj | > µ.

This approximation to ℓ1 norm, which is differentiable everywhere, including at xj = 0, is
named the Huber function.

Note that the Huber function is the Moreau envelope of absolute value.

Non-smooth Optimization 13 / 36

Huber Function: Smoothing L1 Norm by Convex
Conjugate

Definition (Huber and pseudo-Huber functions (1992) [8])
The Huber function and pseudo-Huber functions are:

hµ(x) =

{
x2

2µ
if |x | ≤ µ

|x | − µ
2

if |x | > µ,
(11)

ĥµ(x) =

√(x

µ

)2
+ 1− 1, (12)

respectively, where µ > 0.

The derivative of these functions is easily calculated. For example, the derivative of Huber
function is:

∇hµ(x) =

{ x
µ

if |x | ≤ µ

sign(x) if |x | > µ.

Non-smooth Optimization 14 / 36

Huber and pseudo-Huber Functions

(a) Comparison of ℓ1 and ℓ2 norms in R1, (b) comparison of ℓ1 norm (i.e., absolute value
in R1) and the Huber function, and (c) comparison of ℓ1 norm (i.e., absolute value in R1)
and the pseudo-Huber function.

In contrast to ℓ1 norm or absolute value, these two functions are smooth so they
approximate the ℓ1 norm smoothly. This figure also shows that the Huber function is
always upper-bounded by absolute value (ℓ1 norm); however, this does not hold for
pseudo-Huber function.

We can also see that the approximation of Huber function is better than the
approximation of pseudo-Huber function; however, its calculation is harder than
pseudo-Huber function because it is a piece-wise function (compare Eqs. (11) and (12)).

Moreover, the figure shows a smaller positive value µ give better approximations, although
it makes calculation of the Huber and pseudo-Huber functions harder.

Non-smooth Optimization 15 / 36

Soft-thresholding and
Proximal Methods

Non-smooth Optimization 16 / 36

Soft-thresholding and Proximal Methods
Proximal mapping was introduced before:

proxλg (x) := argmin
u

(
g(u) +

1

2λ
∥u − x∥22

)
. (13)

We can use proximal mapping of non-smooth functions to solve non-smooth optimization
by proximal methods introduced before.

For example, we can solve an optimization problem containing ℓ1 norm in its objective
function using the proximal mapping of ℓ1 norm (soft-thresholding):

[proxλ∥.∥1 (x)]j = max(0, |xj | − λ) sign(xj) = sλ(xj) :=

 xj − λ if xj ≥ λ
0 if |xj | < λ
xj + λ if xj ≤ −λ,

(14)

Then, we can use any of the proximal methods such as proximal point method and
proximal gradient method.

For solving the regularized problem (3), minimizex Ω(x) := Ω0(x) + λ ||x ||1, which is
optimizing a composite function, we can use the proximal gradient method introduced
before.

Non-smooth Optimization 17 / 36

Coordinate Descent

Non-smooth Optimization 18 / 36

Coordinate Method

Assume x = [x1, . . . , xd]
⊤. For solving minimizex f (x), coordinate method [10] updates

the dimensions (coordinates) of solution one-by-one and not all dimensions together at
once:

x
(k+1)
1 := argmin

x1
f (x1, x

(k)
2 , x

(k)
3 , . . . , x

(k)
d),

x
(k+1)
2 := argmin

x2
f (x

(k+1)
1 , x2, x

(k)
2 , . . . , x

(k)
d),

...

x
(k+1)
d := argmin

xd
f (x

(k+1)
1 , x

(k+1)
2 , x

(k+1)
3 , . . . , xd),

(15)

until convergence of all dimensions of solution.

Note that the update of every dimension uses the latest update of previously updated
dimensions.

The order of updates for the dimensions does not matter.

The idea of coordinate descent algorithm is similar to the idea of Gibbs sampling [13, 14]
where we work on the dimensions of the variable one by one.

Non-smooth Optimization 19 / 36

Coordinate Descent

If we use a step of gradient descent, x (k+1) := x (k) − η∇f (x (k)), for every of the above
updates, the method is named coordinate descent.

If we use proximal gradient method, x (k+1) := proxη(k)g

(
x (k) − η(k)∇f (x (k))

)
, for every

update in coordinate method, the method is named the proximal coordinate descent.

We can group some of the dimensions (features) together and alternate between updating
the blocks (groups) of features. That method is named block coordinate descent.

The convergence analysis of coordinate descent and block coordinate descent methods
can be found in [15, 16] and [17], respectively. They show that if the function f (.) is
continuous, proper, and closed, the coordinate descent method converges to a stationary
point.

There exist some other faster variants of coordinate descent named accelerated
coordinate descent [18, 19].

Similar to SGD, the full gradient is not available in coordinate descent to use for checking
convergence. So, we should use other convergence criteria such as maximum number of
iterations or checking convergence for each of the variables.

Although coordinate descent methods are very simple and have shown to work properly
for ℓ1 norm optimization [11], they have not sufficiently attracted the attention of
researchers in the field of optimization [10].

Non-smooth Optimization 20 / 36

L1 Norm Optimization
Coordinate descent method can be used for ℓ1 norm (lasso) optimization [11] because

every coordinate of the ℓ1 norm is an absolute value (∥x∥1 =
∑d

j=1 |xj | for
x = [x1, . . . , xd]

⊤) and the derivative of absolute value is a simple sign function.

One of the well-known ℓ1 optimization methods is the lasso regression (1996) [6, 2, 7]:

minimize
β

1

2
∥y − Xβ∥22 + λ∥β∥1, (16)

where y ∈ Rn are the labels, X = [x1, . . . , xd] ∈ Rn×d are the observations,
β = [β1, . . . , βd]

⊤ ∈ Rd are the regression coefficients, and λ is the regularization
parameter. The lasso regression is sparse which is effective as explained before.

Let c denote the objective function in Eq. (16). The objective function can be simplified
as:

0.5(y⊤y − 2β⊤X⊤y + β⊤X⊤Xβ) + λ∥β∥1.

We can write the j-th element of this objective, denoted by cj , as:

cj =
1

2
(y⊤y − 2x⊤

j yβj + βjx⊤
j x jβj + βjx⊤

j X−jβ−j) + λ|βj |,

where X−j := [x1, . . . , x j−1, x j+1, . . . , xd] and β−j := [β1, . . . , βj−1, βj+1, . . . , βd]
⊤.

Non-smooth Optimization 21 / 36

L1 Norm Optimization
We wrote the j-th element of this objective, denoted by cj , as:

cj =
1
2
(y⊤y − 2x⊤

j yβj + βjx⊤
j x jβj + βjx⊤

j X−jβ−j) + λ|βj |.
For coordinate descent, we need gradient of objective function w.r.t. every coordinate.
The derivatives of other coordinates of objective w.r.t. βj are zero so we need cj for
derivative w.r.t. βj .

Taking derivative of cj w.r.t. βj and setting it to zero gives:

∂c

∂βj
=

∂cj

∂βj
= x⊤

j x jβj + x⊤
j (X−jβ−j − y) + λ sign(βj)

set
= 0

=⇒ βj = s λ

∥x j∥
2
2

(x⊤
j (y − X−iβ−i)

x⊤
j x j

)

=

x⊤j (y−X−iβ−i)

∥x j∥22
− λ

∥x j∥22
if

x⊤j (y−X−iβ−i)

x⊤j x j
≥ λ

∥x j∥22

0 if |
x⊤j (y−X−iβ−i)

x⊤j x j
|< λ

∥x j∥22
x⊤j (y−X−iβ−i)

∥x j∥22
+ λ

∥x j∥22
if

x⊤j (y−X−iβ−i)

x⊤j x j
≤− λ

∥x j∥22
,

which is a soft-thresholding function (see Eq. (14)).

Therefore, coordinate descent for ℓ1 optimization finds the soft-thresholding solution, the
same as the proximal mapping. We can use this soft-thresholding in coordinate descent
where we use βj ’s in Eq. (15) rather than xj ’s.

Non-smooth Optimization 22 / 36

Subgradient Methods

Non-smooth Optimization 23 / 36

Subgradient
We know that the convex conjugate f ∗(y) := supx∈Rd

(
y⊤x − f (x)

)
is always convex.

If the convex conjugate f ∗(y) is strongly convex, then we have only one gradient
according to Eq. (8), ∇f (x) = argmaxy∈dom(f ∗)

(
x⊤y − f ∗(y)

)
.

However, if the convex conjugate is only convex and not strongly convex, Eq. (8) might
have several solutions so the gradient may not be unique.

For the points in which the function does not have a unique gradient, we can have a set
of subgradients, defined below.

Definition (Subgradient)

Consider a convex function f (.) with domain D. The vector g ∈ Rd is a subgradient of f (.) at
x ∈ D if it satisfies:

f (y) ≥ f (x) + g⊤(y − x), ∀y ∈ D. (17)

Non-smooth Optimization 24 / 36

Subdifferential

As this figure shows, if the function is not smooth at a point, it has multiple subgradients
at that point. This is while there is only one subgradient (which is the gradient) for a
point at which the function is smooth.

Definition (subdifferential)

The subdifferential of a convex function f (.), with domain D, at a point x ∈ D is the set of all
subgradients at that point:

∂f (x) := {g | g⊤(y − x)
(17)

≤ f (y)− f (x), ∀y ∈ D}. (18)

The subdifferential is a closed convex set.

Every subgradient is a member of the subdifferential, i.e., g ∈ ∂f (x). An example
subdifferential is shown in the above figure.

Non-smooth Optimization 25 / 36

Subdifferential for ℓ1 norm

An example of subgradient is the subdifferential of absolute value, f (.) = |.|:

∂f (x) =

 1 if x > 0
∈ [−1, 1] if x = 0
−1 if x < 0.

(19)

The subgradient of absolute value is equal to the gradient for x < 0 and x > 0 while there
exists a set of subgradients at x = 0 because absolute value is not smooth at that point.

We can also compute the subgradient of ℓ1 norm because we have:

f (x) = ∥x∥1 =
d∑

i=1

|xi | =
d∑

i=1

fi (x i),

for x = [x1, . . . , xd]
⊤.

We take Eq. (19) as the subdifferential of the i-th dimension, denoted by ∂fi (xi). Hence,
for f (x) = ∥x∥1, we have ∂f (x) = ∂f1(x1)× · · · × ∂fd (xd) where × denotes the Cartesian
product of sets.

Non-smooth Optimization 26 / 36

Subgradient
We can have the first-order optimality condition using subgradients by generalizing
∇f (x∗) = 0 as follows.

Lemma (First-order optimality condition with subgradient)

If x∗ is a local minimizer for a function f (.), then:

0 ∈ ∂f (x∗). (20)

Note that if f (.) is convex, this equation is a necessary and sufficient condition for a minimizer.

Proof.
According to Eq. (17) in the definition of subgradient, we have:

f (y) ≥ f (x∗) + g⊤(y − x∗), ∀y .

If we have g = 0 ∈ ∂f (x∗), we have:

f (y) ≥ f (x∗) + 0⊤(y − x∗) = f (x∗),

which means that x∗ is a minimizer.

Non-smooth Optimization 27 / 36

Subgradient in Some Example Functions

The following lemma can be useful for calculation of subdifferential of functions.

Lemma

Some useful properties for calculation of subdifferential of functions:

▶ For a smooth function or at points where the function is smooth, subdifferential has only
one member which is the gradient: ∂f (x) = {∇f (x)}.

▶ Linear combination: If f (x) =
∑n

i=1 ai fi (x) with ai ≥ 0, then ∂f (x) =
∑n

i=1 ai∂fi (x).

▶ Affine transformation: If f (x) = f0(Ax + b), then ∂f (x) = A⊤∂f0(Ax + b).

▶ Point-wise maximum: Suppose f (x) = max{f1(x), . . . , fn(x)} where fi ’s are differentiable.
Let I (x) := {i |fi = f (x)} states which function has the maximum value for the point x .
At any point other than the intersection point of functions (which is smooth), the
subgradient is g = ∇fi (x) for i ∈ I (x). At the intersection point of two functions (which
is not smooth), e.g. fi (x) = fi+1(x), we have:

∂f (x) = {g | t∇fi (x) + (1− t)∇fi+1(x), ∀t ∈ [0, 1]}.

Non-smooth Optimization 28 / 36

Subgradient Method

The subgradient method, first proposed in [20], is used for solving the unconstrained
optimization problem, minimizex f (x), where the function f (.) is not smooth, i.e., not
differentiable, everywhere in its domain.

It iteratively updates the solution as:

x (k+1) := x (k) − η(k)g (k), (21)

where g (k) is any subgradient of function f (.) in point x at iteration k, i.e.
g (k) ∈ ∂f (x (k)), and η(k) is the step size at iteration k.

Comparing this update with the update in gradient descent:

x (k+1) := x (k) − η∇f (x (k)),

shows that gradient descent is a special case of the subgradient method because for a
smooth function, gradient is the only member of the subdifferential set (see Lemma in the
previous slide); hence, the only subgradient is the gradient.

Non-smooth Optimization 29 / 36

Stochastic Subgradient Method
Consider the optimization problem minimizex f (x) where at least one of the fi (.)
functions is not smooth.

Stochastic subgradient method [21] randomly samples one of the points to update the
solution in every iteration:

x (k+1) := x (k) − η(k)g (k)
i , (22)

where g (k)
i ∈ ∂fi (x (k)).

Comparing this with the update in stochastic gradient descent (SGD):

x (k+1) := x (k) − η(k)∇fi (x (k)),

shows that stochastic gradient descent is a special case of stochastic gradient descent
because for a smooth function, gradient is the only member of the subdifferential set (see
Lemma in two previous slides).

We can have mini-batch stochastic subgradient method which is a generalization of
mini-batch SGD for non-smooth functions. In this case, the update of solution is:

x (k+1) := x (k) − η(k)
1

b

∑
i∈Bk′

g (k)
i . (23)

If the function is not smooth, we can also use subgradient instead of gradient in other
stochastic methods such as SAG and SVRG, which were introduced before. For this, we

need to use g (k)
i rather than ∇f (x (k)) in these methods.

Non-smooth Optimization 30 / 36

Projected Subgradient Method

Consider the constrained optimization problem:

minimize
x

f (x)

subject to x ∈ S,
(24)

where S is the feasible set of constraints.

If the function f (.) is not smooth, we can use he projected subgradient method [22]
which generalizes the projected gradient method introduced before.

Similar to the update in projected gradient method:

x (k+1) := ΠS
(
x (k) − η(k)∇f (x (k))

)
,

projected subgradient method iteratively updates the solution as:

x (k+1) = ΠS
(
x (k) − η(k)g (k)

)
, (25)

until convergence of the solution.

Non-smooth Optimization 31 / 36

Acknowledgement

Some slides of this slide deck are inspired by the lectures of Prof. Stephen Boyd at the
Stanford University.

Some slides of this slide deck are inspired by the teaching of Prof. Mu Zhu at the
University of Waterloo.

Our tutorial also has the materials of this slide deck: [23]

Non-smooth Optimization 32 / 36

References

[1] B. Ghojogh and M. Crowley, “The theory behind overfitting, cross validation,
regularization, bagging, and boosting: tutorial,” arXiv preprint arXiv:1905.12787, 2019.

[2] J. Friedman, T. Hastie, R. Tibshirani, et al., The elements of statistical learning, vol. 1.
Springer series in statistics New York, 2001.

[3] P. Domingos, “The role of Occam’s razor in knowledge discovery,” Data mining and
knowledge discovery, vol. 3, no. 4, pp. 409–425, 1999.

[4] S. Boyd and L. Vandenberghe, Convex optimization.
Cambridge university press, 2004.

[5] D. L. Donoho, “For most large underdetermined systems of linear equations the minimal
ℓ1-norm solution is also the sparsest solution,” Communications on Pure and Applied
Mathematics: A Journal Issued by the Courant Institute of Mathematical Sciences, vol. 59,
no. 6, pp. 797–829, 2006.

[6] R. Tibshirani, “Regression shrinkage and selection via the lasso,” Journal of the Royal
Statistical Society: Series B (Methodological), vol. 58, no. 1, pp. 267–288, 1996.

[7] T. Hastie, R. Tibshirani, and M. Wainwright, Statistical learning with sparsity: the lasso
and generalizations.
Chapman and Hall/CRC, 2019.

Non-smooth Optimization 33 / 36

References (cont.)

[8] P. J. Huber, “Robust estimation of a location parameter,” in Breakthroughs in statistics,
pp. 492–518, Springer, 1992.

[9] N. Parikh and S. Boyd, “Proximal algorithms,” Foundations and Trends in optimization,
vol. 1, no. 3, pp. 127–239, 2014.

[10] S. J. Wright, “Coordinate descent algorithms,” Mathematical Programming, vol. 151,
no. 1, pp. 3–34, 2015.

[11] T. T. Wu and K. Lange, “Coordinate descent algorithms for lasso penalized regression,”
The Annals of Applied Statistics, vol. 2, no. 1, pp. 224–244, 2008.

[12] B. Banaschewski and J.-M. Maranda, “Proximity functions,” Mathematische Nachrichten,
vol. 23, no. 1, pp. 1–37, 1961.

[13] S. Geman and D. Geman, “Stochastic relaxation, Gibbs distributions, and the Bayesian
restoration of images,” IEEE Transactions on pattern analysis and machine intelligence,
no. 6, pp. 721–741, 1984.

[14] B. Ghojogh, H. Nekoei, A. Ghojogh, F. Karray, and M. Crowley, “Sampling algorithms,
from survey sampling to Monte Carlo methods: Tutorial and literature review,” arXiv
preprint arXiv:2011.00901, 2020.

[15] Z.-Q. Luo and P. Tseng, “On the convergence of the coordinate descent method for
convex differentiable minimization,” Journal of Optimization Theory and Applications,
vol. 72, no. 1, pp. 7–35, 1992.

Non-smooth Optimization 34 / 36

References (cont.)

[16] Z.-Q. Luo and P. Tseng, “Error bounds and convergence analysis of feasible descent
methods: a general approach,” Annals of Operations Research, vol. 46, no. 1,
pp. 157–178, 1993.

[17] P. Tseng, “Convergence of a block coordinate descent method for nondifferentiable
minimization,” Journal of optimization theory and applications, vol. 109, no. 3,
pp. 475–494, 2001.

[18] Y. T. Lee and A. Sidford, “Efficient accelerated coordinate descent methods and faster
algorithms for solving linear systems,” in 2013 ieee 54th annual symposium on foundations
of computer science, pp. 147–156, IEEE, 2013.

[19] O. Fercoq and P. Richtárik, “Accelerated, parallel, and proximal coordinate descent,”
SIAM Journal on Optimization, vol. 25, no. 4, pp. 1997–2023, 2015.

[20] N. Z. Shor, Minimization methods for non-differentiable functions, vol. 3.
Springer Science & Business Media, 2012.

[21] N. Z. Shor, Nondifferentiable optimization and polynomial problems, vol. 24.
Springer Science & Business Media, 1998.

[22] Y. I. Alber, A. N. Iusem, and M. V. Solodov, “On the projected subgradient method for
nonsmooth convex optimization in a Hilbert space,” Mathematical Programming, vol. 81,
no. 1, pp. 23–35, 1998.

Non-smooth Optimization 35 / 36

References (cont.)

[23] B. Ghojogh, A. Ghodsi, F. Karray, and M. Crowley, “KKT conditions, first-order and
second-order optimization, and distributed optimization: Tutorial and survey,” arXiv
preprint arXiv:2110.01858, 2021.

Non-smooth Optimization 36 / 36

