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What is Optimization?
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Optimization problem

Consider a function representing some cost. We call it cost function or objective function.

We want to minimize or maximize this objective function.

Examples:
▶ Example for minimization: the cost function can be the error of some airplane

structure from the perfect aerodynamic structure.
▶ Example for maximization: the objective function can be the profit of the company.
▶ All life is optimization!
▶ All machine learning in artificial intelligence is optimization!

The variables of the objective function are called the objective variables or decision
variables or optimization variables.

Example:
minimize

x
f (x) = x2.
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Univariate and multivariate optimization problems

The optimization problem can be univariate, meaning that the optimization problem has
only one scalar variable. Example:

minimize
x

f (x) = x2.

The optimization problem can be multivariate, meaning that the optimization problem
has several scalar variables {x1, . . . , xn}. These variables can be combined into a vector
x = [x1, . . . , xn]⊤ or matrix. Example:

minimize
x

f (x) = x⊤x = x21 + · · ·+ x2n .
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Unconstrained and constrained problems

The optimization problem can be unconstrained, meaning that we simply optimize a
function only. Example:

minimize
x

f (x) = x⊤x .

The optimization problem can be constrained, meaning that we optimize a function while
there are some constraints on the optimization variables. Example:

minimize
x=[x1,x2]⊤

f (x) = x⊤x = x21 + x22

subject to x1 + 2x2 = 8,

2x1 + x22 ≤ 16.
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Optimization versus search
If the objective problem is simple enough,
we can solve it using classic optimizationmethods. We will learn important classic methods.

If the objective function is com-
plicated or if we have too many constraints, we can use search for finding a good solution.
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Search for optimization
We can do grid search or brute-force search.

Or we can search wisely by metaheuristic optimization. We will learn several important
metaheuristic optimization methods.
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Preliminaries on Sets and Norms
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Interior, closure, and boundary

Definition (Interior of set)

Consider a set D in a metric space Rd . The point x ∈ D is an interior point of the set if:

∃ϵ > 0 such that {y | ∥y − x∥2 ≤ ϵ} ⊆ D.

The interior of the set, denoted by int(D), is the set containing all the interior points of the set.
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Interior, closure, and boundary

Definition (Closure and boundary of set)

The closure of the set is defined as cl(D) := Rd \ int(Rd \ D).

The boundary of set is defined as bd(D) := cl(D) \ int(D).

An open (resp. closed) set does not (resp. does) contain its boundary.

The closure of set can be defined as the smallest closed set containing the set. In other
words, the closure of set is the union of interior and boundary of the set.
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Convex set

Definition (Convex set and convex hull)
A set D is a convex set if it completely contains the line segment between any two points in the
set D:

∀x , y ∈ D, 0 ≤ t ≤ 1 =⇒ tx + (1− t)y ∈ D.

The convex hull of a (not necessarily convex) set D is the smallest convex set containing the set
D. If a set is convex, it is equal to its convex hull.

Preliminaries 11 / 66



Min, max, sup, inf

Definition (Minimum, maximum, infimum, and supremum)

A minimum and maximum of a function f : Rd → R, f : x 7→ f (x), with domain D, are defined
as:

min
x

f (x) ≤ f (y), ∀y ∈ D,

max
x

f (x) ≥ f (y), ∀y ∈ D,

respectively.

The minimum and maximum of a function belong to the range of function.
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Min, max, sup, inf

Definition (Infimum and supremum)
Infimum and supremum are the lower-bound and upper-bound of function, respectively:

inf
x

f (x) := max{z ∈ R | z ≤ f (x), ∀x ∈ D},

sup
x

f (x) := min{z ∈ R | z ≥ f (x), ∀x ∈ D}.

Depending on the function, the infimum and supremum of a function may or may not belong to
the range of function.
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Inner product

Definition (Inner product of vectors)

Consider two vectors x = [x1, . . . , xd ]
⊤ ∈ Rd and y = [y1, . . . , yd ]

⊤ ∈ Rd . Their inner product,
also called dot product, is:

⟨x , y⟩ = x⊤y =
d∑

i=1

xi yi .

Definition (Inner product of matrices)

We also have inner product between matrices X ,Y ∈ Rd1×d2 . Let X ij denote the (i , j)-th
element of matrix X . The inner product of X and Y is:

⟨X ,Y ⟩ = tr(X⊤Y ) =

d1∑
i=1

d2∑
j=1

X i,j Y i,j ,

where tr(.) denotes the trace of matrix.
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Norm

Definition (Norm)

A function ∥ · ∥ : Rd → R, ∥ · ∥ : x 7→ ∥x∥ is a norm if it satisfies:

1 ∥x∥ ≥ 0, ∀x
2 ∥ax∥ = |a| ∥x∥, ∀x and all scalars a

3 ∥x∥ = 0 if and only if x = 0

4 Triangle inequality: ∥x + y∥ ≤ ∥x∥+ ∥y∥.
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Important norms for vectors
Some important norms for a vector x = [x1, . . . , xd ]

⊤ are as follows.

The ℓp norm is:

∥x∥p :=
(
|x1|p + · · ·+ |xd |p

)1/p
,

where p ≥ 1 and |.| denotes the absolute value.

Two well-known ℓp norms are ℓ1 norm and ℓ2 norm (also called the Euclidean norm) with
p = 1 and p = 2, respectively:

∥x∥1 := |x1|+ · · ·+ |xd | =
d∑

i=1

|xi |,

∥x∥2 :=
√

x21 + · · ·+ x2d =

√√√√ d∑
i=1

x2i ,

The ℓ∞ norm, also called the infinity norm, the maximum norm, or the Chebyshev norm,
is:

∥x∥∞ := max{|x1|, . . . , |xd |}.
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Important norms for matrices

Some important norms for a matrix X ∈ Rd1×d2 are as follows.

The formulation of the Frobenius norm for a matrix is similar to the formulation of ℓ2
norm for a vector:

∥X∥F :=

√√√√√ d1∑
i=1

d2∑
j=1

X 2
i,j ,

where X ij denotes the (i , j)-th element of X .
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Quadratic forms using norms

For x ∈ Rd and X ∈ Rd1×d2 , we have:

∥x∥22 = x⊤x = ⟨x , x⟩ =
d∑

i=1

x2i ,

∥X∥2F = tr(X⊤X ) = ⟨X ,X ⟩ =
d1∑
i=1

d2∑
j=1

X 2
i,j ,

which are convex and in quadratic forms.
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Unit balls

Definition (Unit ball)

The unit ball for a norm ∥ · ∥ is:

B := {x ∈ Rd | ∥x∥ ≤ 1}.

The unit balls, in R2, for (a) ℓ1 norm, (b) ℓ2 norm, and (c) ℓ∞ norm.
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Dual norm

Definition (Dual norm)

Let ∥.∥ be a norm on Rd . Its dual norm is:

∥x∥∗ := sup{x⊤y | ∥y∥ ≤ 1}. (1)

Note that the notation ∥ · ∥∗ should not be confused with the the nuclear norm despite of
similarity of notations.
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Dual norm

Lemma (Hölder’s [1] and Cauchy-Schwarz inequalities [2])
Hölder’s inequality states that:

|x⊤y | ≤ ∥x∥p∥x∥q ,

where p, q ∈ [1,∞] and p and q satisfy:

1

p
+

1

q
= 1. (2)

The norms ∥.∥p and ∥.∥q are dual of each other (dual norms).
A special case of the Hölder’s inequality is the Cauchy-Schwarz inequality, stated as:

|x⊤y | ≤ ∥x∥2∥x∥2.

According to Eq. (2), we have:

∥ · ∥p =⇒ ∥ · ∥∗ = ∥ · ∥p/(p−1), ∀p ∈ [1,∞].

For example, the dual norm of ∥.∥2 is ∥.∥2 again and the dual norm of ∥.∥1 is ∥.∥∞.

Preliminaries 21 / 66



Dual norm

∥ · ∥p =⇒ ∥ · ∥∗ = ∥ · ∥p/(p−1), ∀p ∈ [1,∞].

The dual of ℓ2 norm is ℓ2 norm.

The dual of ℓ1 norm is ℓ∞ norm.

The dual of ℓ∞ norm is ℓ1 norm.

The unit balls, in R2, for (a) ℓ1 norm, (b) ℓ2 norm, and (c) ℓ∞ norm.
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Cone and dual cone

Definition (Cone)

A set K ⊆ Rd is a cone if:

1 it contains the origin, i.e., 0 ∈ K,

2 K is a convex set,

3 for each x ∈ K and λ ≥ 0, we have λx ∈ K.

Definition (Dual cone)
The dual cone of a cone K is:

K∗ := {y | y⊤x ≥ 0, ∀x ∈ K}.
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Proper cone

Definition (Proper cone [3])

A convex cone K ⊆ Rd is a proper cone if:

1 K is closed, i.e., it contains its boundary,

2 K is solid, i.e., its interior is non-empty,

3 K is pointed, i.e., it contains no line. In other words, it is not a two-sided cone around the
origin.
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Generalized inequality

Definition (Generalized inequality [3])

A generalized inequality, defined by a proper cone K, is:

x ⪰K y ⇐⇒ x − y ∈ K.

Note that x ⪰K y can also be stated as x − y ⪰K 0.
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Important examples for generalized inequality

The generalized inequality defined by the non-negative orthant, K = Rd
+, is the default

inequality for vectors x = [x1, . . . , xd ]
⊤, y = [y1, . . . , yd ]

⊤:

x ⪰ y ⇐⇒ x ⪰Rd
+

y .

It means component-wise inequality:

x ⪰ y ⇐⇒ xi ≥ yi , ∀i ∈ {1, . . . , d}.

The generalized inequality defined by the positive definite cone, K = Sd+, is the default

inequality for symmetric matrices X ,Y ∈ Sd :

X ⪰ Y ⇐⇒ X ⪰Sd+
Y .

It means (X − Y ) is positive semi-definite (all its eigenvalues are non-negative).

If the inequality is strict, i.e. X ≻ Y , it means that (X − Y ) is positive definite (all its
eigenvalues are positive).

x ⪰ 0 means all elements of vector x are non-negative and X ⪰ 0 means the matrix X is
positive semi-definite.
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Preliminaries on Functions
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Convex function

Definition (Convex function)

A function f (.) with domain D is convex if:

f
(
αx + (1− α)y

)
≤ αf (x) + (1− α)f (y), ∀x , y ∈ D, (3)

where α ∈ [0, 1].

If ≥ is changed to ≤ in Eq. (3), the function is concave.
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Convex function

Definition (Convex function)

If the function f (.) is differentiable, it is convex if:

f (x) ≥ f (y) +∇f (y)⊤(x − y), ∀x , y ∈ D. (4)

If ≥ is changed to ≤ in Eq. (4), the function is concave.
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Convex function

Definition (Convex function)

If the function f (.) is twice differentiable, it is convex if its second-order derivative is positive
semi-definite:

∇2f (x) ⪰ 0, ∀x ∈ D. (5)

If ⪰ is changed to ⪯ in Eq. (5), the function is concave.
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Strongly convex function

Definition (Strongly convex function)

A differential function f (.) with domain D is µ-strongly convex if:

f (x) ≥ f (y) +∇f (y)⊤(x − y) +
µ

2
∥x − y∥22, ∀x , y ∈ D and µ > 0. (6)

Moreover, if the function f (.) is twice differentiable, it is µ-strongly convex if its
second-order derivative is positive semi-definite:

y⊤∇2f (x)y ≥ µ∥y∥22, ∀x , y ∈ D and µ > 0. (7)

A strongly convex function has a unique minimizer.
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Lipschitz smoothness

Definition (Lipschitz smoothness)

A function f (.) is Lipschitz smooth (or Lipschitz continuous) if:

|f (x)− f (y)| ≤ L ∥x − y∥2, ∀x , y ∈ D. (8)

The parameter L is called the Lipschitz constant.

A function with Lipschitz smoothness (with Lipschitz constant L) is called L-smooth.

Lipschitz smoothness is used in many convergence and correctness proofs for optimization.
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Preliminaries on Optimization
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Local and global minimizers

Definition (Local minimizer)

A point x ∈ D is a local minimizer of function f (.) if and only if:

∃ ϵ > 0 : ∀y ∈ D, ∥y − x∥2 ≤ ϵ =⇒ f (x) ≤ f (y), (9)

meaning that in an ϵ-neighborhood of x , the value of function is minimum at x .

Definition (Global minimizer)

A point x ∈ D is a global minimizer of function f (.) if and only if:

f (x) ≤ f (y), ∀y ∈ D. (10)
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Minimizer in convex function

Lemma (Minimizer in convex function)

In a convex function, any local minimizer is a global minimizer. In other words, in a convex
function, there exists only one local minimum value which is the global minimum value.

Proof.
Proof can be found in the appendix of the tutorial [4]. Please ask me if you have question about
it. The proof will not be evaluated in the exam, so please try to understand it rather than
memorizing it.

As an imagination, a convex function is like a multi-dimensional bowl with only one minimum
value (it may have several local minimizers but with the same minimum values).

Preliminaries 35 / 66



Minimizer in convex function

Lemma (Gradient of a convex function at the minimizer point)

When the function f (.) is convex and differentiable, a point x∗ is a minimizer if and only if:

∇f (x∗) = 0.

Proof.
Proof can be found in the appendix of the tutorial [4]. Please ask me if you have question about
it. The proof will not be evaluated in the exam, so please try to understand it rather than
memorizing it.
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Stationary, extremum, and saddle points

Definition (Stationary, extremum, and saddle points)

In a general (not-necessarily-convex) function f (.), a point x∗ is a stationary if and only if
∇f (x∗) = 0.

By passing through a saddle point, the sign of the second derivative flips to the opposite
sign.

Minimizer and maximizer points (locally or globally) minimize and maximize the function,
respectively.

A saddle point is neither minimizer nor maximizer, although the gradient at a saddle
point is zero.

Both minimizer and maximizer are also called the extremum points.

A stationary point can be either a minimizer, a maximizer, or a saddle point of function.
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First-order optimality condition

Lemma (First-order optimality condition [5, Theorem 1.2.1])

If x∗ is a local minimizer for a differentiable function f (.), then:

∇f (x∗) = 0. (11)

Note that if f (.) is convex, this equation is a necessary and sufficient condition for a minimizer.

Proof.
Proof can be found in the appendix of the tutorial [4]. Please ask me if you have question about
it. The proof will not be evaluated in the exam, so please try to understand it rather than
memorizing it.

Note
If setting the derivative to zero, ∇f (x∗) = 0, gives a closed-form solution for x∗, the
optimization is done. Otherwise, we should start with some random initialized solution and
iteratively update it using the gradient. We will learn first-order and second-order iterative
optimization methods for that.
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Arguments of optimization

Definition (Arguments of minimization and maximization)

In the domain of function, the point which minimizes (resp. maximizes) the function f (.) is the
argument for the minimization (resp. maximization) of function.

The minimizer and maximizer of function are denoted by

argmin
x

f (x), and

argmax
x

f (x),

respectively.
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Converting optimization problems

Converting max to min and vice versa
We can convert convert maximization to minimization and vice versa:

maximize
x

f (x) = −minimize
x

(
−f (x)

)
,

minimize
x

f (x) = −maximize
x

(
−f (x)

)
.

We can have similar conversions for the arguments of maximization and minimization but as the
sign of optimal value of function is not important in argument, we do not have the negative sign
before maximization and minimization:

argmax
x

f (x) = argmin
x

(
−f (x)

)
,

argmin
x

f (x) = argmax
x

(
−f (x)

)
.
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Converting optimization problems

Converting max to min and vice versa
We can convert convert maximization to minimization and vice versa using the reciprocal of cost
function:

maximize
x

f (x) =
1

minimize
x

1
f (x)

,

minimize
x

f (x) =
1

maximize
x

1
f (x)

.

We can have similar conversions for the arguments of maximization and minimization:

argmax
x

f (x) = argmin
x

1

f (x)
,

argmin
x

f (x) = argmax
x

1

f (x)
.

Preliminaries 41 / 66



Preliminaries on Derivatives
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Dimensionality of derivative

Consider a function f : Rd1 → Rd2 , f : x 7→ f (x).
Derivative of function f (x) ∈ Rd2 with respect to (w.r.t.) x ∈ Rd1 has dimensionality
(d1 × d2).

This is because tweaking every element of x ∈ Rd1 can change every element of
f (x) ∈ Rd2 . The (i , j)-th element of the (d1 × d2)-dimensional derivative states the
amount of change in the j-th element of f (x) resulted by changing the i-th element of x .

Examples
The derivative of a scalar w.r.t. a scalar is a scalar.

The derivative of a scalar w.r.t. a vector is a vector.

The derivative of a scalar w.r.t. a matrix is a matrix.

The derivative of a vector w.r.t. a vector is a matrix.

The derivative of a vector w.r.t. a matrix is a rank-3 tensor.

The derivative of a matrix w.r.t. a matrix is a rank-4 tensor.
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Dimensionality of derivative

In more details:

If the function is f : R → R, f : x 7→ f (x), the derivative (∂f (x)/∂x) ∈ R is a scalar
because changing the scalar x can change the scalar f (x).
If the function is f : Rd → R, f : x 7→ f (x), the derivative (∂f (x)/∂x) ∈ Rd is a vector
because changing every element of the vector x can change the scalar f (x).
If the function is f : Rd1×d2 → R, f : X 7→ f (X ), the derivative (∂f (X )/∂X ) ∈ Rd1×d2 is
a matrix because changing every element of the matrix X can change the scalar f (X ).

If the function is f : Rd1 → Rd2 , f : x 7→ f (x), the derivative (∂f (x)/∂x) ∈ Rd1×d2 is a
matrix because changing every element of the vector x can change every element of the
vector f (x).
If the function is f : Rd1×d2 → Rd3 , f : X 7→ f (X ), the derivative (∂f (X )/∂X ) is a
(d1 × d2 × d3)-dimensional tensor because changing every element of the matrix X can
change every element of the vector f (X ).

If the function is f : Rd1×d2 → Rd3×d4 , f : X 7→ f (X ), the derivative (∂f (X )/∂X ) is a
(d1 × d2 × d3 × d4)-dimensional tensor because changing every element of the matrix X
can change every element of the matrix f (X ).
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Gradient, Jacobian, and Hessian

Definition (Gradient)

Consider a function f : Rd → R, f : x 7→ f (x). In optimizing the function f , the derivative of
function w.r.t. its variable x is called the gradient, denoted by:

∇f (x) :=
∂f (x)
∂x

∈ Rd .

Definition (Hessian)

Consider a function f : Rd → R, f : x 7→ f (x). The second derivative of function w.r.t. to its
derivative is called the Hessian matrix, denoted by:

B = ∇2f (x) :=
∂2f (x)
∂x2

∈ Rd×d .

The Hessian matrix is symmetric. If the function is convex, its Hessian matrix is positive
semi-definite.
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Gradient, Jacobian, and Hessian

Definition (Jacobian)

If the function is multi-dimensional, i.e., f : Rd1 → Rd2 , f : x 7→ f (x), the gradient becomes a
matrix:

J :=
[ ∂f

∂x1
, . . . ,

∂f

∂xd1

]⊤
=


∂f1
∂x1

. . .
∂fd2
∂xd1

...
. . .

...
∂f1
∂xd1

. . .
∂fd2
∂xd1

∈ Rd1×d2 ,

where x = [x1, . . . , xd1 ]
⊤ and f (x) = [f1, . . . , fd2 ]

⊤.

This matrix derivative is called the Jacobian matrix.
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Technique for calculating derivative

According to the size of derivative, we can easily calculate the derivatives. For finding the
correct derivative for multiplications of matrices (or vectors), one can temporarily assume some
dimensionality for every matrix and find the correct dimensionality of matrices in the derivative.

Example

Let X ∈ Ra×b, An example for calculating derivative is:

Ra×b ∋
∂

∂X
(
tr(AXB)

)
= A⊤B⊤ = (BA)⊤. (12)

This is calculated as explained in the following.

We assume A ∈ Rc×a and B ∈ Rb×c so that we can have the matrix multiplication AXB
and its size is AXB ∈ Rc×c because the argument of trace should be a square matrix.

The derivative ∂(tr(AXB))/∂X has size Ra×b because tr(AXB) is a scalar and X is
(a× b)-dimensional.

We know that the derivative should be a kind of multiplication of A and B because
tr(AXB) is linear w.r.t. X .

Now, we should find their order in multiplication. Based on the assumed sizes of A and B,
we see that A⊤B⊤ is the desired size and these matrices can be multiplied to each other.
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Derivative of matrix w.r.t. matrix

Definition (Kronecker product)

Let A ∈ Rma×na and B ∈ Rmb×nb , and aij denote the (i , j)-th element of A. The Kronecker
product of these two matrices is:

R(mamb)×(nanb) ∋ A ⊗ B =

 a11B . . . a1naB
...

. . .
...

ama1B . . . amanaB

 .

Lemma (Derivative of matrix w.r.t. matrix)

The derivative of a matrix w.r.t. another matrix is a tensor. Working with tensors is difficult;
hence, we can use Kronecker product for representing tensor as matrix. This is the
Magnus-Neudecker convention [6] in which all matrices are vectorized. For example, if
X ∈ Ra×b, A ∈ Rc×a, and B ∈ Rb×d , we have:

R(cd)×(ab) ∋
∂

∂X
(AXB) = B⊤ ⊗ A, (13)

where ⊗ denotes the Kronecker product.
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Chain rule

When having composite functions (i.e., function of function), we use chain rule for
derivative. Example:

f (x) =
√

x3 + x2 − x + 10 =
√

g(x), g(x) = x3 + x2 − x + 10,

∂f (x)

∂x
=

∂f (x)

∂g(x)
×

∂g(x)

∂x
=

1

2
√

g(x)
× (3x2 + 2x − 1) =

3x2 + 2x − 1

2
√
x3 + x2 − x + 10

The chain rule in matrix derivatives is usually stated right to left in matrix multiplications
while transpose is used for matrices in multiplication.

Let vec(.) denote vectorization of a Ra×b matrix to a Rab vector.

Let vec−1
a×b(.) be de-vectorization of a Rab vector to a Ra×b matrix.
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Chain rule

Example

f (S) = tr(ASB), S = CM̂D, M̂ =
M

∥M∥2F
,

where A ∈ Rc×a, S ∈ Ra×b, B ∈ Rb×c , C ∈ Ra×d , M̂ ∈ Rd×d , D ∈ Rd×b, and M ∈ Rd×d .

Ra×b ∋
∂f (S)
∂S

(12)
= (BA)⊤.

Rab×d2 ∋
∂S

∂M̂

(13)
= D⊤ ⊗ C ,

Rd2×d2 ∋
∂M̂
∂M

(a)
=

1

∥M∥4F

(
∥M∥2F I d2 − 2M ⊗ M

)
=

1

∥M∥2F

(
I d2 −

2

∥M∥2F
M ⊗ M

)
,

where (a) is because of the formula for the derivative of fraction and I d2 is a
(d2 × d2)-dimensional identity matrix. finally, by chain rule, we have:

Rd×d ∋
∂f

M
= vec−1

d×d

((∂M̂
∂M

)⊤( ∂S

∂M̂

)⊤
vec

(∂f (S)
∂S

))
.
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Optimization Problems
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General optimization problem

Consider the function f : Rd → R, f : x 7→ f (x). Let the domain of function be D where
x ∈ D, x ∈ Rd .

Definition (Unconstrained optimization)

Unconstrained minimization of a cost function f (.):

minimize
x

f (x),

where x is called the optimization variable and the function f (.) is called the objective function
or the cost function.
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General optimization problem

Definition (Constrained optimization)

Constrained optimization problem where we want to minimize the function f (x) while satisfying
m1 inequality constraints and m2 equality constraint:

minimize
x

f (x)

subject to yi (x) ≤ 0, i ∈ {1, . . . ,m1},
hi (x) = 0, i ∈ {1, . . . ,m2}.

f (x) is the objective function, every yi (x) ≤ 0 is an inequality constraint, and every hi (x) = 0
is an equality constraint.

Note
If some of the inequality constraints are not in the form yi (x) ≤ 0, we can restate them as:

yi (x) ≥ 0 =⇒ −yi (x) ≤ 0,

yi (x) ≤ c =⇒ yi (x)− c ≤ 0.

Therefore, all inequality constraints can be written in the form yi (x) ≤ 0.
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General optimization problem

Example:
minimize

x
x1 + 3x22

subject to 2x1 − 10x2 ≤ 5,

− 2x1 + 5x2 ≥ 3,

4x1 + 10x2 = 6.

can be converted to:

minimize
x

x1 + 3x22

subject to 2x1 − 10x2 − 5 ≤ 0,

2x1 − 5x2 + 3 ≤ 0,

4x1 + 10x2 − 6 = 0.
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Minimization and maximization

If the optimization problem is a maximization problem rather than minimization, we can
convert it to maximization by multiplying its objective function to −1:

maximize
x

f (x)

subject to constraints

can be converted to:
minimize

x
− f (x)

subject to constraints
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Feasible point

Definition (Feasible point)
The point x for the optimization problem:

minimize
x

f (x)

subject to yi (x) ≤ 0, i ∈ {1, . . . ,m1},
hi (x) = 0, i ∈ {1, . . . ,m2},

is feasible if:
x ∈ D, and

yi (x) ≤ 0, ∀i ∈ {1, . . . ,m1}, and

hi (x) = 0, ∀i ∈ {1, . . . ,m2}.
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Constrained optimization with the feasible set

Definition (Constrained optimization)
The constrained optimization problem can also be stated as:

minimize
x

f (x)

subject to x ∈ S,

where S is the feasible set of constraints.
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Convex optimization

A convex optimization problem is of the form:

minimize
x

f (x)

subject to yi (x) ≤ 0, i ∈ {1, . . . ,m1},
Ax = b,

where the functions f (.) and yi (.),∀i are all convex functions and the equality constraints are
affine functions.

The feasible set of a convex problem is a convex set.
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Linear programming

A linear programming problem is of the form:

minimize
x

c⊤x + d

subject to Gx ⪯ h,
Ax = b,

where the objective function and equality constraints are affine functions.

The feasible set of a linear programming problem is a a polyhedron set while the cost is planar
(affine).
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Quadratic programming

A quadratic programming problem is of the form:

minimize
x

(1/2)x⊤Px + q⊤x + r

subject to Gx ⪯ h,
Ax = b,

(14)

where P ≻ 0 (which is the second derivative of objective function) is a symmetric positive
definite matrix, the objective function is quadratic, and equality constraints are affine functions.

The feasible set of a quadratic programming problem is a a polyhedron set while the cost is
curvy (quadratic).
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Quadratically constrained quadratic programming

A Quadratically Constrained Quadratic Programming (QCQP) problem is of the form:

minimize
x

(1/2)x⊤Px + q⊤x + r

subject to

(1/2)x⊤M ix + s⊤i x + zi ≤ 0, i ∈ {1, . . . ,m1},
Ax = b,

(15)

where P,M i ≻ 0, ∀i , the objective function and the inequality constraints are quadratic, and
equality constraints are affine functions.

The feasible set of a QCQP problem is intersection of m1 ellipsoids and an affine set, while the
cost is curvy (quadratic).
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Semidefinite programming
A Semidefinite Programming (SDP) problem is of the form:

minimize
X

tr(CX )

subject to X ⪰ 0,

tr(D iX ) ≤ e i , i ∈ {1, . . . ,m1},
tr(AiX ) = bi , i ∈ {1, . . . ,m2},

(16)

where the optimization variable X belongs to the positive semidefinite cone Sd+, tr(.) denotes

the trace of matrix, C ,D i ,Ai ∈ Sd , ∀i , and Sd denotes the cone of (d × d) symmetric matrices.
The trace terms may be written in summation forms. Note that tr(C⊤X ) is the inner product of
two matrices C and X and if the matrix C is symmetric, this inner product is equal to tr(CX ).

Another form for SDP is:
minimize

x
c⊤x

subject to
( d∑

i=1

xiF i

)
+ G ⪯ 0,

Ax = b,

(17)

where x = [x1, . . . , xd ]
⊤, G ,F i ∈ Sd ,∀i , and A, b, and c are constant matrices/vectors.
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Semidefinite programming

A Semidefinite Programming (SDP) problem is of the form:

minimize
X

tr(CX )

subject to X ⪰ 0,

tr(D iX ) ≤ e i , i ∈ {1, . . . ,m1},
tr(AiX ) = bi , i ∈ {1, . . . ,m2}.

(18)
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Optimization Toolboxes

All the standard optimization forms can be restated as SDP because their constraints can
be written as belonging to some cones; hence, they are special cases of SDP.

The interior-point method, or the barrier method can be used for solving various
optimization problems including SDP [7, 3]. We will learn this method in this course.

Optimization toolboxes such as CVX [8] often use interior-point method for solving
optimization problems such as SDP.

The interior-point method is iterative and solving SDP is usually time consuming
especially for large matrices.

If the optimization problem is a convex optimization problem (e.g. SDP is a convex
problem), it has only one local optimum which is the global optimum.
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