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Newton’s Method
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Newton-Raphson root finding method

We can find the root of a function f : x 7→ f (x) by solving the equation f (x) set
= 0.

The root of function can be found iteratively where we get closer to the root over
iterations.

One of the iterative root-finding methods is the Newton-Raphson method [1]. In every
iteration, it finds the next solution as:

x (k+1) := x (k) −
f (x (k))

∇f (x (k))
, (1)

where ∇f (x (k)) is the derivative of function w.r.t. x .

Second-Order Optimization 3 / 49



Univariate Newton’s method

Recall Eq. (1): We saw that Newton-Raphson method solves f (x) set
= 0 by:

x (k+1) := x (k) −
f (x (k))

∇f (x (k))
.

In unconstrained optimization, we can find the extremum (minimum or maximum) of the
function by setting its derivative to zero, i.e.,

∇f (x) set
= 0.

Therefore, the root of ∇f (x) set
= 0 can be found by Newton-Raphson method. We replace

f (x) with ∇f (x) in Eq. (1):

x (k+1) := x (k) − η(k)
∇f (x (k))

∇2f (x (k))
, (2)

where ∇2f (x (k)) is the second derivative of function w.r.t. x and we have included a step
size at iteration k denoted by η(k) > 0. This step size can be either fixed or adaptive.
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Multivariate Newton’s method

Recall Eq. (2):

x (k+1) := x (k) − η(k)
∇f (x (k))

∇2f (x (k))
.

If x is multivariate, i.e. x ∈ Rd , Eq. (2) is written as:

x (k+1) := x (k) − η(k)
(
∇2f (x (k))

)−1∇f (x (k)), (3)

where ∇f (x (k)) ∈ Rd is the gradient of function w.r.t. x and ∇2f (x (k)) ∈ Rd×d is the
Hessian matrix w.r.t. x .
Because of the second derivative or the Hessian, this optimization method is a
second-order method. The name of this method is the Newton’s method.
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Newton’s Method for Unconstrained
Optimization
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Newton’s Method for Unconstrained Optimization

Consider the following optimization problem:

minimize
x

f (x). (4)

where f (.) is a convex function.

Iterative optimization can be first-order or second-order. Iterative optimization updates
solution iteratively:

x (k+1) := x (k) +∆x , (5)

The update continues until ∆x becomes very small which is the convergence of
optimization.

Recall that in the first-order optimization, the step of updating is ∆x := −∇f (x).
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Newton’s Method for Unconstrained Optimization

Near the optimal point x∗, gradient is very small so the second-order Taylor series
expansion of function becomes:

f (x) ≈ f (x∗) +∇f (x∗)⊤︸ ︷︷ ︸
≈ 0

(x − x∗) +
1

2
(x − x∗)⊤∇2f (x∗)(x − x∗)

≈ f (x∗) +
1

2
(x − x∗)⊤∇2f (x∗)(x − x∗). (6)

This shows that the function is almost quadratic near the optimal point.

Following this intuition, Newton’s method uses Hessian ∇2f (x) in its updating step:

∆x := −∇2f (x)−1∇f (x). (7)

In the literature, this equation is sometimes restated to:

∇2f (x)∆x := −∇f (x). (8)
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Newton’s Method for Equality
Constrained Optimization

Second-Order Optimization 9 / 49



Newton’s method for equality constrained optimization
The optimization problem may have equality constraints:

minimize
x

f (x)

subject to Ax = b.
(9)

After a step of update by p = ∆x , this optimization becomes:

minimize
x

f (x + p)

subject to A(x + p) = b.
(10)

The Lagrangian of this optimization problem is:

L = f (x + p) + ν⊤(A(x + p)− b),

where ν is the dual variable.

The second-order Taylor series expansion of function f (x + p) is:

f (x + p) ≈ f (x) +∇f (x)⊤p +
1

2
p⊤∇2f (x) p. (11)

Substituting this into the Lagrangian gives:

L = f (x) +∇f (x)⊤p +
1

2
p⊤∇2f (x) p + ν⊤(A(x + p)− b).
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Newton’s method for equality constrained optimization
We found:

L = f (x) +∇f (x)⊤p +
1

2
p⊤∇2f (x) p + ν⊤(A(x + p)− b).

According to KKT conditions, the primal and dual residuals must be zero:

∇xL = ∇f (x) +∇2f (x)⊤p + p⊤ ∇3f (x)︸ ︷︷ ︸
≈ 0

p + A⊤ν
set
= 0

=⇒ ∇2f (x)⊤p + A⊤ν = −∇f (x), (12)

∇νL = A(x + p)− b
(a)
= Ap set

= 0, (13)

where we have ∇3f (x) ≈ 0 because the third-order gradient is usually very small
compared to the first and second gradients and (a) is because of the constraint
Ax − b = 0 in problem (9).

Eqs. (12) and (13) can be written as a system of equations:[
∇2f (x)⊤ A⊤

A 0

] [
p
ν

]
=

[
−∇f (x)

0

]
. (14)

Solving this system of equations gives the desired step p (i.e., ∆x) for updating the
solution at the iteration.
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Starting with non-feasible initial point

Newton’s method can even start with a non-feasible point which does not satisfy all the
constraints.

If the initial point for optimization is not a feasible point, i.e., Ax − b ̸= 0, Eq. (13)
becomes:

∇νL = A(x + p)− b set
= 0 =⇒ Ap = −(Ax − b). (15)

Therefore, for the first iteration, we solve the following system rather than Eq. (14):[
∇2f (x)⊤ A⊤

A 0

] [
p
ν

]
= −

[
∇f (x)
Ax − b

]
, (16)

and we use Eq. (16) for the rest of iterations because the next points will be in the
feasibility set (because we force the solutions to satisfy Ax = b).
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Interior-Point and Barrier Methods:
Newton’s Method for Inequality
Constrained Optimization
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Interior-Point Method

The optimization problem may have inequality constraints:

minimize
x

f (x)

subject to yi (x) ≤ 0, i ∈ {1, . . . ,m1},
Ax = b.

(17)

We can solve constrained optimization problems using Barrier methods, also known as
interior-point methods [2, 3, 4, 5].

Interior-point methods were first proposed in 1967 [6].

The interior-point method is also referred to as the Unconstrained Minimization
Technique (UMT) or Sequential UMT (SUMT) [7] because it converts the problem to
an unconstrained problem and solves it iteratively.
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Interior-Point Method

The barrier methods or the interior-point methods, convert inequality constrained
problems to equality constrained or unconstrained problems. Ideally, we can do this
conversion using the indicator function I(.) which is zero if its input condition is satisfied
and is infinity otherwise:

I(x ∈ S) =
{

0 if x ∈ S
∞ if x ̸∈ S. (18)

The problem
minimize

x
f (x)

subject to yi (x) ≤ 0, i ∈ {1, . . . ,m1},
Ax = b,

is converted to:

minimize
x

f (x) +
m1∑
i=1

I(yi (x) ≤ 0)

subject to Ax = b.

(19)
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Interior-Point Method
The indicator function is not differentiable because it is not smooth:

I(yi (x) ≤ 0) :=

{
0 if yi (x) ≤ 0
∞ if yi (x) > 0.

(20)

Hence, we can approximate it with differentiable functions called the barrier functions
[4, 8].

One of the barrier functions is logarithm, named the logarithmic barrier or log barrier in
short. It approximates the indicator function by:

I(yi (x) ≤ 0) ≈ −
1

t
log(−yi (x)), (21)

where t > 0 (usually a large number such as t = 106) and the approximation becomes
more accurate by t → ∞.
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Interior-Point Method
The problem had become:

minimize
x

f (x) +
m1∑
i=1

I(yi (x) ≤ 0)

subject to Ax = b.

The log barrier:

I(yi (x) ≤ 0) ≈ −
1

t
log(−yi (x)).

It changes the problem to:

minimize
x

f (x)−
1

t

m1∑
i=1

log(−yi (x))

subject to Ax = b.

(22)

This optimization problem is an equality constrained optimization problem which we
already explained how to solve.

Note that there exist many approximations for the barrier. One of mostly used methods is
the logarithmic barrier.
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Interior-Point Method

If the problem is convex, the iterative solutions of the interior-point method satisfy:

{x (0), x (1), x (2), . . . } → x∗,

{ν(0),ν(1),ν(2), . . . } → ν∗,

f (x (0)) ≥ f (x (1)) ≥ f (x (2)) ≥ · · · ≥ f (x∗),

g(ν(0)) ≤ g(ν(1)) ≤ · · · ≤ g(ν∗).

(23)

If the optimization problem is a convex problem, the solution of interior-point method is
the global solution; otherwise, the solution is local.

The interior-point and barrier methods are used in many optimization toolboxes such as
CVX [9].
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Accuracy of the log barrier method

Theorem (On the sub-optimality of log-barrier method)

Let the optimum of problems (17) and (22) be denoted by f ∗ and f ∗r , respectively. We have:

f ∗ −
m1

t
≤ f ∗r ≤ f ∗, (24)

meaning that the optimum of problem (22) is no more than m1/t from the optimum of problem
(17).

Proof.
See our tutorial [10] for proof.

The above theorem indicates that by t → ∞, the log-barrier method is more accurate;
i.e., the solution of problem (22) is more accurately close to the solution of problem (17).

This is expected since the approximation in Eq. (21) gets more accurate by increasing t.

Note that by increasing t, optimization gets more accurate but harder to solve and slower
to converge.
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Line-search in Newton’s Method
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Wolfe Conditions and Line-Search in Newton’s Method

Line-search for second-order optimization checks two conditions. These conditions are
called the Wolfe conditions [11] for finding the suitable step size η(k), at iteration k of
optimization.

The step at iteration k is p(k) = −∇2f (x (k))−1∇f (x (k)) according to Eq. (7). The Wolfe
conditions are:

f (x (k) + η(k)p(k)) ≤ f (x (k)) + c1η
(k)p(k)⊤f (x (k)), (25)

− p(k)⊤∇f (x (k) + η(k)p(k)) ≤ −c2p(k)⊤f (x (k)), (26)

where 0 < c1 < c2 < 1 are the parameters of Wolfe conditions. It is recommended in [12]
to have c1 = 10−4 and c2 = 0.9.

The first condition is the Armijo condition [13] which ensures the step size η(k) decreases
the function value sufficiently.

The second condition is the curvature condition which ensures the step size η(k) decreases
the function slope sufficiently. In quasi-Newton’s method (introduced later), the curvature
condition makes sure the approximation of Hessian matrix remains positive definite.

The Armijo and curvature conditions give an upper-bound and lower-bound on the step
size, respectively.
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Wolfe Conditions and Line-Search in Newton’s Method

The Wolfe conditions were:

f (x (k) + η(k)p(k)) ≤ f (x (k)) + c1η
(k)p(k)⊤∇f (x (k)), (27)

− p(k)⊤∇f (x (k) + η(k)p(k)) ≤ −c2p(k)⊤∇f (x (k)), (28)

There also exists a strong curvature condition:

|p(k)⊤∇f (x (k) + η(k)p(k))| ≤ c2|p(k)⊤∇f (x (k))|, (29)

which can be used instead of the curvature condition.

Note that the Wolfe conditions can also be used for line-search in first-order methods.
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Fast Solving System of Equations in
Newton’s Method
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Fast Solving System of Equations in Newton’s Method
In unconstrained Newton’s method, the update of solution which is Eq. (8):

∇2f (x)∆x := −∇f (x),

is in the form of a system of linear equations.

In constrained Newton’s method (and hence, in the interior-point method), the update of
solution which is Eq. (14):[

∇2f (x)⊤ A⊤

A 0

] [
p
ν

]
=

[
−∇f (x)

0

]
,

is also in the form of a system of linear equations.

Therefore, every iteration of all optimization methods is reduced to a system of equations
such as:

Mz = q, (30)

where we need to calculate z . Therefore, the optimization toolboxes, such as CVX [9],
solve a system of equations to find the solution at every iteration.

If the dimensionality of data or the number of constraints is large, the number of
equations and the size of matrices in the system of equations increase. Solving the large
system of equations is very time-consuming. Some methods have been developed to
accelerate solving the system of equations. Here, we review some of them.
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Decomposition Methods: LU decomposition

We can use various matrix decomposition/factorization methods [14] for decomposing the
coefficient matrix M and solving the system of equations (30), Mz = q. We review some
of them here.

LU decomposition: We use LU decomposition to decompose M = PLU. We have:

Mz = P L Uz︸︷︷︸
=w2︸ ︷︷ ︸

=w1

= q,

where we define w2 := Uz and w1 := Lw2. Hence, we can solve the system of equations
as:

1 LU decomposition: M = PLU
2 permutation: Solve Pw1 = q to find w1
3 forward subtraction: Solve Lw2 = w1 to find w2
4 backward subtraction: Solve Uz = w2 to find z
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Decomposition Methods: Cholesky decomposition

Cholesky decomposition: In most cases of optimization, the coefficient matrix is positive
definite. For example, in Eq. (8), ∇2f (x)∆x := −∇f (x), the coefficient matrix is the
Hessian which is positive definite. Therefore, we can use Cholesky decomposition to
decompose M = LL⊤. We have:

Mz = LL⊤z︸︷︷︸
=w1

= q,

where we define w1 := L⊤z .
Hence, we can solve the system of equations as:

1 Cholesky decomposition: M = LL⊤

2 forward subtraction: Solve Lw1 = q to find w1
3 backward subtraction: Solve L⊤z = w1 to find z
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Decomposition Methods: Schur complement
Assume the system of equations can be divided into blocks:

Mz = q =⇒ Mz =

[
M11 M12

M21 M22

] [
z1

z2

]
=

[
q1
q2

]
.

From this, we have:

M11z1 + M12z2 = q1 =⇒ z1 = M−1
11 (q1 − M12z2).

M21z1 + M22z2 = q2

=⇒ M21(M−1
11 (q1 − M12z2)) + M22z2 = q2

=⇒ (M22 − M21M−1
11 M12)z2 = q2 − M21M−1

11 q1.

The term (M22 − M21M−1
11 M12) is the Schur complement [15] of block matrix M11 in

matrix M.

We assume that the block matrix M11 is not singular so its inverse exists. We use the
Schur complement to solve the system of equations as:

1 Calculate M−1
11 M12 and M−1

11 q1

2 Calculate M̃ := M22 − M21(M−1
11 M12) and q̃ := q2 − M21(M−1

11 q1)

3 Solve M̃z2 = q̃ (as derived above) to find z2
4 Solve M11z1 = q1 − M12z2 (as derived above) to find z1
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Conjugate Gradient Method

The conjugate gradient method, proposed in 1952 [16], iteratively solves Eq. (30),
Mz = q, faster than the regular solution. Its pacing shows off better when the matrices
are very large. A good book on conjugate gradient is [17, Chapter 2].

Note that truncated Newton’s methods [18], which approximate the Hessian for
large-scale optimization, usually use conjugate gradient as their approximation method for
calculating the search direction.

The solution to Eq. (30), Mz = q, should satisfy z = M−1q. The conjugate gradient
method approximates this solution. According to the first-order optimizality condition,
∇f (z∗) = 0, the solution to Eq. (30) minimizes the function:

∇f (z∗) = 0 =⇒ Mz − q = 0 =⇒ f (z) =
1

2
z⊤Mz − z⊤q,

because Eq. (30) is the gradient of this function, i.e.,

∇f (z) = Mz − q. (31)

Second-Order Optimization 28 / 49



Conjugate Gradient Method
Conjugate gradient iteratively solves Eq. (30), Mz = q, as:

z(k+1) := z(k) + η(k)p(k). (32)

It starts by moving toward minus gradient as gradient descent does. Then, it uses the
conjugate of gradient. This is the reason for the name of this method.

At iteration k, the residual (error) for fulfilling Eq. (30), Mz = q, is:

r (k) := q − Mz(k) (31)
= −∇f (z(k)). (33)

We also have:

r (k+1) − r (k)
(33)
= q − Mz(k+1) − q + Mz(k)

(32)
= M(−z(k) − η(k)p(k) + z(k)) = −η(k)Mp(k).

Initially, the direction is this residual, p(0) = r (0) = −∇f (z(0)) as in gradient descent.

If we take derivative of f (z(k+1))
(32)
= f (z(k) + η(k)p(k)) w.r.t. η(k), we have the learning

rate:

∂

∂η(k)
f (z(k) + η(k)p(k))

set
= 0 =⇒ η(k) =

p(k)⊤(q − Mx (k))

p(k)⊤Mp(k)

(33)
=

p(k)⊤r (k)

p(k)⊤Mp(k)
.
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Conjugate Gradient Method

The direction of update p is found by a linear combination of the residual (which was
initialized by negative gradient as in gradient descent) and the previous direction:

p(k+1) := r (k+1) + β(k+1)p(k). (34)

The weight of previous direction in this linear combination is β:

β =
r (k+1)⊤r (k+1)

r (k)⊤r (k)
, (35)

which gets smaller if the residual of this step is much smaller than the residual of previous
iteration.

The conjugate gradient method returns a z as an approximation to the solution to Eq.
(30), Mz = q.
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Conjugate Gradient Method: Algorithm
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Relation of Conjugate Gradient Method to Krylov subspace

Definition (Conjugate vectors)

Two non-zero vectors x and y are conjugate if x⊤My = 0 where M ≻ 0.

Definition (Krylov subspace [19])
The order-r Krylov subspace, denoted by Kr , is spanned by the following bases:

Kr (M, q) = span{q,Mq,M2q, . . . ,M r−1q}. (36)

The solution to Eq. (30), Mz = q, should satisfy z = M−1q. Therefore, the solution to
Eq. (30) lies in the Krylov subspace.

The conjugate gradient method approximates this solution lying in the Krylov subspace.
Every iteration of conjugate gradient can be seen as projection onto the Krylov subspace.
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Nonlinear Conjugate Gradient Method
As we saw, conjugate gradient is for solving linear equations, such as Eq. (30), Mz = q.
Nonlinear Conjugate Gradient (NCG) generalizes conjugate gradient to nonlinear
functions.

Recall that conjugate gradient solves Eq. (30):

Mz = q =⇒ M⊤Mz = M⊤q =⇒ 2M⊤(Mz − q) = 0.

The goal of NCG is to find the minimum of a quadratic function:

f (z) = ∥Mz − q∥22, (37)

using its gradient. The gradient of this function is ∇f (z) = 2M⊤(Mz − q) which was
found above.

The NCG method is very similar to the conjugate gradient method. It uses steepest
descent for updating the solution:

η(k+1) := argmin
η

f (z(k+1) + η p(k+1)).

The direction for update is found by a linear combination of the residual, initialized by
negative gradient as in gradient descent, and the direction of previous iteration (as in the
conjugate gradient method):

p(k+1) := r (k+1) + β(k+1)p(k). (38)
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Nonlinear Conjugate Gradient Method
We said: p(k+1) := r (k+1) + β(k+1)p(k).

Several formulas exist for the weight β for the previous direction in the linear combination:

β
(k+1)
1 :=

r (k+1)⊤r (k+1)

r (k)⊤r (k)
=

∥r (k+1)∥22
∥r (k)∥22

,

β
(k+1)
2 :=

r (k+1)⊤(r (k+1) − r (k))
r (k)⊤r (k)

,

β
(k+1)
3 := −

r (k+1)⊤(r (k+1) − r (k))
p(k)⊤(r (k+1) − r (k))

,

β
(k+1)
4 := −

r (k)⊤r (k)

p(k)⊤(r (k+1) − r (k))
.

(39)

The β1, β2, β3, and β4 are the formulas for Fletcher-Reeves (1964) [20], Polak-Ribière
(1969) [21], Hestenes-Stiefel (1952) [16], and Dai-Yuan (1999) [22] methods,
respectively.

Fletcher-Reeves (β1) was also used in the conjugate gradient method.

In all these formulas, β gets smaller if the residual of next iteration gets much smaller
than the previous residual.

The NCG method returns a z as an approximation to the minimizer of the nonlinear
function in Eq. (37).
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Nonlinear Conjugate Gradient Method: Algorithm
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Quasi-Newton’s Methods
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Hessian Approximation

Similar to what we did in Eq. (6) for Taylor approximation of function, we can
approximate the function at the updated solution by its second-order Taylor series:

f (x (k+1)) = f (x (k) + p(k)) ≈ f (x (k)) +∇f (x (k))⊤p(k) +
1

2
p(k)⊤B(k)p(k).

where p = ∆x is the step size and B(k) = ∇2f (x (k)) is the Hessian matrix at iteration k.

Taking derivative from this equation w.r.t. p gives:

∇f (x (k) + p(k)) ≈ ∇f (x (k)) + B(k)p(k). (40)

This equation is called the secant equation.

Setting this derivative to zero, for optimization, gives:

B(k)p(k) = −∇f (x (k)) =⇒ p(k) = −H(k)∇f (x (k)), (41)

where H(k) := (B(k))−1 is the inverse of Hessian matrix. This equation is the previously
found Eqs. (7) and (8) for Newton’s method.

Note that although the letter H seems to be used for Hessian, literature uses H to denote
the (approximation of) inverse of Hessian.
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Hessian Approximation

We found:

p(k) = −H(k)∇f (x (k)).

Considering the step size, we can write the step s(k) as:

Rd ∋ s(k) := ∆x = x (k+1) − x (k) = −η(k)H(k)∇f (x (k)), (42)

where the step size η is found by the Wolfe conditions in line-search.

Computation of the Hessian matrix or its inverse is usually expensive in Newton’s method.

One way to approximate the Newton’s solution at every iteration is the conjugate gradient
method, which was introduced before.

Another approach for approximating the solution is the quasi-Newton’s methods which
approximate the (inverse) Hessian matrix. They approximate the Hessian based on the
step p(k), the difference of gradients between iterations:

Rd ∋ y (k) := ∇f (x (k+1))−∇f (x (k)), (43)

and the previous approximated Hessian B(k) or its inverse H(k).
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Hessian Approximation

Some papers approximate the Hessian by a diagonal matrix [23, Appendix C.1], [24]. In
this situation, the inverse of approximated Hessian is simply the inverse of its diagonal
elements.

Some methods use a dense approximation for Hessian matrix. Examples for these are
BFGS, DFP, Broyden, and SR1 methods, which will be introduced in the following. Some
other methods, such as LBFGS introduced later, approximate the Hessian matrix only by
a scalar.

The most well-known algorithm for quasi-Newton’s method is
Broyden-Fletcher-Goldfarb-Shanno (BFGS) (1987, 1996) [25, 26].

Limited-memory BFGS (LBFGS) (1980, 1989) [27, 28] is a simplified version of BFGS
which utilizes less memory.

Some other quasi-Newton’s methods are Davidon-Fletcher-Powell (DFP) (1991, 1987)
[29, 25], Broyden method (1965) [30], and Symmetric Rank-one (SR1) (1991) [31].

In the following, we review the approximations of Hessian matrix and its inverse by
different methods. More explanation on these methods can be found in Chapter 6 of
Nocedal’s book [12, Chapter 6].
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Quasi-Newton’s Algorithms
We define:

R ∋ ρ(k) :=
1

y (k)⊤s(k)
, (44)

Rd×d ∋ V (k) := I − ρ(k)y (k)s(k)⊤ = I −
y (k)s(k)⊤

y (k)⊤s(k)
, (45)

where I is the identity matrix.

Broyden-Fletcher-Goldfarb-Shanno (BFGS): The approximations in BFGS method are:

B(k+1) := B(k) + ρ(k)y (k)y (k)⊤ −
B(k)s(k)s(k)⊤B(k)⊤

s(k)⊤B(k)s(k)
,

H(k+1) := V (k)⊤H(k)V (k) + ρ(k)s(k)s(k)⊤.

(46)

Davidon-Fletcher-Powell (DFP): The approximations in DFP method are:

B(k+1) := V (k)B(k)V (k)⊤ + ρ(k)y (k)y (k)⊤,

H(k+1) := H(k) + ρ(k)s(k)s(k)⊤ −
H(k)y (k)y (k)⊤H(k)⊤

y (k)⊤H(k)y (k)
.

(47)

Comparing Eqs. (46) and (47) shows that the BFGS and DFP methods are dual of each
other. Experiments have shown that BFGS often outperforms DFP [32].
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Quasi-Newton’s Algorithms

Broyden method: The approximations in Broyden method are:

B(k+1) := B(k) +
(y (k) − B(k)s(k)) s(k)⊤

s(k)⊤s(k)
,

H(k+1) := H(k) +
(s(k) − H(k)y (k))s(k)⊤H(k)

s(k)⊤H(k)y (k)
.

(48)

Symmetric Rank-one (SR1): The approximations in SR1 method are:

B(k+1) := B(k) +
(y (k) − B(k)s(k))(y (k) − B(k)s(k))⊤

(y (k) − B(k)s(k))⊤s(k)
,

H(k+1) := H(k) +
(s(k) − H(k)y (k))(s(k) − H(k)y (k))⊤

(s(k) − H(k)y (k))⊤y (k)
.

(49)
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Quasi-Newton’s Algorithms: LBFGS

The above methods, including BFGS, approximate the inverse Hessian matrix by a dense
(d × d) matrix. For large d , storing this matrix is very memory-consuming.

Hence, Limited-memory BFGS (LBFGS) [27, 28] was proposed, by Nocedal et al. in
1980’s, which uses much less memory than BFGS.

In LBFGS, the inverse of Hessian is a scalar multiplied by identity matrix, i.e.,
H(0) := γ(k)I ; therefore, it approximates the (d × d) matrix by a scalar.

It uses a memory of m previous variables and recursively calculates the updating direction
of solution. In other words, it has recursive unfoldings which approximate the descent
directions in optimization.

The number of recursions is a small integer, for example m = 10; hence, not much
memory is used.

By m times recursion on Eq. (46), LBFGS approximates the inverse Hessian as [28,
Algorithm 2.1]:

H(k+1) :=(V (k)⊤ . . .V (k−m)⊤)H(0)(V (k−m) . . .V (k))

+ ρ(k−m)(V (k)⊤ . . .V (k−m+1)⊤)s(k−m)s(k−m)⊤(V (k−m+1) . . .V (k))

+ ρ(k−m+1)(V (k)⊤ . . .V (k−m+2)⊤)s(k−m+1)s(k−m+1)⊤

(V (k−m+2) . . .V (k)) + · · ·+ ρ(k)s(k)s(k)⊤.
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Quasi-Newton’s Algorithms: LBFGS

The LBFGS algorithm can be implemented as shown in the following algorithm [33] which
is based on the algorithm in Nocedal’s book [12, Chapter 6].

As this algorithm shows, every iteration of optimization calls a recursive function for up
to m recursions and uses the stored previous m memory to calculate the direction p for
updating the solution.

As Eq. (41) states, the initial updating direction is the Newton’s method direction, which

is p = −H(0)∇f (x0).
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ESAIM: Mathematical Modelling and Numerical Analysis-Modélisation Mathématique et
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