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Newton’s Method

Second-Order Optimization 2 / 22



Newton-Raphson root finding method

We can find the root of a function f : x 7→ f (x) by solving the equation f (x) set
= 0.

The root of function can be found iteratively where we get closer to the root over
iterations.

One of the iterative root-finding methods is the Newton-Raphson method [1]. In every
iteration, it finds the next solution as:

x (k+1) := x (k) −
f (x (k))

∇f (x (k))
, (1)

where ∇f (x (k)) is the derivative of function w.r.t. x .
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Univariate Newton’s method

Recall Eq. (1): We saw that Newton-Raphson method solves f (x) set
= 0 by:

x (k+1) := x (k) −
f (x (k))

∇f (x (k))
.

In unconstrained optimization, we can find the extremum (minimum or maximum) of the
function by setting its derivative to zero, i.e.,

∇f (x) set
= 0.

Therefore, the root of ∇f (x) set
= 0 can be found by Newton-Raphson method. We replace

f (x) with ∇f (x) in Eq. (1):

x (k+1) := x (k) − η(k)
∇f (x (k))

∇2f (x (k))
, (2)

where ∇2f (x (k)) is the second derivative of function w.r.t. x and we have included a step
size at iteration k denoted by η(k) > 0. This step size can be either fixed or adaptive.
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Multivariate Newton’s method

Recall Eq. (2):

x (k+1) := x (k) − η(k)
∇f (x (k))

∇2f (x (k))
.

If x is multivariate, i.e. x ∈ Rd , Eq. (2) is written as:

x (k+1) := x (k) − η(k)
(
∇2f (x (k))

)−1∇f (x (k)), (3)

where ∇f (x (k)) ∈ Rd is the gradient of function w.r.t. x and ∇2f (x (k)) ∈ Rd×d is the
Hessian matrix w.r.t. x .
Because of the second derivative or the Hessian, this optimization method is a
second-order method. The name of this method is the Newton’s method.

Second-Order Optimization 5 / 22



Newton’s Method for Unconstrained
Optimization
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Newton’s Method for Unconstrained Optimization

Consider the following optimization problem:

minimize
x

f (x). (4)

where f (.) is a convex function.

Iterative optimization can be first-order or second-order. Iterative optimization updates
solution iteratively:

x (k+1) := x (k) +∆x , (5)

The update continues until ∆x becomes very small which is the convergence of
optimization.

Recall that in the first-order optimization, the step of updating is ∆x := −∇f (x).
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Newton’s Method for Unconstrained Optimization

Near the optimal point x∗, gradient is very small so the second-order Taylor series
expansion of function becomes:

f (x) ≈ f (x∗) +∇f (x∗)⊤︸ ︷︷ ︸
≈ 0

(x − x∗) +
1

2
(x − x∗)⊤∇2f (x∗)(x − x∗)

≈ f (x∗) +
1

2
(x − x∗)⊤∇2f (x∗)(x − x∗). (6)

This shows that the function is almost quadratic near the optimal point.

Following this intuition, Newton’s method uses Hessian ∇2f (x) in its updating step:

∆x := −∇2f (x)−1∇f (x). (7)

In the literature, this equation is sometimes restated to:

∇2f (x)∆x := −∇f (x). (8)
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Newton’s Method for Equality
Constrained Optimization
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Newton’s method for equality constrained optimization
The optimization problem may have equality constraints:

minimize
x

f (x)

subject to Ax = b.
(9)

After a step of update by p = ∆x , this optimization becomes:

minimize
x

f (x + p)

subject to A(x + p) = b.
(10)

The Lagrangian of this optimization problem is:

L = f (x + p) + ν⊤(A(x + p)− b),

where ν is the dual variable.

The second-order Taylor series expansion of function f (x + p) is:

f (x + p) ≈ f (x) +∇f (x)⊤p +
1

2
p⊤∇2f (x) p. (11)

Substituting this into the Lagrangian gives:

L = f (x) +∇f (x)⊤p +
1

2
p⊤∇2f (x) p + ν⊤(A(x + p)− b).
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Newton’s method for equality constrained optimization
We found:

L = f (x) +∇f (x)⊤p +
1

2
p⊤∇2f (x) p + ν⊤(A(x + p)− b).

According to KKT conditions, the primal and dual residuals must be zero:

∇xL = ∇f (x) +∇2f (x)⊤p + p⊤ ∇3f (x)︸ ︷︷ ︸
≈ 0

p + A⊤ν
set
= 0

=⇒ ∇2f (x)⊤p + A⊤ν = −∇f (x), (12)

∇νL = A(x + p)− b
(a)
= Ap set

= 0, (13)

where we have ∇3f (x) ≈ 0 because the third-order gradient is usually very small
compared to the first and second gradients and (a) is because of the constraint
Ax − b = 0 in problem (9).

Eqs. (12) and (13) can be written as a system of equations:[
∇2f (x)⊤ A⊤

A 0

] [
p
ν

]
=

[
−∇f (x)

0

]
. (14)

Solving this system of equations gives the desired step p (i.e., ∆x) for updating the
solution at the iteration.
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Starting with non-feasible initial point

Newton’s method can even start with a non-feasible point which does not satisfy all the
constraints.

If the initial point for optimization is not a feasible point, i.e., Ax − b ̸= 0, Eq. (13)
becomes:

∇νL = A(x + p)− b set
= 0 =⇒ Ap = −(Ax − b). (15)

Therefore, for the first iteration, we solve the following system rather than Eq. (14):[
∇2f (x)⊤ A⊤

A 0

] [
p
ν

]
= −

[
∇f (x)
Ax − b

]
, (16)

and we use Eq. (16) for the rest of iterations because the next points will be in the
feasibility set (because we force the solutions to satisfy Ax = b).
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Interior-Point and Barrier Methods:
Newton’s Method for Inequality
Constrained Optimization
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Interior-Point Method

The optimization problem may have inequality constraints:

minimize
x

f (x)

subject to yi (x) ≤ 0, i ∈ {1, . . . ,m1},
Ax = b.

(17)

We can solve constrained optimization problems using Barrier methods, also known as
interior-point methods [2, 3, 4, 5].

Interior-point methods were first proposed in 1967 [6].

The interior-point method is also referred to as the Unconstrained Minimization
Technique (UMT) or Sequential UMT (SUMT) [7] because it converts the problem to
an unconstrained problem and solves it iteratively.
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Interior-Point Method

The barrier methods or the interior-point methods, convert inequality constrained
problems to equality constrained or unconstrained problems. Ideally, we can do this
conversion using the indicator function I(.) which is zero if its input condition is satisfied
and is infinity otherwise:

I(x ∈ S) =
{

0 if x ∈ S
∞ if x ̸∈ S. (18)

The problem
minimize

x
f (x)

subject to yi (x) ≤ 0, i ∈ {1, . . . ,m1},
Ax = b,

is converted to:

minimize
x

f (x) +
m1∑
i=1

I(yi (x) ≤ 0)

subject to Ax = b.

(19)
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Interior-Point Method
The indicator function is not differentiable because it is not smooth:

I(yi (x) ≤ 0) :=

{
0 if yi (x) ≤ 0
∞ if yi (x) > 0.

(20)

Hence, we can approximate it with differentiable functions called the barrier functions
[4, 8].

One of the barrier functions is logarithm, named the logarithmic barrier or log barrier in
short. It approximates the indicator function by:

I(yi (x) ≤ 0) ≈ −
1

t
log(−yi (x)), (21)

where t > 0 (usually a large number such as t = 106) and the approximation becomes
more accurate by t → ∞.
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Interior-Point Method
The problem had become:

minimize
x

f (x) +
m1∑
i=1

I(yi (x) ≤ 0)

subject to Ax = b.

The log barrier:

I(yi (x) ≤ 0) ≈ −
1

t
log(−yi (x)).

It changes the problem to:

minimize
x

f (x)−
1

t

m1∑
i=1

log(−yi (x))

subject to Ax = b.

(22)

This optimization problem is an equality constrained optimization problem which we
already explained how to solve.

Note that there exist many approximations for the barrier. One of mostly used methods is
the logarithmic barrier.
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Interior-Point Method

If the problem is convex, the iterative solutions of the interior-point method satisfy:

{x (0), x (1), x (2), . . . } → x∗,

{ν(0),ν(1),ν(2), . . . } → ν∗,

f (x (0)) ≥ f (x (1)) ≥ f (x (2)) ≥ · · · ≥ f (x∗),

g(ν(0)) ≤ g(ν(1)) ≤ · · · ≤ g(ν∗).

(23)

If the optimization problem is a convex problem, the solution of interior-point method is
the global solution; otherwise, the solution is local.

The interior-point and barrier methods are used in many optimization toolboxes such as
CVX [9].
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Accuracy of the log barrier method

Theorem (On the sub-optimality of log-barrier method)

Let the optimum of problems (17) and (22) be denoted by f ∗ and f ∗r , respectively. We have:

f ∗ −
m1

t
≤ f ∗r ≤ f ∗, (24)

meaning that the optimum of problem (22) is no more than m1/t from the optimum of problem
(17).

Proof.
See our tutorial [10] for proof. Also explained in the next slide.

The above theorem indicates that by t → ∞, the log-barrier method is more accurate;
i.e., the solution of problem (22) is more accurately close to the solution of problem (17).

This is expected since the approximation in Eq. (21) gets more accurate by increasing t.

Note that by increasing t, optimization gets more accurate but harder to solve and slower
to converge.
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