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Matrices in Linear Programming
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Matrices in linear programming

Consider n variables and m constraints (excluding the constraints for x1, . . . , xn ≥ 0).
After having slack variables, we can have:

maximize
x1,...,xn

c = c1x1 + · · ·+ cnxn

subject to a11x1 + · · ·+ a1nxn = b1,

a21x1 + · · ·+ a2nxn = b2,

...

am1x1 + · · ·+ amnxn = bm,

x1, . . . , xn ≥ 0.
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Matrices in linear programming

Example:
maximize
x1,x2,x3

c = 60x1 + 30x2 + 20x3

subject to 8x1 + 6x2 + x3 ≤ 48,

4x1 + 2x2 + 1.5x3 ≤ 20,

2x1 + 1.5x2 + 0.5x3 ≤ 8,

x1, x2, x3 ≥ 0.

It is converted to:
maximize

x1,x2,x3,s1,s2,s3
c = 60x1 + 30x2 + 20x3

subject to 8x1 + 6x2 + x3 + s1 = 48,

4x1 + 2x2 + 1.5x3 + s2 = 20,

2x1 + 1.5x2 + 0.5x3 + s3 = 8,

x1, x2, x3, s1, s2, s3 ≥ 0.

Sensitivity Analysis in Linear Programming 4 / 37



Matrices in linear programming

maximize
x1,x2,x3,s1,s2,s3

c = 60x1 + 30x2 + 20x3

subject to 8x1 + 6x2 + x3 + s1 = 48,

4x1 + 2x2 + 1.5x3 + s2 = 20,

2x1 + 1.5x2 + 0.5x3 + s3 = 8,

x1, x2, x3, s1, s2, s3 ≥ 0.

Assume we solve it until the end and at the end, the basic variables are s1, x3, x1 and the
non-basic variables are x2, s2, s3.

basic and non-basic variables:

xb := [s1, x3, x1]
⊤, xn := [x2, s2, s3]

⊤

the coefficients of basic and non-basic variables in the objective function:

cb := [0, 20, 60]⊤, cn := [30, 0, 0]⊤

the coefficients of the variables in the constraints:

ax1 := [8, 4, 2]⊤, ax2 := [6, 2, 1.5]⊤, ax3 := [1, 1.5, 0.5]⊤,

as1 := [1, 0, 0]⊤, as2 := [0, 1, 0]⊤, as3 := [0, 0, 1]⊤,

b := [48, 20, 8]⊤
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Matrices in linear programming

maximize
x1,x2,x3,s1,s2,s3

c = 60x1 + 30x2 + 20x3

subject to 8x1 + 6x2 + x3 + s1 = 48,

4x1 + 2x2 + 1.5x3 + s2 = 20,

2x1 + 1.5x2 + 0.5x3 + s3 = 8,

x1, x2, x3, s1, s2, s3 ≥ 0.

basic and non-basic variables:

xb := [s1, x3, x1]
⊤, xn := [x2, s2, s3]

⊤

the coefficients of the variables in the constraints:

ax1 := [8, 4, 2]⊤, ax2 := [6, 2, 1.5]⊤, ax3 := [1, 1.5, 0.5]⊤,

as1 := [1, 0, 0]⊤, as2 := [0, 1, 0]⊤, as3 := [0, 0, 1]⊤

the matrices of coefficients of the variables in the constraints, for basic and non-basic
variables: B ∈ Rm×m, N ∈ Rm×(n−m)

B := [as1 , ax3 , ax1 ] =

1 1 8
0 1.5 4
0 0.5 2

 N := [ax2 , as2 , as3 ] =

 6 0 0
2 1 0
1.5 0 1
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Matrices in linear programming

xb := [s1, x3, x1]
⊤, xn := [x2, s2, s3]

⊤, cb := [0, 20, 60]⊤, cn := [30, 0, 0]⊤

ax1 := [8, 4, 2]⊤, ax2 := [6, 2, 1.5]⊤, ax3 := [1, 1.5, 0.5]⊤,

as1 := [1, 0, 0]⊤, as2 := [0, 1, 0]⊤, as3 := [0, 0, 1]⊤, b := [48, 20, 8]⊤,

B := [as1 , ax3 , ax1 ] =

1 1 8
0 1.5 4
0 0.5 2

 ,N := [ax2 , as2 , as3 ] =

 6 0 0
2 1 0
1.5 0 1



B−1 =

1 1 8
0 1.5 4
0 0.5 2

−1

=

1 2 −8
0 2 −4
0 −0.5 1.5

 ,B−1b =

1 2 −8
0 2 −4
0 −0.5 1.5

4820
8

 =

248
2
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Matrices in linear programming

cb := [0, 20, 60]⊤, cn := [30, 0, 0]⊤, b := [48, 20, 8]⊤,B−1b = [24, 8, 2]⊤.

B−1aj =⇒ B−1N =

−2 2 −8
−2 2 −4
5/4 −1/2 3/2

 ,B−1B = I ,

c⊤
b B−1aj − cj =⇒

c⊤
b B−1N − c⊤

n = [0, 20, 60]

−2 2 −8
−2 2 −4
5/4 −1/2 3/2

− [30, 0, 0] = [5, 10, 10],

c⊤
n B−1B − c⊤

n = 0⊤.

c⊤
b B−1b = [0, 20, 60]

248
2

 = 280.
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Cases for Sensitivity Analysis
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Cases for sensitivity analysis

Sensitivity analysis analyzes how much effect some change in something has on the
optimization.

We can have different cases of change in linear programming:

1 change in coefficient of a variable (basic or nonbasic) in the objective function

⋆ 1-1: change for nonbasic variable
⋆ 1-2: change for basic variable

2 change in coefficient of a variable (basic or nonbasic) in the constraint(s)

⋆ 2-1: change for nonbasic variable
⋆ 2-2: change for basic variable

3 adding a new variable to optimization
4 adding a new constraint to optimization

Note: we can have a combination of changes, too!

Sensitivity Analysis in Linear Programming 10 / 37



Case 1-1 of Change
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Case 1-1 for sensitivity analysis

⋆ Change in coefficient of a nonbasic variable in the objective function.

Example: The company has profits $60, $30, and $20 for the first, second, and third products.
The resources for these products have the following restrictions: 8x1 + 6x2 + x3 ≤ $48,
4x1 + 2x2 + 1.5x3 ≤ $20, and 2x1 + 1.5x2 + 0.5x3 ≤ $8.

maximize
x1,x2,x3,s1,s2,s3

c = 60x1 + 30x2 + 20x3

subject to 8x1 + 6x2 + x3 + s1 = 48,

4x1 + 2x2 + 1.5x3 + s2 = 20,

2x1 + 1.5x2 + 0.5x3 + s3 = 8,

x1, x2, x3, s1, s2, s3 ≥ 0.

The company is able to increase the profit of the second product, x2, to (a) $32 and (b) $36.
Do you recommend this change to the manager?
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Case 1-1 for sensitivity analysis
⋆ Change in coefficient of a nonbasic variable in the objective function.

xb := [s1, x3, x1]
⊤, xn := [x2, s2, s3]

⊤, cb := [0, 20, 60]⊤, cn := [30, 0, 0]⊤.

x2 is a nonbasic variable. We have change in cx2 in cn so:

c⊤
b B−1ax2 − cx2 = [0, 20, 60]

−2
−2
5/4

− (30 + δ) = 35− 30− δ = 5− δ

For not having change in optimization:

5− δ ≥ 0 =⇒ δ ≤ 5 =⇒ cx2,new = 30 + δ ≤ 35.
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Case 1-1 for sensitivity analysis
For not having change in optimization: 5− δ ≥ 0 =⇒ δ ≤ 5 =⇒ cx2,new = 30+ δ ≤ 35.

Therefore, if profit of x2 is $32 ≤ $35, we do not recommend it as it does not change the
previous optimal solution for production of the company.

If profit of x2 is $36 > $35, we should continue the optimization:
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Case 1-2 of Change
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Case 1-2 for sensitivity analysis

⋆ Change in coefficient of a basic variable in the objective function.

Example: The company has profits $60, $30, and $20 for the first, second, and third products.
The resources for these products have the following restrictions: 8x1 + 6x2 + x3 ≤ $48,
4x1 + 2x2 + 1.5x3 ≤ $20, and 2x1 + 1.5x2 + 0.5x3 ≤ $8.

maximize
x1,x2,x3,s1,s2,s3

c = 60x1 + 30x2 + 20x3

subject to 8x1 + 6x2 + x3 + s1 = 48,

4x1 + 2x2 + 1.5x3 + s2 = 20,

2x1 + 1.5x2 + 0.5x3 + s3 = 8,

x1, x2, x3, s1, s2, s3 ≥ 0.

The company is decreasing the profit of the first product, x1, to (a) $58 and (b) $30. Do you
recommend this change to the manager?

Sensitivity Analysis in Linear Programming 16 / 37



Case 1-2 for sensitivity analysis

xb := [s1, x3, x1]
⊤, xn := [x2, s2, s3]

⊤, cb := [0, 20, 60]⊤, cn := [30, 0, 0]⊤.

x1 is a basic variable. We have change in cx1 in cb so:

c⊤
b B−1N − c⊤

n = [0, 20, 60 + δ]

−2 2 −8
−2 2 −4
5/4 −1/2 3/2

− [30, 0, 0]

= [5 + 1.25δ, 10− 0.5δ, 10 + 1.5δ]

For not having change in optimization:

5 + 1.25δ ≥ 0 =⇒ δ ≥ −4, 10− 0.5δ ≥ 0 =⇒ δ ≤ 20, 10 + 1.5δ ≥ 0 =⇒ δ ≥ −6.6,

=⇒ −4 ≤ δ ≤ 20, cx1 = 60 + δ =⇒ 56 ≤ cx1 ≤ 80.
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Case 1-2 for sensitivity analysis

For not having change in optimization: 56 ≤ cx1 ≤ 80.

Therefore, if profit of x1 decreases to $58 ∈ [56, 80], this decrease does not change the
overall profit and it can be recommended.

If profit of x1 is decreased to $30 < $56, we should continue the optimization:

c⊤
b B−1N − c⊤

n = [0, 20, 30]

−2 2 −8
−2 2 −4
5/4 −1/2 3/2

− [30, 0, 0] = [−32.5, 25,−35],

c⊤
b B−1b = [0, 20, 30]

248
2

 = 220.
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Case 1-2 for sensitivity analysis

So, changing profit of x1 to $30 decreases the total profit to $272 from $280.
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Case 2-1 of Change
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Case 2-1 for sensitivity analysis

⋆ change in coefficient of a nonbasic variable in the constraint(s).

Example: The company has profits $60, $30, and $20 for the first, second, and third products.
The resources for these products have the following restrictions: 8x1 + 6x2 + x3 ≤ $48,
4x1 + 2x2 + 1.5x3 ≤ $20, and 2x1 + 1.5x2 + 0.5x3 ≤ $8.

maximize
x1,x2,x3,s1,s2,s3

c = 60x1 + 30x2 + 20x3

subject to 8x1 + 6x2 + x3 + s1 = 48,

4x1 + 2x2 + 1.5x3 + s2 = 20,

2x1 + 1.5x2 + 0.5x3 + s3 = 8,

x1, x2, x3, s1, s2, s3 ≥ 0.

The company is changing the resources for x2 as 8x1 + 5x2 + x3 ≤ $48,
4x1 + 2x2 + 1.5x3 ≤ $20, and 2x1 + 4x2 + 0.5x3 ≤ $8. Also, the company is changing the profit
of that product to 50. What is your recommendation to the manager?
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Case 2-1 for sensitivity analysis

xb := [s1, x3, x1]
⊤, xn := [x2, s2, s3]

⊤, cb := [0, 20, 60]⊤, cn := [30, 0, 0]⊤.

x2 is a nonbasic variable. We have change in ax2 in N, and a change in cx2 so:

c⊤
b B−1ax2 − cx2 = [0, 20, 60]

1 2 −8
0 2 −4
0 −0.5 1.5

52
4

− 50 = 10 ≥ 0.

It does not change the optimal solution so it does not change the total profit.
If that would become negative, we should have continued the table!
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Case 2-2 of Change
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Case 2-2 for sensitivity analysis

⋆ change in coefficient of a basic variable in the constraint(s).

Example: The company has profits $60, $30, and $20 for the first, second, and third products.
The resources for these products have the following restrictions: 8x1 + 6x2 + x3 ≤ $48,
4x1 + 2x2 + 1.5x3 ≤ $20, and 2x1 + 1.5x2 + 0.5x3 ≤ $8.

maximize
x1,x2,x3,s1,s2,s3

c = 60x1 + 30x2 + 20x3

subject to 8x1 + 6x2 + x3 + s1 = 48,

4x1 + 2x2 + 1.5x3 + s2 = 20,

2x1 + 1.5x2 + 0.5x3 + s3 = 8,

x1, x2, x3, s1, s2, s3 ≥ 0.

The company is changing the resources for x1 as 5x1 +6x2 + x3 ≤ $48, 5x1 +2x2 +1.5x3 ≤ $20,
and x1 + 1.5x2 + 0.5x3 ≤ $8. What is your recommendation to the manager?
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Case 2-2 for sensitivity analysis

xb := [s1, x3, x1]
⊤, xn := [x2, s2, s3]

⊤, cb := [0, 20, 60]⊤, cn := [30, 0, 0]⊤.

Previous B was: B =

1 1 8
0 1.5 4
0 0.5 2

.
x1 is a basic variable. We have change in ax1 in B, so:

c⊤
b B−1N − c⊤

n = [0, 20, 60]

1 1 5
0 1.5 5
0 0.5 1

−1 52
4

−

300
0

 .

We compute it. If any of the values becomes negative, we should continue the table; otherwise,
the total profit does not change.
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Case 3 of Change
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Case 3 for sensitivity analysis

⋆ adding a new variable to optimization.

Example: The company has profits $60, $30, and $20 for the first, second, and third products.
The resources for these products have the following restrictions: 8x1 + 6x2 + x3 ≤ $48,
4x1 + 2x2 + 1.5x3 ≤ $20, and 2x1 + 1.5x2 + 0.5x3 ≤ $8.

maximize
x1,x2,x3,s1,s2,s3

c = 60x1 + 30x2 + 20x3

subject to 8x1 + 6x2 + x3 + s1 = 48,

4x1 + 2x2 + 1.5x3 + s2 = 20,

2x1 + 1.5x2 + 0.5x3 + s3 = 8,

x1, x2, x3, s1, s2, s3 ≥ 0.

The company is adding a new product x4 with profit (a) $15 or (b) $25, and the constraint
coefficients a = [1, 1, 1]⊤. What is your recommendation to the manager?
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Case 3 for sensitivity analysis

xb := [s1, x3, x1]
⊤, xn := [x2, s2, s3]

⊤, cb := [0, 20, 60]⊤, cn := [30, 0, 0]⊤.

x4 is a nonbasic variable. We calculate its value in the last row of the table (if cx4 = 15):

c⊤
b B−1ax4 − cx4 = [0, 20, 60]

1 2 −8
0 2 −4
0 −0.5 1.5

11
1

− 15 = 5 ≥ 0.

It does not change the optimal solution so it does not change the total profit.
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Case 3 for sensitivity analysis

xb := [s1, x3, x1]
⊤, xn := [x2, s2, s3]

⊤, cb := [0, 20, 60]⊤, cn := [30, 0, 0]⊤.

x4 is a nonbasic variable. We calculate its value in the last row of the table (if cx4 = 25):

c⊤
b B−1ax4 − cx4 = [0, 20, 60]

1 2 −8
0 2 −4
0 −0.5 1.5

11
1

− 25 = −5 < 0.

We should continue the table.
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Case 3 for sensitivity analysis

B−1ax4 =

1 2 −8
0 2 −4
0 −0.5 1.5

11
1

 =

−5
−2
1



So, the optimum objective function has increased and this addition of variable in beneficial.
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Case 4 of Change
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Case 4 for sensitivity analysis
⋆ adding a new constraint to optimization.

This can result in three sub-cases:

4-1: The current optimal solution satisfies the new constraint.

4-2: The current optimal solution doesn’t satisfy the new constraint but linear
programming still has a feasible solution.

4-3: The current optimal solution doesn’t satisfy the new constraint and linear
programming doesn’t have a feasible solution.

Question: Can adding a constraint improve the optimum value of objective function?
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Case 4-1 for sensitivity analysis

Example: The company has profits $60, $30, and $20 for the first, second, and third products.
The resources for these products have the following restrictions: 8x1 + 6x2 + x3 ≤ $48,
4x1 + 2x2 + 1.5x3 ≤ $20, and 2x1 + 1.5x2 + 0.5x3 ≤ $8.

maximize
x1,x2,x3,s1,s2,s3

c = 60x1 + 30x2 + 20x3

subject to 8x1 + 6x2 + x3 + s1 = 48,

4x1 + 2x2 + 1.5x3 + s2 = 20,

2x1 + 1.5x2 + 0.5x3 + s3 = 8,

x1, x2, x3, s1, s2, s3 ≥ 0.

We saw in the table (see slide 8) that the solution is: x∗1 = 2, x∗2 = 0, x∗3 = 8.
The company is adding a new resource constraint:

x1 + x2 + x3 ≤ 11.

It satisfies the current solution:

2 + 0 + 8 = 10 ≤ 11
√
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Case 4-2 for sensitivity analysis
We saw in the table (see slide 8) that the solution is: x∗1 = 2, x∗2 = 0, x∗3 = 8.
The company is adding a new resource constraint: x2 ≥ 1. It doesn’t satisfy the current
solution: 0 ̸≥ 1.
The new constraint:

x2 ≥ 1 =⇒ −x2 ≤ −1 =⇒ −x2 + s4 = −1.

Note: we have used the dual simplex method above.
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Case 4-3 for sensitivity analysis
We saw in the table (see slide 8) that the solution is: x∗1 = 2, x∗2 = 0, x∗3 = 8.
The company is adding a new resource constraint: x1 + x2 ≥ 12. It doesn’t satisfy the current
solution: 2 ̸≥ 12.
The new constraint:

x1 + x2 ≥ 12 =⇒ −x1 − x2 ≤ −12 =⇒ −x1 − x2 + s4 = −12.

Note: we have used the dual simplex method above.
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Case 4-3 for sensitivity analysis

Therefore, it does not have a feasible solution!
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https://www.youtube.com/watch?v=Wn45puC08DA&list=PLTrfnl2vPj4qMNHvLuu0tNJefmuHjZ-K3&index=16

