
Graph Neural Network

Deep Learning (ENGG*6600*01)

School of Engineering,
University of Guelph, ON, Canada

Course Instructor: Benyamin Ghojogh
Summer 2023

Graph Neural Network 1 / 41

Introduction

Graph Neural Network 2 / 41

Introduction

Many real-world datasets are in the form of graphs. Some examples are social networks,
protein interaction networks, the internet (World Wide Web), molecules, etc.

Image data can be considered as graph. Every image is a graph where each pixel
represents a node (vertex) connected by edges to its adjacent pixels.

Text data can also be considered as graph. Every token (word) can be a node connected
by an edge to its next token (word).

Tasks in graph processing:
▶ Graph-level task: predict the property of an entire graph. Example: predict whether

an antibody protein binds to an antigen protein or not.
▶ Node-level task: predict the identity or role of every node in the graph. Example:

Every node has some features and there is a label for every node. For instance, if
the nodes correspond to people, the label can be whether the person lives in a
specific city or not.

▶ Edge-level task: predict the identity or role of every edge in the graph. Example: In
recommender systems for movie suggestion to users, some nodes are the users and
some nodes are the movies. An edge between a user and a movie exists if the user
has rated that movie and the label of the edge is the rating score. It is possible to
predict the label (score) of non-existing edges between a user and a movie.

Graph Neural Network 3 / 41

Introduction

As was said, images are special cases of graphs. The graph of an image is called the
Euclidean graph or a grid graph. But what if there is a graph with some arbitrary
structure or irregular shape.

In Convolutional Neural Network (CNN) [1], there is convolution of a filter kernel with the
image. The question is how to define convolution of a filter kernel with the arbitrary
graph.

Graph Neural Network 4 / 41

Graph Fourier
Transform

Graph Neural Network 5 / 41

Laplacian of Graph
Consider a graph G(V, E) with nodes (vertices) V and edges E.

Let the number of nodes be n. The adjacency matrix A ∈ Rn×n is a matrix whose (i , j)-th
element is one if the node i is connected to the node j and is zero otherwise.

The degree matrix of the matrix A is a diagonal matrix whose (i , i)-th element is the
summation of the i-th row of the matrix A, i.e.:

D(i , i) :=
n∑

j=1

A(i , j), (1)

where A(i , j) denotes the (i , j)-th element of A.

The Laplacian matrix of the graph G is defined as:

Rn×n ∋ L := D − A. (2)

It is noteworthy that there exist some other variants of Laplacian matrix such as [2, 3]:

L← D−αAD−α, (3)

where α ≥ 0 is a parameter. A common value for this parameter is α = 0.5:

L = D−1/2AD−1/2. (4)

This matrix is also referred to as the normalized Laplacian matrix.

Here, the normalized Laplacian is used.

Graph Neural Network 6 / 41

Fourier Functions

Consider the eigenvalue decomposition of the normalized Laplacian matrix [4]:

L = UΛU⊤, (5)

where U = [u1, . . . , un] ∈ Rn×n and Λ = diag([λ1, . . . , λn]⊤) ∈ Rn×n contain the
eigenvectors and eigenvalues of the normalized Laplacian matrix, respectively.

The eigenvectors of the (normalized) Laplacian, i.e., u1, . . . , un, are called the Fourier
functions.

The Fourier transform is projecting a signal x on the Fourier functions.

The result is the coefficients of the Fourier series.

Graph Neural Network 7 / 41

Graph Fourier Transform

Graph Fourier transform projects the input graph signal to a space whose orthonormal
bases are the eigenvectors of the normalized Laplacian of the graph.

For now, assume that every node of graph has a scalar feature value. Let
Rn ∋ x = [x1, . . . , xn]⊤ be the vector of features of all nodes in the graph, where xi ∈ R is
the feature vector of the i-th node.

The graph Fourier transform of x is its projection onto the column space of the matrix U:

f (x) = x̂ = U⊤x . (6)

The inverse graph Fourier transform reconstructs the signal back from projection:

f −1(x̂) = Uf (x) = UU⊤x . (7)

Graph Neural Network 8 / 41

Graph Convolution
The graph convolution of the input signal x with the filter g ∈ Rn is defined as:

x ∗ g = f −1
(
f (x)f (g)

) (6)
= f −1

(
U⊤xU⊤g

) (7)
= U

(
U⊤xU⊤g

)
. (8)

We define:

Rn×n ∋ G := diag(U⊤g) =

u⊤

1 g 0 · · · 0
0 u⊤

2 g · · · 0

0 0
. . . 0

0 0 · · · u⊤
n g

 . (9)

Hence, the graph convolution can be stated as:

Rn ∋ x ∗ g = UGU⊤x . (10)

If every node has a feature vector rather than a feature value, the features become a
matrix X ∈ Rn×d where every row is the d-dimensional feature vector of a node. Then,
the graph convolution becomes:

Rn×d ∋ X ∗ g = UGU⊤X . (11)

Graph Neural Network 9 / 41

ChebNet

Graph Neural Network 10 / 41

ChebNet

Convolutional graph neural networks have been built upon two main approaches:
▶ spectral methods which have a graph signal processing perspective.
▶ spatial methods which define graph convolution by information propagation.

Graph Convolutional Network (GCN) [5] bridged the gap between spectral and spatial
approaches.

Recall Eq. (11). If the input of the ℓ-th layer is denoted by H(ℓ−1) and the output of the

ℓ-th layer be H(ℓ), then Eq. (11) becomes:

H(ℓ) = σ(UGU⊤H(ℓ−1)), (12)

where the activation function σ(.) has been applied on the result of graph convolution.
The first layer accepts the data features as input:

H(0) = X . (13)

Graph Neural Network 11 / 41

ChebNet

A big limitation with Eq. (12) is that U in that equation is the matrix of eigenvectors of
the Laplacian of its input graph. The computational complexity of the eigenvalue
decomposition of the n × n Laplacian matrix is O(n3).

ChebNet (2016) [6] improves the computational complexity of the convolutional neural
network. It approximates the filter g by Chebyshev polynomials of the diagonal matrix of
eigenvalues Λ.

The Chebyshev polynomials are:

T0(x) = 1,

T1(x) = x ,

Ti (x) = 2xTi−1(x)− Ti−2(x).

(14)

The domain of input x for Chebyshev polynomials is [−1, 1]. for example, the Chebyshev
polynomials are widely used for cosine expressions:

cos(iα) = Ti

(
cos(α)

)
.

Graph Neural Network 12 / 41

ChebNet
ChebNet approximates the filter G by a linear combination of Chebyshev polynomials of
the eigenvalues Λ:

G =
k∑

i=0

θiTi (Λ),

where k is the order of Chebyshev polynomials.

However, there is a problem with the domain of the Chebyshev polynomials in this
equation. The eigenvalues, i.e., the diagonal elements of Λ are between zero and the
largest eigenvalue λmax. Therefore, the eigenvalues need to be normalized as:

Rn×n ∋ Λ̃ :=
2

λmax
Λ− I n, (15)

where I n is the n × n identity matrix. The values in the normalized eigenvalue matrix are
in range [−1, 1] as required by the domain of Chebyshev polynomials.

Hence, the approximation of the filter g is:

G =
k∑

i=0

θiTi (Λ̃). (16)

Graph Neural Network 13 / 41

ChebNet
Recall Eq. (10):

x ∗ g = UGU⊤x
(16)
= U

(k∑
i=0

θiTi (Λ̃)
)
U⊤x =

k∑
i=0

θiUTi (Λ̃)U⊤x . (17)

The matrix U is orthogonal, i.e., its columns are orthonormal, because it is the matrix of
eigenvectors. For an orthonormal transformation, the following holds:

UTi (Λ̃)U⊤ = Ti (UΛ̃U⊤). (18)

Similar to Eq. (15), we define:

L̃ :=
2

λmax
L− I n, (19)

where λmax is largest eigenvalue of the normalized Laplacian L. Then, according to Eq.
(15) and similar to Eq. (5), the eigenvalue decomposition of L̃ becomes:

L̃ = UΛ̃U⊤. (20)

Combining Eqs. (18) and (20) gives:

UTi (Λ̃)U⊤ = Ti (L̃). (21)

Putting Eq. (21) in Eq. (17) gives:

x ∗ g =
k∑

i=0

θiTi (L̃)x . (22)

Graph Neural Network 14 / 41

ChebNet

Comparing Eqs. (12) and (22):

H(ℓ) = σ(UGU⊤H(ℓ−1)),

x ∗ g =
k∑

i=0

θiTi (L̃)x ,

shows that ChebNet resolves the limitation of eigenvalue decomposition of the Laplacian.
In fact, it uses the approximation of Chebyshev polynomials and does not perform
eigenvalue decomposition.

Graph Neural Network 15 / 41

Graph Convolutional
Network

Graph Neural Network 16 / 41

Graph Convolutional Network
Graph Convolutional Network (GCN) (2017) [5] is the first-order approximation of the
ChebNet. In Eq. (22), it approximates the Chebyshev polynomials to its first order
(k = 1):

Ti (L̃) ≈ T0(L̃) + T1(L̃). (23)

In other words:

x ∗ g ≈
1∑

i=0

θiTi (L̃)x = θ0T0(L̃)x + θ1T1(L̃)x
(14)
= θ0x + θ1L̃x .

More number of learnable parameters may result in overfitting [7]. To reduce the number
of parameters and to avoid overfitting, it is assumed that θ0 = θ1 = θ, so:

x ∗ g = θx + θL̃x = θ(I + L̃)x
(19)
= θ(I +

2

λmax
L− I)x = θ

2

λmax
Lx .

It is possible to absorb the constant 2/λmax into the learnable parameters and simply the
graph convolution as:

x ∗ g = θLx
(4)
= θD−1/2AD−1/2x . (24)

Graph Neural Network 17 / 41

Graph Convolutional Network

We found:

x ∗ g = θD−1/2AD−1/2x .

It has been empirically observed that this results in some instability in training of GCN.
Therefore, an additional assumption is added to have self-loops on the nodes meaning
that every node has an edge from it to itself.

Graph Neural Network 18 / 41

Graph Convolutional Network
Mathematically, it means that the main diagonal of the adjacency matrix should become
one by adding the identity matrix to it. Therefore, we define:

Ã := A + I ,

D̃(i , j) :=
n∑

j=1

Ã(i , j),

L̄ := D̃
−1/2

ÃD̃
−1/2

.

(25)

As a result, the Eq. (24) is replaced by:

x ∗ g = θD̃
−1/2

ÃD̃
−1/2

x = θL̄x .

In matrix form, if every row of X ∈ Rn×d is the d-dimensional feature vector of a node,
this equation becomes x ∗ g = L̄Xθ where θ ∈ Rd . If there is a need to have f feature
maps after the convolution, then this equation can become x ∗ g = L̄XΘ where
Θ ∈ Rd×f .

As a result, if the input of the ℓ-th layer is denoted by H(ℓ−1) and the output of the ℓ-th
layer be H(ℓ), then Eq. (11) becomes:

H(ℓ) = σ(L̄H(ℓ−1)Θ), (26)

where the activation function σ(.) has been applied on the result of graph convolution.
The first layer accepts the data features as input, as stated in Eq. (13).

Graph Neural Network 19 / 41

Graph Convolutional Network

Eq. (26) is the graph convolution performed in every layer of GCN where Θ is the matrix
of learnable weights in the layer.

Comparing Eqs. (12) and (26):

H(ℓ) = σ(UGU⊤H(ℓ−1)),

H(ℓ) = σ(L̄H(ℓ−1)Θ),

shows that GCN resolves the limitation of eigenvalue decomposition of the Laplacian. It
makes use of the approximation of Chebyshev polynomials and does not perform
eigenvalue decomposition.

Graph Neural Network 20 / 41

Graph Convolutional Network vs. Feedforward Network
In the fully connected layer of a feedforward neural network, the operation of the layer is:

H(ℓ) = σ(H(ℓ−1)Θ). (27)

However, according to Eqs. (25) and (26), the operation of convolution in a layer of GCN
is:

H(ℓ) = σ(D̃
−1/2

ÃD̃
−1/2

H(ℓ−1)Θ). (28)

Comparing Eqs. (27) and (28) shows the relation of GCN and feedforward network. In a

fully connected layer of feedforward network, all the features of previous layer H(ℓ−1) are
fed to the next layer through a linear transformation by the weight matrix Θ followed by a
nonlinear activation function. However, in graph neural network, firstly the adjacency
matrix defines which nodes (or features) are connected to each other, and then the linear
transformation by the weight matrix Θ is performed followed by a nonlinear activation
function. In other words, the adjacency matrix determines which nodes should impact the
features of every node (see this this figure).

Graph Neural Network 21 / 41

More General
Frameworks of Graph
Convolutional Network

Graph Neural Network 22 / 41

More General Frameworks of GCN
The update rule of every layer, i.e., Eq. (28), can be restated as:

h(ℓ)
i = σ

(∑
j∈Ni

Θh(ℓ−1)
j

)
, (29)

for the i-th neuron in the ℓ-th layer, where Ni denotes the neighbors of the i-th node (or
neuron) in the input of the layer. This update rule is called sum pooling because it sums
over the neighbors.

There is a problem with sum pooling. Summing the contents of the neighboring nodes (or
neurons) increases the scale of the output feature gradually over multiple layers.

To resolve this issue, it is possible to normalize the input of the activation function by

D̃
−1

:

H(ℓ) = σ
(
D̃

−1
ÃH(ℓ−1)Θ

)
, (30)

where D̃ is defined in Eq. (25). Eq. (30) can be stated for every node i :

h(ℓ)
i = σ

(∑
j∈Ni

1

|Ni |
Θh(ℓ−1)

j

)
, (31)

where |Ni | denotes the number of neighbors for the i-th node. This is because the degree
matrix counts the number of neighbors for nodes.

The update rule in Eq. (30) or (31) is called the mean pooling.

Graph Neural Network 23 / 41

More General Frameworks of GCN

Rather than Eq. (30), it is possible to use symmetric normalization in mean pooling:

H(ℓ) = σ
(
D̃

−1/2
ÃD̃

−1/2
H(ℓ−1)Θ

)
. (32)

Eq. (32) can be stated for every node i :

h(ℓ)
i = σ

(∑
j∈Ni

1√
|Ni ||Nj |

Θh(ℓ−1)
j

)
, (33)

which is called mean pooling with symmetric normalization.

Comparing Eqs. (28) and (32) shows that the original GCN uses mean pooling with
symmetric normalization.

Eq. (33) means that for every node i , if the node j is a neighbor, its impact on the node i
should be more if the node j has few number of neighbors (|Nj | is small). However, its
impact on the node i should be less if the node j has large number of neighbors (|Nj | is
large) because the node i would be one of the many neighbors of node j . Note that this
impact is not considered in Eq. (31).

Graph Neural Network 24 / 41

More General Frameworks of GCN

Different tasks:
▶ Node classification/regression: after the multiple layers of convolution, the hi ’s of

the last layer are used in the loss function for the node classification or regression.
▶ Graph classification/regression: after the multiple layers of convolution, all the hi ’s

of the last layer are aggregated and used in the loss function for the graph
classification or regression.

▶ Link classification/regression: after the multiple layers of convolution, the hi ’s and
the edges of the last layer are used in the loss function for the link classification or
regression.

Graph Neural Network 25 / 41

Graph Attention
Network

Graph Neural Network 26 / 41

Graph Attention Network
As was seen in Eqs. (29), (31), and (33), the linear combination in pooling can have
weights.

Graph Attention Network (GAT) (2017) [8] adopts attention mechanisms to learn the
relative weights between two connected nodes. In the pooling operation, the weights of
attention are added:

h(ℓ)
i = σ

(∑
j∈Ni

αijh
(ℓ−1)
j

)
, (34)

where the attention weight αij measures the influence of node j to node i .

αij = attention(h(ℓ−1)
i , h(ℓ−1)

j). (35)

The attention weight can be computed by a attention function a(.) between h(ℓ−1)
i and

h(ℓ−1)
j :

aij = a(h(ℓ−1)
i , h(ℓ−1)

j). (36)

This attention function may also consider the edge between the nodes i and j :

aij = a(h(ℓ−1)
i , h(ℓ−1)

j , eij). (37)

Graph Neural Network 27 / 41

Graph Attention Network
This attention function a(.) can be a transformer autoencoder [9].

However, GAT models the attention function a(.) as a single-layer feedforward neural
network. This single-layer neural network calculates the attention between nodes.

Finally, the attention values of every node are normalized in a softmax form to obtain the
attention weights:

αij =
eaij∑

k∈Ni
eaik

, (38)

where the summation in the denominator is over the neighbors of the i-th node.

credit of image: [9]

Graph Neural Network 28 / 41

Graph Attention Network

Transformers [9] are special cases of graph neural networks.

In fact, every sentence or sequence can be considered as a graph where GAT can calculate
the attention between the tokens in the sequence. For example, the graph for the
sentence “This is also a sentence” is depicted below.

Graph Neural Network 29 / 41

Graph Attention Network
In the following, GAT and transformer are compared.

In GAT, the attention is aij = a(h(ℓ−1)
i , h(ℓ−1)

j) where the h(ℓ−1)
i and h(ℓ−1)

j are passed

through a single-layer network with some weight W . Therefore, the attention is calculated

between W⊤h(ℓ−1)
i and W⊤h(ℓ−1)

j after feeding to the single layer of network. In

transformer, on the other hand, the attention is aij = a(q i , k j) where the query q i and key

k j are different linear transformations of the same tokens, i.e., q i = W⊤
Q x and

k i = W⊤
K x [10]. Therefore, the difference of GAT and transformer is that GAT uses the

shared learnable wight for the query and key but transformer uses different learnable
weights for them.

Another difference between GAT and transformer is that GAT uses a single-layer
feedforward neural network as the attention function a(.). However, in transformer, this
function is [10]:

a(q i , k j) =
1
√
p
q⊤
i k j ,

where p is the dimensionality of query and key.

The last difference of GAT and transformer is the softmax form. GAT sums over the
neighbors in the denominator of the softmax form (see Eq. (38)). However, transformer
sums over all tokens in the sequence:

αij =
eaij∑n
k=1 e

aik
.

Graph Neural Network 30 / 41

Graph Autoencoder

Graph Neural Network 31 / 41

Graph Autoencoder
Consider the following autoencoder where the encoder has two layers. This autoencoder
accepts a graph as its input; hence, its name is Graph Autoencoder (GAE) (2016) [11].

According to Eq. (26), the first layer of the encoder is:

H(1) = σ(L̄XΘ1), (39)

where Θ1 is the learnable weight matrix of the first layer, X ∈ Rn×d is the feature vectors
of nodes stacked row-wise, L̄ is defined in Eq. (25) based on the adjacency matrix of the

graph, σ(.) is usually the ReLU activation function [12], and H(1) is the output of the first
layer.

Again, according to Eq. (26), the second layer of the encoder is:

H(2) = L̄H(1)Θ2, (40)

where Θ2 is the learnable weight matrix of the second layer, H(2) is the output of the
second layer, and the second layer is assumed not to have an actvation function.

Putting Eq. (39) in Eq. (40) gives the following function which we denote by
GCN(X ,A;Θ1,Θ2):

GCN(X ,A;Θ1,Θ2) := L̄σ(L̄XΘ1)Θ2. (41)

There are two types of GAE, i.e., graph reconstruction autoencoder and graph variational
autoencoder [11]. These autoencoders are introduced in the following.

Graph Neural Network 32 / 41

Graph Reconstruction Autoencoder
In the graph reconstruction autoencoder, also called the non-probabilistic GAE, the
encoder is Eq. (41) with two layers. The p-dimensional latent embeddings of nodes,
denoted by Z ∈ Rn×p , are obtained as:

Z = GCN(X ,A;Θ1,Θ2) := L̄σ(L̄XΘ1)Θ2.

The decoder of graph reconstruction autoencoder does not contain any layers but models
measuring similarity between the embedding vectors of the nodes (see this figure). It is
the sigmoid function of z⊤

i z j to show the score of similarity (inner product) of the latent
variables z i and z j . In other words, it reconstructs the adjacency matrix but with the
latent embeddings of nodes rather than the nodes directly:

Â = sigmoid(ZZ⊤), or (42)

Â(i , j) =
1

1 + e−z⊤i z j
. (43)

The graph reconstruction autoencoder is depicted in this figure.

Graph Neural Network 33 / 41

Graph Reconstruction Autoencoder

The loss is the mean squared error between the adjacency matrix and the reconstructed
adjacency matrix:

minimize
θ

∥Â− A∥2
F , (44)

where ∥.∥F denotes the Frobenius norm and θ := {Θ1,Θ2} is the learnable parameters.
This loss function is minimized by backpropagation [13].

Graph Neural Network 34 / 41

Graph Variational Autoencoder

Graph variational autoencoder uses these two GCN modules for estimating the mean and
variance in the latent space by the encoder:

GCNµ(X ,A;Θ1,Θ2) := L̄σ(L̄XΘ1)Θ2, (45)

GCNσ(X ,A;Θ1,Θ3) := L̄σ(L̄XΘ1)Θ3, (46)

where the first layer is shared between them as shown in this figure.

Graph Neural Network 35 / 41

Graph Variational Autoencoder

As the latent variables of the nodes are independent, the encoder of graph variational
autoencoder models the following conditional distribution:

q(Z |X ,A) =
n∏

i=1

q(z i |X ,A), (47)

where Z ∈ Rn×p contains the p-dimensional latent variables and z i ∈ Rp is the latent
variable of the i-th node whose conditional distribution is a Gaussian distribution:

q(z i |X ,A) = N (z i |µi , diag(σ2
i)), (48)

where diag(.) makes a diagonal matrix with its input as as the diagonal of matrix.

The latent variables {z i}ni=1 are sampled from the multivariate joint distribution in Eq.
(47).

Graph Neural Network 36 / 41

Graph Variational Autoencoder
The decoder of the autoencoder models the following conditional distribution:

q(A|Z) =
n∏

i=1

n∏
j=1

p(A(i , j)|z i , z j), (49)

where p(A(i , j)|z i , z j) is the sigmoid function of z⊤
i z j to show the probability of similarity

(inner product) of the latent variables z i and z j :

p(A(i , j) = 1|z i , z j) =
1

1 + e−z⊤i z j
. (50)

As a result, the decoder of graph variational autoencoder does not contain any layers but
models measuring similarity between the sampled latent variables in the latent space (see
this figure).

Graph Neural Network 37 / 41

Graph Variational Autoencoder

The graph variational autoencoder maximizes the Evidence Lower Bound (ELBO) in
variational inference [14]:

maximize
θ

Eq(Z |X ,A)

[
log(p(A |Z))

]
− KL

(
q(Z |X ,A)∥ p(Z)

)
. (51)

where KL(.∥.) denotes the Kullback-Leibler (KL) divergence [15], p(Z) is the desired prior
distribution such as some Gaussian distribution, and θ := {Θ1,Θ2,Θ3} is the learnable
parameters.

The graph variational autoencoder is trained by backpropagation [13]. In backpropagation,
the loss function should be minimized; therefore, the loss is the ELBO times −1:

minimize
θ

− Eq(Z |X ,A)

[
log(p(A |Z))

]
+ KL

(
q(Z |X ,A)∥ p(Z)

)
. (52)

minimizing this loss function tries to learn generation of the adjacency matrix A given the
sampled latent variables Z while the conditional distribution of the latent variable given
the graph and its adjacency matrix becomes similar to the desired prior distribution of the
latent space.

Graph Neural Network 38 / 41

Acknowledgment

Some slides of this slide deck are inspired by teachings of Prof. Ali Ghodsi at University of
Waterloo, Department of Statistics.

Graph neural network in PyTorch Geometric: https:

//pytorch-geometric.readthedocs.io/en/latest/get_started/introduction.html

Good tutorial on PyTorch Geometric by Antonio Longa:
https://www.youtube.com/playlist?list=PLGMXrbDNfqTzqxB1IGgimuhtfAhGd8lHF

Graph Neural Network 39 / 41

https://pytorch-geometric.readthedocs.io/en/latest/get_started/introduction.html
https://pytorch-geometric.readthedocs.io/en/latest/get_started/introduction.html
https://www.youtube.com/playlist?list=PLGMXrbDNfqTzqxB1IGgimuhtfAhGd8lHF

References

[1] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning applied to
document recognition,” Proceedings of the IEEE, vol. 86, no. 11, pp. 2278–2324, 1998.

[2] Y. Weiss, “Segmentation using eigenvectors: a unifying view,” in Proceedings of the
seventh IEEE international conference on computer vision, vol. 2, pp. 975–982, IEEE, 1999.

[3] A. Ng, M. Jordan, and Y. Weiss, “On spectral clustering: Analysis and an algorithm,”
Advances in neural information processing systems, vol. 14, pp. 849–856, 2001.

[4] B. Ghojogh, F. Karray, and M. Crowley, “Eigenvalue and generalized eigenvalue problems:
Tutorial,” arXiv preprint arXiv:1903.11240, 2019.

[5] T. N. Kipf and M. Welling, “Semi-supervised classification with graph convolutional
networks,” in International Conference on Learning Representations, 2017.

[6] M. Defferrard, X. Bresson, and P. Vandergheynst, “Convolutional neural networks on
graphs with fast localized spectral filtering,” Advances in neural information processing
systems, vol. 29, pp. 3844–3852, 2016.

[7] B. Ghojogh and M. Crowley, “The theory behind overfitting, cross validation,
regularization, bagging, and boosting: tutorial,” arXiv preprint arXiv:1905.12787, 2019.

[8] P. Veličković, G. Cucurull, A. Casanova, A. Romero, P. Lio, and Y. Bengio, “Graph
attention networks,” in International Conference on Learning Representations, 2017.

Graph Neural Network 40 / 41

References (cont.)

[9] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, L. Kaiser, and
I. Polosukhin, “Attention is all you need,” in Advances in neural information processing
systems, vol. 30, 2017.

[10] B. Ghojogh and A. Ghodsi, “Attention mechanism, transformers, BERT, and GPT: tutorial
and survey,” 2020.

[11] T. N. Kipf and M. Welling, “Variational graph auto-encoders,” arXiv preprint
arXiv:1611.07308, 2016.

[12] V. Nair and G. E. Hinton, “Rectified linear units improve restricted boltzmann machines,”
in Proceedings of the 27th international conference on machine learning (ICML-10),
pp. 807–814, 2010.

[13] D. E. Rumelhart, G. E. Hinton, and R. J. Williams, “Learning representations by
back-propagating errors,” Nature, vol. 323, no. 6088, pp. 533–536, 1986.

[14] B. Ghojogh, A. Ghodsi, F. Karray, and M. Crowley, “Factor analysis, probabilistic principal
component analysis, variational inference, and variational autoencoder: Tutorial and
survey,” arXiv preprint arXiv:2101.00734, 2021.

[15] S. Kullback and R. A. Leibler, “On information and sufficiency,” The annals of
mathematical statistics, vol. 22, no. 1, pp. 79–86, 1951.

Graph Neural Network 41 / 41

