
Restricted Boltzmann Machine and
Deep Belief Network

Deep Learning (ENGG*6600*01)

School of Engineering,
University of Guelph, ON, Canada

Course Instructor: Benyamin Ghojogh
Summer 2023

Restricted Boltzmann Machine and Deep Belief Network 1 / 57

Introduction

Restricted Boltzmann Machine and Deep Belief Network 2 / 57

Introduction

Centuries ago, the Boltzmann distribution (1868) [1], also called the Gibbs distribution
(1902) [2], was proposed.

This energy-based distribution was found to be useful for modeling the physical systems
statistically [3].

One of these systems was the Ising model which modeled interacting particles with binary
spins [4, 5].

Later, the Ising model was found to be able to be a neural network [6]. Hence, Hopfield
network was proposed which modeled an Ising model in a network for modeling memory
(1982) [7].

Inspired by the Hopfield network [6, 7], which was itself inspired by the physical Ising
model [4, 5], Hinton et. al. proposed Boltzmann Machine (BM) and Restricted
Boltzmann Machine (RBM) (1983-1985) [8, 9].

These models are energy-based models [10] and the names come from the Boltzmann
distribution [1, 2] used in these models.

Restricted Boltzmann Machine and Deep Belief Network 3 / 57

Introduction
During the winter of neural networks, Hinton tried to save neural networks from being
forgotten in the history of machine learning. So, he returned to his previously proposed
RBM and proposed a learning method for RBM with the help of some other researchers
including Max Welling (2002-2004) [11, 12]. They proposed training the weights of BM
and RBM using maximum likelihood estimation.

BM and RBM can be seen as generative models where new values for neurons can be
generated using Gibbs sampling [13].

Hinton noticed RBM because he knew that the set of weights between every two layers
of a neural network is an RBM.

It was in the year 2006 [14, 15] that he thought it is possible to train a network in a greedy
way [16] where the weights of every layer of network is trained using RBM training.

This stack of RBM models with a greedy algorithm for training was named Deep Belief
Network (DBN) [15, 17].

DBN allowed the networks to become deep by preparing a good initialization of weights
(using RBM training) for backpropagation. This good starting point for backpropagation
optimization did not face the problem of vanishing gradients anymore.

Since the breakthrough in 2006 [14], the winter of neural networks started to end
gradually because the networks could get deep to become more nonlinear and handle more
nonlinear data.

Two important techniques were proposed, which were the ReLU activation function
(2001) [18] and the dropout technique (2014) [19]. These two regularization methods
prevented overfitting [20] and resolved vanishing gradients even without RBM
pre-training.

Restricted Boltzmann Machine and Deep Belief Network 4 / 57

Statistical Physics,
Ising Model, and
Hopfield Network

Restricted Boltzmann Machine and Deep Belief Network 5 / 57

Boltzmann (Gibbs) Distribution

Assume we have several particles {xi}di=1 in statistical physics.

These particles can be seen as random variables which can randomly have a state. For
example, if the particles are electrons, they can have states +1 and −1 for
counterclockwise and clockwise spins, respectively.

The Boltzmann distribution (1868) [1], also called the Gibbs distribution (1902) [2], can
show the probability that a physical system can have a specific state. i.e., every of the
particles has a specific state. The probability mass function of this distribution is [3]:

P(x) =
e−βE(x)

Z
, (1)

where E(x) is the energy of variable x and Z is the normalization constant so that the
probabilities sum to one.

This normalization constant is called the partition function which is hard to compute as it
sums over all possible configurations of states (values) that the particles can have. If we
define Rd ∋ x := [x1, . . . , xd]

⊤, we have:

Z :=
∑
x∈Rd

e−βE(x). (2)

Restricted Boltzmann Machine and Deep Belief Network 6 / 57

Boltzmann (Gibbs) Distribution

We had:

P(x) =
e−βE(x)

Z
.

The coefficient β ≥ 0 is defined as:

β :=
1

kβT
∝

1

T
, (3)

where kβ is the Boltzmann constant and T ≥ 0 is the absolute thermodynamic
temperature in Kelvins.

If the temperature tends to absolute zero, T → 0, we have β → ∞ and P(x) → 0,
meaning that the absolute zero temperature occurs extremely rarely in the universe.

Restricted Boltzmann Machine and Deep Belief Network 7 / 57

Boltzmann (Gibbs) Distribution
Recall Eqs. (1) and (2):

P(x) =
e−βE(x)

Z
,

Z :=
∑
x∈Rd

e−βE(x).

The free energy is defined as:

F (β) :=
−1

β
ln(Z), (4)

where ln(.) is the natural logarithm.

The internal energy is defined as:

U(β) :=
∂

∂β

(
β F (β)

)
. (5)

Therefore, we have:

U(β) =
∂

∂β
(− ln(Z)) =

−1

Z

∂Z

∂β

(2)
=

∑
x∈Rd

E(x)
e−βE(x)

Z

(1)
=

∑
x∈Rd

P(x)E(x). (6)

Restricted Boltzmann Machine and Deep Belief Network 8 / 57

Boltzmann (Gibbs) Distribution

Recall Eqs. (1) and (4) and (6):

P(x) =
e−βE(x)

Z
,

F (β) :=
−1

β
ln(Z),

U(β) =
∑
x∈Rd

P(x)E(x).

The entropy is defined as:

H(β) := −
∑
x∈Rd

P(x) ln
(
P(x)

) (1)
= −

∑
x∈Rd

P(x)
(
− βE(x)− ln(Z)

)
= β

∑
x∈Rd

P(x)E(x) + ln(Z)
∑
x∈Rd

P(x)

︸ ︷︷ ︸
=1

(a)
= −β F (β) + β U(β), (7)

where (a) is because of Eqs. (6) and (4).

Restricted Boltzmann Machine and Deep Belief Network 9 / 57

Boltzmann (Gibbs) Distribution

Lemma

A physical system prefers to be in low energy; hence, the system always loses energy to have less
energy.

Proof.
On the one hand, according to the second law of thermodynamics, entropy of a physical system
always increases by passing time [21]. Entropy is a measure of randomness and disorder in
system. On the other hand, when a system loses energy to its surrounding, it becomes less
ordered. Hence, by passing time, the energy of system decreases to have more entropy.
Q.E.D.

Corollary
According to Eq. (1):

P(x) =
e−βE(x)

Z
,

and Lemma 1, the probability P(x) of states in a system tend to increase by passing time.

Restricted Boltzmann Machine and Deep Belief Network 10 / 57

Boltzmann (Gibbs) Distribution

This corollary makes sense because systems tend to become more probable. This idea is
also used in simulated annealing1 [22] where the temperature of system is cooled down
gradually.

Simulated annealing and temperature-based learning have been used in BM models
[23, 24, 25].

1
Simulated annealing is a metaheuristic optimization algorithm in which a temperature parameter controls the amount of

global search versus local search. It reduces the temperature gradually to decrease the exploration and increase the exploitation
of the search space, gradually.

Restricted Boltzmann Machine and Deep Belief Network 11 / 57

Ising Model

Recall the Boltzmann distribution [3]:

P(x) =
e−βE(x)

Z
.

The Ising model [4, 5], also known as the Lenz-Ising model, is a model in which the
particles can have −1 or +1 spins [26]. Therefore, xi ∈ {−1,+1},∀i ∈ {1, . . . , d}.
The Ising model uses the Boltzmann distribution, Eq. (1), where the energy function is
defined as:

E(x) := H(x) = −
∑
(i,j)

Jij xi xj , (8)

where H(x) is called the Hamiltonian, Jij ∈ R is the coupling parameter, and the
summation is over particles which interact with each other.

Note that as energy is proportional to the reciprocal of squared distance, nearby particles
are only assumed to be interacting. Therefore, usually the interaction graph of particles
is a chain (one dimensional grid), mesh grid (lattice), closed chain (loop), or torus
(multi-dimensional loop).

Restricted Boltzmann Machine and Deep Belief Network 12 / 57

Ising Model

Based on the characteristic of model, the coupling parameter has different values. If for
all interacting i and j , we have Jij ≥ 0 or Jij < 0, the model is named ferromagnetic and
anti-ferromagnetic, respectively. If Jij can be both positive and negative, the model is
called a spin glass. If the coupling parameters are all constant, the model is homogeneous.

The BM and RBM are Ising models whose coupling parameters are considered as
weights and these weights are learned using maximum likelihood estimation [27]. Hence,
we can say that BM and RBM are energy-based learning methods [10].

Restricted Boltzmann Machine and Deep Belief Network 13 / 57

Hopfield Network

It was proposed in (1974) [6] to use the Ising model in a neural network structure.
Hopfield extended this idea to model the memory by a neural network. The resulting
network was the Hopfield network (1982) [7].

This network has some units or neurons denoted by {xi}di=1. The states or outputs of
units are all binary xi ∈ {−1,+1},∀i . Let wij denote the weight of link connecting unit i
to unit j .

The weights of Hopfield network are learned using the Hebbian learning (Hebb’s law of
association) [28]:

wij :=

{
xi × xj if i ̸= j ,
0 otherwise.

(9)

After training, the outputs of units can be determined for an input if the weighted
summation of inputs to unit passes a threshold θ:

xi :=

{
+1 if

∑d
j=1 wijxj ≥ θ,

−1 otherwise.
(10)

In the original paper of Hopfield network [7], the binary states are xi ∈ {0, 1}, ∀i so the
Hebbian learning is wij := (2xi − 1)× (2xj − 1), ∀i ̸= j .

Restricted Boltzmann Machine and Deep Belief Network 14 / 57

Hopfield Network

Hopfield network is an Ising model so it uses Eq. (8):

E(x) := H(x) = −
∑
(i,j)

Jij xi xj ,

as its energy. This energy is also used in the Boltzmann distribution which is Eq. (1).

It is noteworthy that there are also Hopfield networks with continuous states (1984) [29].
Modern Hopfield networks, such as (2020) [30], are often based on dense associative
memories [31]. Some other recent works on associative memories are [32, 33].

The BM and RBM models are Hopfield networks whose weights are learned using
maximum likelihood estimation and not Hebbian learning.

Restricted Boltzmann Machine and Deep Belief Network 15 / 57

Structure of Restricted
Boltzmann Machine

Restricted Boltzmann Machine and Deep Belief Network 16 / 57

Structure of Restricted Boltzmann Machine
Boltzmann Machine (BM) is a generative model and a Probabilistic Graphical Model
(PGM) [34] which is a building block of many probabilistic models.

Its name is because of the Boltzmann distribution [1, 2] used in this model.

It was first introduced to be used in machine learning in (1983-1985) [8, 9] and then in
(2002-2004) [11, 12].

A BM consists of a visible (or observation) layer v = [v1, . . . , vd] ∈ Rd and a hidden
layer h = [h1, . . . , hp] ∈ Rp .

The visible layer is the layer that we can see; for example, it can be the layer of data. The
hidden layer is the layer of latent variables which represent meaningful features or
embeddings for the visible data.

In other words, there is a meaningful connection between the hidden and visible layers
although their dimensionality might differ, i.e., d ̸= p.

Restricted Boltzmann Machine and Deep Belief Network 17 / 57

Structure of Restricted Boltzmann Machine

Each of the elements of v and h also have a bias. There are also links between the
elements of v as well as between the elements of h [35].

Let wij denote the link between vi and hj , and lij be the link between vi and vj , and jij be
the link between hi and hj , and bi be the bias link for vi , and ci be the bias link for hi .

The dimensionality of these links are W = [wij] ∈ Rd×p , L = [lij] ∈ Rd×d ,

J = [jij] ∈ Rp×p , b = [b1, . . . , bd] ∈ Rd , and c = [c1, . . . , cp] ∈ Rp . Note that W is a
symmetric matrix, i.e., wij = wji . Also, as there is no link from a node to itself, the
diagonal elements of L and J are zero, i.e., lii = jii = 0, ∀i .
Restricted Boltzmann Machine (RBM) is BM which does not have links within a layer,
i.e., there is no any link between the elements of v and no any link between the elements
of h. In other words, the links are restricted in RBM to be L = J = 0.

Restricted Boltzmann Machine and Deep Belief Network 18 / 57

Structure of Restricted Boltzmann Machine
Recall that RBM is an Ising model. As we saw in Eq. (8):

E(x) := H(x) = −
∑
(i,j)

Jij xi xj ,

the energy of an Ising model can be modeled as [8, 9]:

R ∋ E(v , h) := −b⊤v − c⊤h − v⊤Wh, (11)

which is based on interactions between linked units.

As introduced in Eq. (1):

P(x) =
e−βE(x)

Z
,

the visible and hidden variables make a joint Boltzmann distribution [36]:

P(v , h) =
1

Z
exp(−E(v , h))

(11)
=

1

Z
exp(b⊤v + c⊤h + v⊤Wh), (12)

where Z is the partition function:

Z :=
∑

v∈Rd

∑
h∈Rp

exp(−E(v , h)). (13)

According to Lemma 1, the BM and RBM try to reduce the energy of model. Training the
BM or RBM reduces its energy [8, 9].

Restricted Boltzmann Machine and Deep Belief Network 19 / 57

Conditional
Distributions

Restricted Boltzmann Machine and Deep Belief Network 20 / 57

Conditional Distributions

Lemma (Conditional Independence of Variables)

In RBM, given the visible variables, the hidden variables are conditionally independent. Likewise,
given the hidden variables, the visible variables are conditionally independent. This does not
hold in BM because of the links within each layer.

Proof:

According to the Bayes’ rule, we have:

P(h|v) =
P(h, v)
P(v)

=
P(v , h)∑

h∈Rp P(v , h)
(12)
=

1
Z
exp(b⊤v + c⊤h + v⊤Wh)∑

h∈Rp
1
Z
exp(b⊤v + c⊤h + v⊤Wh)

=
1
Z
exp(b⊤v) exp(c⊤h) exp(v⊤Wh)

1
Z

∑
h∈Rp exp(b⊤v) exp(c⊤h) exp(v⊤Wh)

(a)
=

exp(b⊤v) exp(c⊤h) exp(v⊤Wh)
exp(b⊤v)

∑
h∈Rp exp(c⊤h) exp(v⊤Wh)

=
exp(c⊤h) exp(v⊤Wh)∑

h∈Rp exp(c⊤h) exp(v⊤Wh)
,

where (a) is because the term exp(b⊤v) does not have h in it.

Note that
∑

h∈Rp denotes summation over all possible p-dimensional hidden variables for
the sake of marginalization.

Restricted Boltzmann Machine and Deep Belief Network 21 / 57

Conditional Distributions

We had:

P(h|v) =
exp(c⊤h) exp(v⊤Wh)∑

h∈Rp exp(c⊤h) exp(v⊤Wh)
.

Let Z ′ :=
∑

h∈Rp exp(c⊤h) exp(v⊤Wh). Hence:

P(h|v) =
1

Z ′ exp(c
⊤h + v⊤Wh) =

1

Z ′ exp
(p∑

j=1

cjhj +

p∑
j=1

v⊤W :jhj

)

=
1

Z ′

p∏
j=1

exp(cjhj + v⊤W :jhj), (14)

where W :j ∈ Rd denotes the j-th column of matrix W .

The Eq. (14) shows that given the visible variables, the hidden variables are
conditionally independent because their joint distribution is the product of every
distribution.

Restricted Boltzmann Machine and Deep Belief Network 22 / 57

Conditional Distributions

We can write similar expressions for the probability P(v |h):

P(v |h) =
1

Z ′′ exp(b
⊤v + v⊤Wh) =

1

Z ′′ exp
(d∑

i=1

bivi +
d∑

i=1

viW i :h
)

=
1

Z ′′

d∏
i=1

exp(bivi + viW i :h), (15)

where W i : ∈ Rp denotes the i-th row of matrix W and
Z ′′ :=

∑
v∈Rd exp(b⊤v) exp(v⊤Wh).

This equation shows that given the hidden variables, the visible variables are
conditionally independent. Q.E.D.

Restricted Boltzmann Machine and Deep Belief Network 23 / 57

Conditional Distributions

According to Eq. (14):

P(h|v) =
1

Z ′

p∏
j=1

exp(cjhj + v⊤W :jhj),

and considering the rule P(h|v) = P(h, v)/P(v), we have:

P(h|v) =
1

Z ′

p∏
j=1

exp(cjhj + v⊤W :jhj) =
1

Z ′

p∏
j=1

P(hj , v)

=⇒ P(hj , v) = exp(cjhj + v⊤W :jhj) = exp(cjhj +
d∑

i=1

viwijhj). (16)

Restricted Boltzmann Machine and Deep Belief Network 24 / 57

Conditional Distributions

Similarly, according to Eq. (15):

P(v |h) =
1

Z ′′

d∏
i=1

exp(bivi + viW i :h), (17)

and considering the rule P(v |h) = P(h, v)/P(h), we have:

P(h|v) =
1

Z ′′

d∏
i=1

exp(bivi + viW i : h) =
1

Z ′′

d∏
i=1

P(h, vi)

=⇒ P(h, vi) = exp(bivi + viW i : h) = exp(bivi +

p∑
j=1

viwijhj). (18)

We will use these equations later.

Restricted Boltzmann Machine and Deep Belief Network 25 / 57

Sampling Hidden and
Visible Variables

Restricted Boltzmann Machine and Deep Belief Network 26 / 57

Gibbs Sampling

We can use Gibbs sampling for sampling and generating the hidden and visible units.

If ν denotes the iteration index of Gibbs sampling, we iteratively sample:

h(ν) ∼ P(h|v (ν)), (19)

v (ν+1) ∼ P(v |h(ν)), (20)

until the burn-in convergence.

In Gibbs sampling, only several iterations of Gibbs sampling are usually sufficient.

After the burn-in, the samples are approximate samples from the joint distribution P(v , h).

Restricted Boltzmann Machine and Deep Belief Network 27 / 57

Gibbs Sampling

As the variables are conditionally independent, this Gibbs sampling can be implemented as
in this algorithm:

In this algorithm, h
(ν)
j ∼ P(hj |v (ν)) can be implemented as drawing a sample from

uniform distribution u ∼ U[0, 1] and comparing it to the value of Probability Density
Function (PDF), P(hj |v (ν)). If u is less than or equal to this value, we have hj = 1;
otherwise, we have hj = 0.

Implementation of sampling vi has a similar procedure.

Alternatively, we can use inverse of cumulative distribution function of these distributions
for drawing samples (see [37] for more details about sampling).

Restricted Boltzmann Machine and Deep Belief Network 28 / 57

Generations and Evaluations by Gibbs Sampling

Gibbs sampling for generating both observation and hidden units is used for both training
and evaluation phases of RBM.

Use of Gibbs sampling in training RBM will be explained later.

After the RBM model is trained, we can generate any number of p-dimensional hidden
variables as a meaningful representation of the d-dimensional observation using Gibbs
sampling.

Moreover, using Gibbs sampling, we can generate other d-dimensional observations in
addition to the original dataset. These new generated observations are d-dimensional
representations for the p-dimensional hidden variables.

This shows that BM and RBM are generative models.

Restricted Boltzmann Machine and Deep Belief Network 29 / 57

Training Restricted
Boltzmann Machine by
Maximum Likelihood
Estimation

Restricted Boltzmann Machine and Deep Belief Network 30 / 57

Training Restricted Boltzmann Machine by Maximum
Likelihood Estimation

The weights of links which are W , b, and c should be learned so that we can use them
for sampling/generating the hidden and visible units. Consider a dataset of n visible
vectors {v i ∈ Rd}ni=1.

Note that v i should not be confused with vi where the former is the i-th visible data
instance and the latter is the i-th visible unit. We denote the j-th dimension of v i by v i,j ;

in other words, v i = [v i,1, . . . , v i,d]
⊤.

The log-likelihood of the visible data is:

ℓ(W , b, c) =
n∑

i=1

log(P(v i)) =
n∑

i=1

log
(∑

h∈Rp

P(v i , h)
)

(12)
=

n∑
i=1

log
(∑

h∈Rp

1

Z
exp(−E(v i , h))

)
=

n∑
i=1

log
(1

Z

∑
h∈Rp

exp(−E(v i , h))
)

=
n∑

i=1

[
log

(∑
h∈Rp

exp(−E(v i , h))
)
− logZ

]
=

n∑
i=1

log
(∑

h∈Rp

exp(−E(v i , h))
)
− n logZ

(13)
=

n∑
i=1

log
(∑

h∈Rp

exp(−E(v i , h))
)
− n log

∑
v∈Rd

∑
h∈Rp

exp(−E(v , h)). (21)

Restricted Boltzmann Machine and Deep Belief Network 31 / 57

Training Restricted Boltzmann Machine by Maximum
Likelihood Estimation

We found:

ℓ(W , b, c) =
n∑

i=1

log
(∑

h∈Rp

exp(−E(v i , h))
)
− n log

∑
v∈Rd

∑
h∈Rp

exp(−E(v , h)).

We use Maximum Likelihood Estimation (MLE) for finding the parameters
θ := {W , b, c}. The derivative of log-likelihood with respect to parameter θ is:

∇θℓ(θ) =∇θ

n∑
i=1

log
(∑

h∈Rp

exp(−E(v i , h))
)
− n∇θ log

∑
v∈Rd

∑
h∈Rp

exp(−E(v , h)).

(22)

Restricted Boltzmann Machine and Deep Belief Network 32 / 57

Training Restricted Boltzmann Machine by Maximum
Likelihood Estimation

We had:

∇θℓ(θ) =∇θ

n∑
i=1

log
(∑

h∈Rp

exp(−E(v i , h))
)
− n∇θ log

∑
v∈Rd

∑
h∈Rp

exp(−E(v , h)).

The first term of this derivative is:

∇θ

n∑
i=1

log
(∑

h∈Rp

exp(−E(v i , h))
)
=

n∑
i=1

∇θ log
(∑

h∈Rp

exp(−E(v i , h))
)

=
n∑

i=1

∇θ
∑

h∈Rp exp(−E(v i , h))∑
h∈Rp exp(−E(v i , h))

=
n∑

i=1

∑
h∈Rp exp(−E(v i , h))∇θ(−E(v i , h))∑

h∈Rp exp(−E(v i , h))

(a)
=

n∑
i=1

E∼P(h|v i)
[∇θ(−E(v i , h))], (23)

where (a) is because the definition of expectation is E∼P[x] :=
∑

i=1 P(x i) x i . However, if
P is not an actual distribution and does not sum to one, we should normalize it to behave
like a distribution in the expectation: E∼P[x] := (

∑
i=1 P(x i) x i)/(

∑
i=1 P(x i)).

Restricted Boltzmann Machine and Deep Belief Network 33 / 57

Training Restricted Boltzmann Machine by Maximum
Likelihood Estimation

We had:

∇θℓ(θ) =∇θ

n∑
i=1

log
(∑

h∈Rp

exp(−E(v i , h))
)
− n∇θ log

∑
v∈Rd

∑
h∈Rp

exp(−E(v , h)).

The second term of the derivative of log-likelihood is:

− n∇θ log
∑

v∈Rd

∑
h∈Rp

exp(−E(v , h)) = −n
∇θ

∑
v∈Rd

∑
h∈Rp exp(−E(v , h))∑

v∈Rd

∑
h∈Rp exp(−E(v , h))

= −n

∑
v∈Rd

∑
h∈Rp ∇θ exp(−E(v , h))∑

v∈Rd

∑
h∈Rp exp(−E(v , h))

= −n

∑
v∈Rd

∑
h∈Rp exp(−E(v , h))∇θ(−E(v , h))∑
v∈Rd

∑
h∈Rp exp(−E(v , h))

(a)
= −nE∼P(h,v)[∇θ(−E(v , h))], (24)

where (a) is for the definition of expectation which was already explained above.
In summary, the derivative of log-likelihood is:

∇θℓ(θ) =
n∑

i=1

E∼P(h|v i)
[∇θ(−E(v i , h))]− nE∼P(h,v)[∇θ(−E(v , h))]. (25)

Setting this derivative to zero does not give us a closed-form solution. Hence, we should
learn the parameters iteratively using gradient ascent for MLE.

Restricted Boltzmann Machine and Deep Belief Network 34 / 57

Training Restricted Boltzmann Machine by Maximum
Likelihood Estimation

Recall Eqs. (11) and (25):

R ∋ E(v , h) := −b⊤v − c⊤h − v⊤Wh,

∇θℓ(θ) =
n∑

i=1

E∼P(h|v i)
[∇θ(−E(v i , h))]− nE∼P(h,v)[∇θ(−E(v , h))].

Now, consider each of the parameters θ = {W , b, c}. The derivative w.r.t. these
parameters in Eq. (25) are:

∇W (−E(v , h))
(11)
=

∂

∂W
(b⊤v + c⊤h + v⊤Wh) = vh⊤,

∇b(−E(v , h))
(11)
=

∂

∂b
(b⊤v + c⊤h + v⊤Wh) = v ,

∇c (−E(v , h))
(11)
=

∂

∂c
(b⊤v + c⊤h + v⊤Wh) = h.

Restricted Boltzmann Machine and Deep Belief Network 35 / 57

Training Restricted Boltzmann Machine by Maximum
Likelihood Estimation

Therefore, Eq. (25) for these parameters becomes:

∇W ℓ(θ) =
n∑

i=1

E∼P(h|v i)
[vh⊤

i]− nE∼P(h,v)[vh⊤]

=
n∑

i=1

v i E∼P(h|v i)
[h⊤]− nE∼P(h,v)[vh⊤],

∇bℓ(θ) =
n∑

i=1

E∼P(h|v i)
[v i]− nE∼P(h,v)[v] =

n∑
i=1

v i − nE∼P(h,v)[v],

∇cℓ(θ) =
n∑

i=1

E∼P(h|v i)
[h]− nE∼P(h,v)[h].

Restricted Boltzmann Machine and Deep Belief Network 36 / 57

Training Restricted Boltzmann Machine by Maximum
Likelihood Estimation

If we define:

ĥi := E∼P(h|v i)
[h], (26)

we can summarize these derivatives as:

Rd×p ∋ ∇W ℓ(θ) =
n∑

i=1

v i ĥ
⊤
i − nE∼P(h,v)[vh⊤], (27)

Rd ∋ ∇bℓ(θ) =
n∑

i=1

v i − nE∼P(h,v)[v], (28)

Rp ∋ ∇cℓ(θ) =
n∑

i=1

ĥi − nE∼P(h,v)[h]. (29)

Setting these derivatives to zero does not give a closed form solution. Hence, we need to
find the solution iteratively using gradient ascent where the above gradients are used.

In the derivatives of log-likelihood, we have two types of expectation. The conditional
expectation E∼P(h|v i)

[.] is based on the observation or data which is v i . The joint
expectation E∼P(h,v)[.], however, has nothing to do with the observation and is merely
about the RBM model.

Restricted Boltzmann Machine and Deep Belief Network 37 / 57

Contrastive Divergence

Restricted Boltzmann Machine and Deep Belief Network 38 / 57

Contrastive Divergence
According to Eq. (23):

∇θ

n∑
i=1

log
(∑

h∈Rp

exp(−E(v i , h))
)
=

n∑
i=1

E∼P(h|v i)
[∇θ(−E(v i , h))],

the conditional expectation used in Eq. (26), ĥi := E∼P(h|v i)
[h], includes one summation.

Moreover, according to Eq. (24):

− n∇θ log
∑

v∈Rd

∑
h∈Rp

exp(−E(v , h)) = −nE∼P(h,v)[∇θ(−E(v , h))],

the joint expectations used in Eqs. (27), (28), and (29):

Rd×p ∋ ∇W ℓ(θ) =
n∑

i=1

v i ĥ
⊤
i − nE∼P(h,v)[vh⊤],

Rd ∋ ∇bℓ(θ) =
n∑

i=1

v i − nE∼P(h,v)[v],

Rp ∋ ∇cℓ(θ) =
n∑

i=1

ĥi − nE∼P(h,v)[h].

contain two summations.

Restricted Boltzmann Machine and Deep Belief Network 39 / 57

Contrastive Divergence

This double-summation makes computation of the joint expectation intractable because
it sums over all possible values for both hidden and visible units. Therefore, exact
computation of MLE is hard and we should approximate it. One way to approximate
computation of joint expectations in MLE is contrastive divergence (2002) [11].

Contrastive divergence improves the efficiency and reduces the variance of estimation in
RBM [11, 12].

The idea of contrastive divergence is as follows. First, we obtain a point ṽ using Gibbs
sampling starting from the observation v i . Then, we compute expectation by using only
that one point ṽ .
The intuitive reason for why contrastive divergence works is explained in the following.
We need to minimize the gradients to find the solution of MLE. In the joint expectations
in Eqs. (27), (28), and (29), rather than considering all possible values of observations,
contrastive divergence considers only one of the data points (observations). If this
observation is a wrong belief which we do not wish to see in generation of observations by
RBM, contrastive divergence is performing a task which is called negative sampling [36].
In negative sampling, we say rather than training the model to not generate all wrong
observations, we train it iteratively but less ambitiously in every iteration. Each iteration
tries to teach the model to not generate only one of the wrong outputs. Gradually, the
model learns to generate correct observations by avoiding to generate these negative
samples.

Restricted Boltzmann Machine and Deep Belief Network 40 / 57

Contrastive Divergence

Let h̃ = [h̃1, . . . , h̃m]⊤ be the corresponding sampled h to ṽ = [ṽ1, . . . , ṽm]⊤ in Gibbs
sampling.

According to the above explanations, contrastive divergence approximates the joint
expectation in the derivative of log-likelihood, Eq. (25), by Monte-Carlo approximation

[37] evaluated at ṽ i and h̃i for the i-th observation and hidden units where ṽ i and h̃i are
found by Gibbs sampling. Hence:

E∼P(h,v)[∇θ(−E(v , h))] ≈
1

n

n∑
i=1

∇θ(−E(v i , hi))
∣∣∣
v i=ṽ i ,hi=h̃i

. (30)

Experiments have shown that a small number of iterations in Gibbs sampling suffice for
contrastive divergence. Paper [11] even uses one iteration of Gibbs sampling for this task.

Restricted Boltzmann Machine and Deep Belief Network 41 / 57

Contrastive Divergence
By the approximation in Eq. (30), the Eqs. (27), (28), and (29) become:

∇W ℓ(θ) =
n∑

i=1

v i ĥ
⊤
i −

n∑
i=1

ṽ i h̃
⊤
i , (31)

∇bℓ(θ) =
n∑

i=1

v i −
n∑

i=1

ṽ i , (32)

∇cℓ(θ) =
n∑

i=1

ĥi −
n∑

i=1

h̃i . (33)

These equations make sense because when the observation variable and hidden variable
given the observation variable become equal to the approximations by Gibbs sampling,
the gradient should be zero and the training should stop.

Note that some works in the literature restate Eqs. (31), (32), and (33) as [11, 36, 38]:

∀i , j : ∇wij ℓ(θ) = ⟨vihj ⟩data − ⟨vihj ⟩recon., (34)

∀i : ∇bi ℓ(θ) = ⟨vi ⟩data − ⟨vi ⟩recon., (35)

∀j : ∇cj ℓ(θ) = ⟨hj ⟩data − ⟨hj ⟩recon., (36)

where ⟨.⟩data and ⟨.⟩recon. denote expectation over data and reconstruction of data,
respectively.

Restricted Boltzmann Machine and Deep Belief Network 42 / 57

Contrastive Divergence

Restricted Boltzmann Machine and Deep Belief Network 43 / 57

Boltzmann Machine

Restricted Boltzmann Machine and Deep Belief Network 44 / 57

Boltzmann Machine

So far, we introduced and explained RBM. BM has more links compared to RBM [35].

Here, we briefly introduce training of BM. As was explained before, BM has additional
links L = [lij] ∈ Rd×d and J = [jij] ∈ Rp×p . The weights W ∈ Rd×p and biases b ∈ Rd

and c ∈ Rp are trained by gradient descent using the gradients in Eqs. (31), (32), and
(33). The additional weights L and J are updated similarly using the following gradients
[35]:

∇Lℓ(θ) =
n∑

i=1

v iv⊤
i −

n∑
i=1

ṽ i ṽ⊤
i , (37)

∇Jℓ(θ) =
n∑

i=1

E∼P(h|v i)
[hh⊤]−

n∑
i=1

h̃i h̃
⊤
i . (38)

These equations can be restated as:

∀i , j : ∇lij ℓ(θ) = ⟨vivj ⟩data − ⟨vivj ⟩recon., (39)

∀i , j : ∇jij ℓ(θ) = ⟨hihj ⟩data − ⟨hihj ⟩recon., (40)

where ⟨.⟩data and ⟨.⟩recon. denote expectation over data and reconstruction of data,
respectively.

Restricted Boltzmann Machine and Deep Belief Network 45 / 57

Deep Belief Network

Restricted Boltzmann Machine and Deep Belief Network 46 / 57

Stacking RBM Models

We can train a neural network using RBM training (2006) [14, 15]. Training a neural
network using RBM training can result in very good initialization of weights for training
network using backpropagation.

Before the development of ReLU [18] and dropout [19], multilayer perceptron networks
could not become deep for the problem of vanishing gradients. This was because random
initial weights were not suitable enough for starting optimization in backpropagation,
especially in deep networks. Therefore, a method was proposed for pre-training neural
networks which initializes network to a suitable set of weights and then the pre-trained
weights are fine-tuned using backpropagation [14, 15].

A neural network consists of several layers. Let ℓ denote the number of layers, where the
first layer gets the input data, and let pℓ be the number of neurons in the ℓ-th layer. By
convention, we have p1 = d .

Restricted Boltzmann Machine and Deep Belief Network 47 / 57

Stacking RBM Models

We can consider every two successive layers as one RBM.

Restricted Boltzmann Machine and Deep Belief Network 48 / 57

Stacking RBM Models
We start from the first pair of layers as an RBM and we introduce training dataset
{x i ∈ Rd}ni=1 as the visible variable {v i}ni=1 of the first pair of layers. We train the
weights and biases of this first layer as an RBM using the algorithm of training RBM.

After training this RBM, we generate n p2-dimensional hidden variables using Gibbs
sampling in the algorithm of sampling in RBM.

Now, we consider the hidden variables of the first RBM as the visible variables for the
second RBM (the second pair of layers). Again, this RBM is trained by the algorithm of
training RBM and, then, hidden variables are generated using Gibbs sampling in the
algorithm of sampling in RBM.

This procedure is repeated until all pairs of layers are trained using RBM training.

This layer-wise training of neural network has a greedy approach [16]. This greedy training
of layers prepares good initialized weights and biases for the whole neural network. After
this initialization, we can fine-tune the weights and biases using backpropagation [39].

The explained training algorithm was first proposed in [14, 15] and was used for
dimensionality reduction.

By increasing ℓ to any large number, the network becomes large and deep. As layers are
trained one by one as RBM models, we can make the network as deep as we want without
being worried for vanishing gradients because weights are initialized well for
backpropagation.

As this network can get deep and is pre-trained by belief propagation (RBM training), it is
referred to as the Deep Belief Network (DBN) [15, 17].

DBN can be seen as a stack of RBM models.

Restricted Boltzmann Machine and Deep Belief Network 49 / 57

Stacking RBM Models

Restricted Boltzmann Machine and Deep Belief Network 50 / 57

Stacking RBM Models
Note that pre-training of DBN is an unsupervised task because RBM training is
unsupervised. Fine-tuning of DBN can be either unsupervised or supervised depending on
the loss function for backpropagation.

If the DBN is an autoencoder with a low-dimensional middle layer in the network, both
its pre-training and fine-tuning stages are unsupervised because the loss function of
backpropagation is also a mean squared error. This DBN autoencoder can learn a
low-dimensional embedding or representation of data and can be used for dimensionality
reduction (2006) [14].

Restricted Boltzmann Machine and Deep Belief Network 51 / 57

Acknowledgment

This slide deck is based on our tutorial paper “Restricted boltzmann machine and deep
belief network: Tutorial and survey” [40].

For more information on RBM and DBN, refer to our tutorial paper [40].

Some slides of this slide deck are inspired by teachings of Prof. Ali Ghodsi at University of
Waterloo, Department of Statistics.

Some slides of this slide deck (the Ising model part) are inspired by teachings of Prof.
Mehdi Molkaraie at University of Waterloo, Department of Statistics.

Restricted Boltzmann Machine and Deep Belief Network 52 / 57

References

[1] L. Boltzmann, “Studien uber das gleichgewicht der lebenden kraft,” Wissenschafiliche
Abhandlungen, vol. 1, pp. 49–96, 1868.

[2] J. W. Gibbs, Elementary principles in statistical mechanics.
Courier Corporation, 1902.

[3] K. Huang, Statistical Mechanics.
John Wiley & Sons, 1987.

[4] W. Lenz, “Beitřsge zum versťsndnis der magnetischen eigenschaften in festen kšrpern,”
Physikalische Z, vol. 21, pp. 613–615, 1920.

[5] E. Ising, “Beitrag zur theorie des ferromagnetismus,” Zeitschrift für Physik, vol. 31, no. 1,
pp. 253–258, 1925.

[6] W. A. Little, “The existence of persistent states in the brain,” Mathematical biosciences,
vol. 19, no. 1-2, pp. 101–120, 1974.

[7] J. J. Hopfield, “Neural networks and physical systems with emergent collective
computational abilities,” Proceedings of the national academy of sciences, vol. 79, no. 8,
pp. 2554–2558, 1982.

[8] G. E. Hinton and T. J. Sejnowski, “Optimal perceptual inference,” in Proceedings of the
IEEE conference on Computer Vision and Pattern Recognition, vol. 448, IEEE, 1983.

Restricted Boltzmann Machine and Deep Belief Network 53 / 57

References (cont.)

[9] D. H. Ackley, G. E. Hinton, and T. J. Sejnowski, “A learning algorithm for Boltzmann
machines,” Cognitive science, vol. 9, no. 1, pp. 147–169, 1985.

[10] Y. LeCun, S. Chopra, R. Hadsell, M. Ranzato, and F. Huang, “A tutorial on energy-based
learning,” Predicting structured data, vol. 1, 2006.

[11] G. E. Hinton, “Training products of experts by minimizing contrastive divergence,” Neural
computation, vol. 14, no. 8, pp. 1771–1800, 2002.

[12] M. Welling, M. Rosen-Zvi, and G. E. Hinton, “Exponential family harmoniums with an
application to information retrieval.,” in Advances in neural information processing
systems, vol. 4, pp. 1481–1488, 2004.

[13] S. Geman and D. Geman, “Stochastic relaxation, Gibbs distributions, and the Bayesian
restoration of images,” IEEE Transactions on pattern analysis and machine intelligence,
vol. PAMI-6, no. 6, pp. 721–741, 1984.

[14] G. E. Hinton and R. R. Salakhutdinov, “Reducing the dimensionality of data with neural
networks,” Science, vol. 313, no. 5786, pp. 504–507, 2006.

[15] G. E. Hinton, S. Osindero, and Y.-W. Teh, “A fast learning algorithm for deep belief nets,”
Neural computation, vol. 18, no. 7, pp. 1527–1554, 2006.

[16] Y. Bengio, P. Lamblin, D. Popovici, and H. Larochelle, “Greedy layer-wise training of deep
networks,” in Advances in neural information processing systems, pp. 153–160, 2007.

Restricted Boltzmann Machine and Deep Belief Network 54 / 57

References (cont.)

[17] G. E. Hinton, “Deep belief networks,” Scholarpedia, vol. 4, no. 5, p. 5947, 2009.

[18] X. Glorot, A. Bordes, and Y. Bengio, “Deep sparse rectifier neural networks,” in
Proceedings of the fourteenth international conference on artificial intelligence and
statistics, pp. 315–323, JMLR Workshop and Conference Proceedings, 2011.

[19] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov, “Dropout: a
simple way to prevent neural networks from overfitting,” The journal of machine learning
research, vol. 15, no. 1, pp. 1929–1958, 2014.

[20] B. Ghojogh and M. Crowley, “The theory behind overfitting, cross validation,
regularization, bagging, and boosting: tutorial,” arXiv preprint arXiv:1905.12787, 2019.

[21] S. Carroll, From eternity to here: the quest for the ultimate theory of time.
Penguin, 2010.

[22] S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi, “Optimization by simulated annealing,”
science, vol. 220, no. 4598, pp. 671–680, 1983.

[23] L. A. Passos and J. P. Papa, “Temperature-based deep Boltzmann machines,” Neural
Processing Letters, vol. 48, no. 1, pp. 95–107, 2018.

[24] D. Alberici, A. Barra, P. Contucci, and E. Mingione, “Annealing and replica-symmetry in
deep Boltzmann machines,” Journal of Statistical Physics, vol. 180, no. 1, pp. 665–677,
2020.

Restricted Boltzmann Machine and Deep Belief Network 55 / 57

References (cont.)

[25] D. Alberici, P. Contucci, and E. Mingione, “Deep Boltzmann machines: rigorous results at
arbitrary depth,” in Annales Henri Poincaré, pp. 1–24, Springer, 2021.

[26] S. G. Brush, “History of the Lenz-Ising model,” Reviews of modern physics, vol. 39, no. 4,
p. 883, 1967.

[27] G. E. Hinton, “Boltzmann machine,” Scholarpedia, vol. 2, no. 5, p. 1668, 2007.

[28] D. Hebb, The Organization of Behavior.
Wiley & Sons, New York, 1949.

[29] J. J. Hopfield, “Neurons with graded response have collective computational properties like
those of two-state neurons,” Proceedings of the national academy of sciences, vol. 81,
no. 10, pp. 3088–3092, 1984.

[30] H. Ramsauer, B. Schäfl, J. Lehner, P. Seidl, M. Widrich, T. Adler, L. Gruber,
M. Holzleitner, M. Pavlović, G. K. Sandve, et al., “Hopfield networks is all you need,”
arXiv preprint arXiv:2008.02217, 2020.

[31] D. Krotov and J. J. Hopfield, “Dense associative memory for pattern recognition,”
Advances in neural information processing systems, vol. 29, pp. 1172–1180, 2016.

[32] D. Krotov and J. Hopfield, “Large associative memory problem in neurobiology and
machine learning,” in International Conference on Learning Representations (ICLR), 2021.

[33] D. Krotov, “Hierarchical associative memory,” arXiv preprint arXiv:2107.06446, 2021.

Restricted Boltzmann Machine and Deep Belief Network 56 / 57

References (cont.)

[34] C. M. Bishop, “Pattern recognition,” Machine learning, vol. 128, no. 9, 2006.

[35] R. Salakhutdinov and G. Hinton, “Deep Boltzmann machines,” in Artificial intelligence and
statistics, pp. 448–455, PMLR, 2009.

[36] G. E. Hinton, “A practical guide to training restricted Boltzmann machines,” in Neural
networks: Tricks of the trade, pp. 599–619, Springer, 2012.

[37] B. Ghojogh, H. Nekoei, A. Ghojogh, F. Karray, and M. Crowley, “Sampling algorithms,
from survey sampling to Monte Carlo methods: Tutorial and literature review,” arXiv
preprint arXiv:2011.00901, 2020.

[38] G. W. Taylor, G. E. Hinton, and S. T. Roweis, “Modeling human motion using binary latent
variables,” in Advances in neural information processing systems, pp. 1345–1352, 2007.

[39] D. E. Rumelhart, G. E. Hinton, and R. J. Williams, “Learning representations by
back-propagating errors,” Nature, vol. 323, no. 6088, pp. 533–536, 1986.

[40] B. Ghojogh, A. Ghodsi, F. Karray, and M. Crowley, “Restricted boltzmann machine and
deep belief network: Tutorial and survey,” arXiv preprint arXiv:2107.12521, 2021.

Restricted Boltzmann Machine and Deep Belief Network 57 / 57

