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Introduction

Before the era of transformers in deep learning, regular neural networks could not process
sequences, such as sentences (sequence of words) or speech (sequence of phonemes),
properly without any recurrence.

Recurrent Neural Network (RNN), proposed in [1], is a dynamical system which
considers recurrence. In recurrence, the output of a model is fed as input to the model
again in the next time step.

One of the main training algorithms for RNN is Backpropagation Through Time
(BPTT), developed by several works [2, 3, 4, 5, 6], which is similar to the
backpropagation algorithm [1] but has also chain rule through time.

There were some problems with gradient vanishing or explosion for long-term
dependencies in RNN [7, 8]. Several solutions were proposed for this issue, some of which
are close-to-identity weight matrix [9], long delays [10], leaky units [11, 12], and echo
state networks [13, 14].
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Introduction

Sequence modeling requires both short-term and long-term dependencies.

For example, consider the sentence “The police is chasing the thief”. In this sentence, the
words “police” and “thief” are related to each other with short-term dependency because
they are close to one another in the sequence of words.

Another example is the sentence “I was born in France. My father was working there for
many years during my childhood. My family had a great time there while my father was
making money in his business there. That is why I know how to speak French”. In this
second example, the words “France” and “French” are related to each other with
long-term dependency because they are far away from one another in the sequence of
words.

That inspired researchers to propose the Long Short-Term Memory (LSTM) network to
handle both short-term and long-tern dependencies [15, 16].

Later, Grated Recurrent Unit (GRU) was proposed [17] which simplified LSTM to reduce
its unnecessary complexity.
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Introduction

RNN and LSTM networks are causal models which condition every sequence element on
the previous elements in the sequence.

Later researches showed that processing the sequence in both directions can perform
better for the sequences which can be processed offline; e.g., if the chunks of sequence
can be saved and processed and the sequence elements should not be processed as a
stream [18, 19].

Therefore, bidirectional RNN [20, 21] and bidirectional LSTM [18, 19] were proposed to
process sequences in both directions.

The Embeddings from Language Model (ELMo) network [22] is a language model which
makes use of the bidirectional LSTM.
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Recurrent Neural
Network
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Dynamical System
A dynamical system is recursive and its classical form is as follows:

ht = fθ(ht−1), (1)

where t denotes the time step, ht is the state at time t, and fθ(.) is a function fixed
between the states of all time steps. Dynamical systems are widely used in chaos theory
[23].

We can have a dynamical system with external input signal where x t denotes the input
signal at time t. This system is modeled as:

ht = fθ(ht−1, x t). (2)
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Parameter Sharing

The state ht can be considered as a summary of the past sequence of inputs and states.

If a different function fθ is defined for each possible sequence length, the model will not
have generalization.

If the same parameters are used for any sequence length, the model will have
generalization properties.

Therefore, the parameters are shared for all lengths and between all states. Such a
dynamical system with parameter sharing can be implemented as a neural network with
weights. Such a network is called a Recurrent Neural Network (RNN), which was
proposed in [1] (1986).
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Parameter Sharing

In RNN, the same weight matrices are used for all time slots.

RNN gets a sequence as input and outputs a sequence as a decision for a task such as
regression or classification.

Suppose the input, output, and state at time slot t are denoted by x t ∈ Rd , y t ∈ Rq , and
ht ∈ Rp , respectively. Let W ∈ Rp×p be the weight matrix between states, U ∈ Rp×d be
the weight matrix between the inputs and the states, and V ∈ Rq×p denote the weight
matrix between the states and outputs. The bias weights for the state and the output are
denoted by bi ∈ Rp and by ∈ Rq , respectively. We have:

Rp ∋ i t = Wht−1 + Ux t + bi , (3)

[−1, 1]p ∋ ht = tanh(i t) = tanh(Wht−1 + Ux t + bi ), (4)

Rq ∋ y t = Vht + by , (5)

where tanh(.) ∈ (−1, 1) denotes the hyperbolic tangent function, which is used as an
element-wise activation function for the states.

Recurrent Neural Networks and Long Short-Term Memory Networks 9 / 72



Parameter Sharing

If there is an activation function, such as softmax, at the output layer, we denote the
output of activation function by:

Rq ∋ ŷ t = softmax(y t) =
exp(yt,1)∑q
j=1 exp(yt,j )

, (6)

where yt,j denotes the j-th component of y t .

Recurrent Neural Networks and Long Short-Term Memory Networks 10 / 72



Backpropagation
Through Time (BPTT)
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Backpropagation Through Time (BPTT)
One of the methods for training RNN is Backpropagation Through Time (BPTT), which
is very similar to the backpropagation algorithm [1] because it is based on gradient
descent and chain rule [24], but it has also chain rule through time.

BPTT was developed by several works [2, 3, 4, 5, 6].

This algorithm is very solid in theory; however, it does not show the best performance in
practice.

In BPTT, the loss is considered as a summation of loss functions at the previous time
steps until now.

As it is impractical to consider all time steps from the start of training (especially after a
long time of training), we only consider the T previous time steps. In other words, we
assume that RNN has T -order Markov property [25]. Therefore, the loss function is:

R ∋ L =
T∑
t=1

Lt , (7)

where L1 is the loss function at the current time slot and Lt denotes the loss function at
the previous (t − 1) time slot.

This loss functions needs to be optimized using gradient descent and chain rule.
Therefore, we calculate its gradient with respect to the parameters of RNN. These
parameters are y t , ht , V , W , U, bi , and by , based on Eqs. (3), (4), and (5) and the
figure of RNN.
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Gradient With Respect to the Output
We had:

R ∋ L =
T∑
t=1

Lt .

If there is no activation function at the last layer, the gradient of the loss function of RNN
with respect to the output at time t is:

Rq ∋
∂L
∂y t

(a)
=

∂L
∂Lt

×
∂Lt
∂y t

(7)
=

∂Lt
∂y t

, (8)

where (a) is because of the chain rule.

The gradient of the loss function at time t with respect to the output at time t, i.e.,
∂Lt/∂y t , is calculated based on the formula of the loss function. The loss function can
be any loss function for classification, regression, or other tasks.

If there is an activation function at the last layer (see Eq. (6)), the gradient is:

Rq ∋
∂L
∂y t

(a)
=

∂L
∂Lt

×
∂Lt
∂ŷ t

×
∂ŷ t

∂y t

(7)
=

∂Lt
∂ŷ t

×
∂ŷ t

∂y t

, (9)

where (a) is because of the chain rule. The derivative ∂ŷ t/∂y t is calculated based on the
formula of the activation function. The other derivative, ∂Lt/∂ŷ t , is calculated based on
the formula of the loss as a function of the output of the activation function.
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Gradient With Respect to the State

We had:

Rp ∋ i t = Wht−1 + Ux t + bi ,

[−1, 1]p ∋ ht = tanh(i t) = tanh(Wht−1 + Ux t + bi ),

Rq ∋ y t = Vht + by .

The gradient of the loss function of RNN with respect to the state at time t is:

Rp ∋
∂L
∂ht

(a)
=

( ∂L
∂y t

×
∂y t

∂ht

)
+

( ∂L
∂ht+1

×
∂ht+1

∂ht

)
(5)
=

( ∂L
∂y t

× V
)
+

( ∂L
∂ht+1

×
∂ht+1

∂ht

)
, (10)

where (a) is because changing ht affects both y t and ht+1. We denote δt := ∂L/∂ht so
Eq. (10) becomes:

δt =
( ∂L
∂y t

× V
)
+

(
δt+1 ×

∂ht+1

∂ht

)
. (11)
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Gradient With Respect to the State
We had:

Rp ∋ i t = Wht−1 + Ux t + bi ,

[−1, 1]p ∋ ht = tanh(i t) = tanh(Wht−1 + Ux t + bi ),

Rq ∋ y t = Vht + by .

According to Eqs. (3) and (4), we have:

i t+1 = Wht + Ux t+1 + bi , (12)

ht+1 = tanh(i t+1) = tanh(Wht + Ux t+1 + bi ). (13)

Therefore:

Rp×p ∋
∂ht+1

∂ht

(a)
=

(∂i t+1

∂ht

)⊤ × ∂ht+1

∂i t+1

(b)
= W (1− h⊤

t+1ht+1)I p×p ,

where I p×p is the identity matrix of size (p × p), (a) is because of the chain rule, and (b)
is because Rp×p ∋ ∂i t+1/∂ht = W⊤ for Eq. (12), and we have:

Rp×p ∋
∂ht+1

∂i t+1
= (1− h⊤

t+1ht+1)I p×p , (14)

based on Eq. (13) and the formula for derivative of the hyperbolic tangent function,
noticing that the state is multidimensional and not a scalar.
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Gradient With Respect to the State

Eqs. (5) and (8) were:

Rq ∋ y t = Vht + by ,

Rq ∋
∂L
∂y t

(a)
=

∂L
∂Lt

×
∂Lt
∂y t

(7)
=

∂Lt
∂y t

.

We had:

δt := ∂L/∂ht .

For the time slot t = T , the derivative ∂L/∂hT is much simpler:

Rp ∋ δT =
∂L
∂hT

(a)
=

∂L
∂yT

×
∂yT

∂hT

(5)
=

∂L
∂yT

× V
(8)
=

∂LT
∂yT

× V , (15)

where (a) is because of the chain rule and the derivative ∂LT /∂yT is computed based on
the formula of loss function.
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Gradient With Respect to V

The gradient of the loss function of RNN with respect to the weight matrix V is:

Rq×p ∋
∂L
∂V

(a)
=

T∑
t=1

( ∂L
∂y t

×
∂y t

∂V

)
(b)
=

T∑
t=1

(∂Lt
∂y t

× h⊤
t

)
, (16)

where (a) is because V exists in all time slots and changing V affects the loss L in all
time slots. The equation (b) is because of Eqs. (8) and (5):

Rq ∋
∂L
∂y t

(a)
=

∂L
∂Lt

×
∂Lt
∂y t

(7)
=

∂Lt
∂y t

,

Rq ∋ y t = Vht + by .

The derivative ∂Lt/∂y t ∈ Rq is calculated based on the formula of the loss function.
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Gradient With Respect to W
The gradient of the loss function of RNN with respect to the weight matrix W is:

Rp×p ∋
∂L
∂W

(a)
=

T∑
t=1

vec−1
p×p

(( ∂ht

∂W
)⊤ × ∂L

∂ht

)
, (17)

where vec−1
p×p(.) de-vectorizes the vector of length p2 to a matrix of size (p × p) and (a)

is because W exists in all time slots and changing W affects the loss L in all time slots.

The derivative ∂L/∂ht ∈ Rp in Eq. (17) was computed before.

The derivative ∂ht/∂W in Eq. (17) is:

Rp×p2 ∋
∂ht

∂W
=

∂ht

∂i t
×

∂i t
∂W

,

because of the chain rule. The first term is:

Rp×p ∋
∂ht

∂i t
= (1− h⊤

t ht)I p×p , (18)

according to Eq. (14). Based on the Magnus-Neudecker convention [24], the second term
is calculated as:

Rp×p2 ∋
∂i t
∂W

= h⊤
t−1 ⊗ I p×p ,

where ⊗ denotes the Kronecker product (see our tutorial [24] for more information on the
Magnus-Neudecker convention).
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Gradient With Respect to U
The gradient of the loss function of RNN with respect to the weight matrix U is:

Rp×d ∋
∂L
∂U

(a)
=

T∑
t=1

vec−1
p×d

((∂ht

∂U
)⊤ × ∂L

∂ht

)
, (19)

where (a) is because U exists in all time slots and changing U affects the loss L in all
time slots.

The derivative ∂L/∂ht ∈ Rp in Eq. (17) was computed before.

The derivative ∂ht/∂U in Eq. (17) is:

Rp×(pd) ∋
∂ht

∂U
=

∂ht

∂i t
×

∂i t
∂U

,

because of the chain rule.

The first term is already calculated in Eq. (18).

Based on the Magnus-Neudecker convention [24], the second term is calculated as:

Rp×(pd) ∋
∂i t
∂U

= x⊤
t ⊗ I p×p .
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Gradient With Respect to bi

The gradient of the loss function of RNN with respect to the bias bi is:

Rp ∋
∂L
∂bi

(a)
=

T∑
t=1

((∂ht

∂bi

)⊤ × ∂L
∂ht

)
, (20)

where (a) is because bi exists in all time slots and changing b affects the loss L in all time
slots.

The derivative ∂L/∂ht was already calculated before.

The derivative ∂ht/∂bi is calculated as:

Rp×p ∋
∂ht

∂bi

(a)
=

∂ht

∂i t
×

∂i t
∂bi

(3)
=

∂ht

∂i t
,

where (a) is because of the chain rule and the derivative ∂ht/∂i t was already calculated
in Eq. (18).
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Gradient With Respect to by

Eqs. (5) and (8) were:

Rq ∋ y t = Vht + by ,

Rq ∋
∂L
∂y t

(a)
=

∂L
∂Lt

×
∂Lt
∂y t

(7)
=

∂Lt
∂y t

.

The gradient of the loss function of RNN with respect to the bias by is:

Rq ∋
∂L
∂by

(a)
=

T∑
t=1

( ∂L
∂y t

×
∂y t

∂by

)
(b)
=

T∑
t=1

∂Lt
∂y t

, (21)

where (a) is because by exists in all time slots and changing by affects the loss L in all
time slots. The equation (b) is because of Eqs. (8) and (5).

The derivative ∂Lt/∂y t ∈ Rq is calculated based on the formula of the loss function.
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Updates by Gradient Descent

BPPT updates the parameters of RNN by gradient descent [24] using the calculated
gradients:

ht := ht − η
∂L
∂ht

, ∀t ∈ {1, . . . ,T},

V := V − η
∂L
∂V

,

W := W − η
∂L
∂W

,

U := U − η
∂L
∂U

,

bi := bi − η
∂L
∂bi

,

by := by − η
∂L
∂by

,

where η > 0 is the learning rate and the gradients are calculated by Eqs. (10), (16), (17),
(19), (20), and (21).
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Gradient Vanishing or
Explosion in Long-term
Dependencies
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Gradient Vanishing or Explosion in Long-term
Dependencies

In recurrent neural networks, so as in deep neural networks, the final output is the
composition of a large number of non-linear transformations. This results in the problem
of either vanishing or exploding gradients in recurrent neural networks, especially for
capturing long-term dependencies in sequence processing [7, 8]. This problem is explained
in the following.
Recall Eq. (2) for a dynamical system:

ht = fθ(ht−1, x t).

By induction, the hidden state at time t, i.e., ht , can be written as the previous T time
steps. If the subscript t denotes the previous t time steps, we have by induction [26, 27]:

h1 = fθ

(
fθ
(
. . . fθ(hT , xT+1) . . . , x2

)
, x1

)
.

Then, by the chain rule in derivatives, the derivative loss at time T , i.e., LT , is:

∂LT
∂θ

=
∑
t≤T

∂Lt
∂ht

∂ht

∂θ

(a)
=

∑
t≤T

∂Lt
∂hT

∂hT

∂ht

∂ht

∂θ

(2)
=

∑
t≤T

∂Lt
∂hT

∂hT

∂ht

∂fθ(ht−1, x t)

∂θ
, (22)

where (a) is because of the chain rule. In this expression, there is the derivative of hT

with respect to ht which itself can be calculated by the chain rule:

∂hT

∂ht
=

∂hT

∂hT−1
×

∂hT−1

∂hT−2
× · · · ×

∂ht+1

∂ht
. (23)
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Gradient Vanishing or Explosion in Long-term
Dependencies

We found:

∂LT
∂θ

=
∑
t≤T

∂Lt
∂hT

∂hT

∂ht

∂fθ(ht−1, x t)

∂θ
,

∂hT

∂ht
=

∂hT

∂hT−1
×

∂hT−1

∂hT−2
× · · · ×

∂ht+1

∂ht
.

For capturing long-term dependencies in the sequence, T should be large. This means
that in Eq. (23), and hence in Eq. (22), the number of multiplicand terms becomes huge.

On the one hand, if each derivative is slightly smaller than one, the entire derivative in
the chain rule becomes very small for multiplication of many terms smaller than one. This
problem is referred to as gradient vanishing.

On the other hand, if every derivative is slightly larger than one, the entire derivative in
the chain rule explodes, resulting in the problem of exploding gradients.

Note that gradient vanishing is more common than gradient explosion in recurrent
networks.

There exist various attempts for resolving the problem of gradient vanishing or explosion
[26, 28]. In the following, some of these attempts are introduced.
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Close-to-identity Weight Matrix
As Eq. (4):

[−1, 1]p ∋ ht = tanh(i t) = tanh(Wht−1 + Ux t + bi ),

shows, the state is multiplied by a weight matrix W at every time step and if there is
long-term dependency, many of these W matrices are multiplied.

Suppose the eigenvalue decomposition [29] of the matrix W is W = AΛA⊤ where
A ∈ Rp×p and Λ := diag([λ1, . . . , λp ]⊤) contain the eigenvectors and eigenvalues of W ,
respectively. Eq. (4) is restated as:

ht = tanh(AΛA⊤ht−1 + Ux t + bi ). (24)

If a change ε in some element of the state ht−1 is aligned with an eigenvector of the
weight matrix W , then the effect of this change in ht will be (λt ε) after t time steps,
according to Eq. (24).

Two cases may happen:
▶ If the largest eigenvalue is less than one, i.e., λ < 1, then the change (λt ε) is

contrastive because λt ≪ 1 for long-term dependencies. In this case, gradient
vanishing occurs in long-term dependency and the network forgets very long time
ago.

▶ If the largest eigenvalue is less than one, i.e., λ > 1, then the change (λt ε) is
diverging because λt ≫ 1 for long-term dependencies. In this case, the gradient
network forgets very long time ago. In this case, gradient explosion occurs in
long-term dependency and remembering very long time ago dominates the
short-term memories.
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Close-to-identity Weight Matrix
As remembering short-term memories is usually more important than remembering very
past time in different tasks, it is recommended to use the weight matrix W whose largest
eigenvalue is less than one; this makes the RNN have the Markovian property because it
forgets very past after some point.

However, if the largest eigenvalue of W is much less than one, i.e., λ≪ 1, gradient
vanishing happens very sooner than expected.

Therefore, it is recommended to use the weight matrix W whose largest eigenvalue is
slightly less than one, i.e., λ ≲ 1. This makes the RNN slightly contrastive.

One way to have the weight matrix W whose largest eigenvalue is slightly less than one is
to make this matrix close to the identity matrix [9].

There exist some other ways to determine the weight matrix W . For example, the wight
matrix can be set to be an orthogonal matrix [30].

Another approach is to copy the previous state exactly to the current state. In this
approach, the Eq. (4) is modified to [31]:

ht = tanh(Wht−1 + ht−1 + Ux t + bi )

= tanh
(
(W + I )ht−1 + Ux t + bi

)
,

(25)

where I is the identity matrix. This prevents gradient vanishing because it brings a copy
of the previous step to the current state. This can also be interpreted as strengthening the
diagonal of the weight matrix W ; hence, increasing the largest eigenvalue of W for
preventing gradient vanishing.
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Long Delays

As Eq. (4) and the figure of RNN show, in the regular RNN, every state ht is fed by its
previous state ht−1 through the weight matrix W .

As discussed before, in the regular RNN, the effect of the change ε in a state results in
(λt ε) after t time steps, where λ is the largest eigenvalue of W .

As shown in the figure of RNN, the regular RNN has one-step connections or delays
between the states. It is possible to have longer delays between the states in addition to
the one-step delays [10].

In other words, it is possible to have higher levels of Markov property in the network.

Let W k denote the weight matrix for k-step delays between the states. Then, Eq. (4) can
be modified to:

ht = tanh
(∑

k

W kht−k + Ux t + bi

)
, (26)

where the summation is over the k values for the existing delays in the RNN structure.
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Long Delays

An example for an RNN network with one-step and three-step delays is:

ht = tanh
(
W 1ht−1 + W 3ht−3 + Ux t + bi

)
,

which is illustrated in this figure.

Having long delays in RNN is one of the attempts for preventing gradient vanishing [10].
This is justified because every state is having impact not only from the previous state
but also from the more previous states. Therefore, in backpropagation through time,
there is some skip in gradient flow from a state to more previous states without the
need to go through the middle states in the chain rule.
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Leaky Units
Another way to resolve the problem of gradient vanishing is leaky units [11, 12].
Let ht,j denote the j-th element of the state ht ∈ [−1, 1]p . In leaky units, Eq. (4) is
modified to the following element-wise equation:

ht,j =(1−
1

τj
) ht−1,j +

1

τj
tanh(W j :ht−1 + U j :x t + bi,j ), (27)

where 1 ≤ τj <∞ and W j : is the j-th row of W and U j : is the j-th row of U and bi,j is
the j-th element of bi .
When τi = 1, then Eq. (27) becomes:

ht,j =
1

τj
tanh(W j :ht−1 + U j :x t + bi,j ),

which gives back Eq. (4) in the regular RNN.
However, when τi ≫ 1, then Eq. (27) becomes:

ht,j = ht−1,j ,

which means that the previous state is copied to the current state.
The larger the τi , the easier the gradient propagates for ht,i . Therefore, by tuning τi , it is
possible to control how much of the past should be directly copied and how much
should be passed through the weight matrix. This can control the amount of gradient
vanishing.
Note that leaky units use different τi ’s because there may be a need to keep some of the
directions of states (with τi = 1) or forget some of the directions (with τi ≫ 1). In other
words, it decides about the p directions of states separately.
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Echo State Networks
One of the approaches to handle the problem of gradient vanishing in RNN is to use echo
state networks [13, 14].

These networks consider the recurrent neural network as a black box having hidden units
with nonlinear activation functions and connections between them.

This black box of recurrent connections is called the reservoir dynamical system which
models the internal structure of a computer or brain.

The connections in the reservoir system are usually sparse and the weights of these
connections are considered to be fixed.

The output of the reservoir system is connected to an additional linear output layer
whose weights are learnable.

The echo state network minimizes the mean squared error in the output layer; hence, it
performs linear regression in the last layer [13].

Because of not learning the recurrent weights in the reservoir system and sufficing to
learn the weights of the output layer, the echo state network does not face the gradient
vanishing problem.

A tutorial on this topic is [32].
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Long Short-Term
Memory Network

Recurrent Neural Networks and Long Short-Term Memory Networks 32 / 72



Long Short-Term Memory Network

As the examples in introduction showed, we need short-term relations in some cases and
long-term relations in some other cases.

RNN learns the sequence based on one or several previous states, depending on its
structure and the level of its Markov property (see Fig. ??). Therefore, we need to decide
on the structure of RNN to be able to handle short-term or long-term dependencies in
the sequence.

Instead of manual design of the RNN structure or deciding manually when to clear the
state, we can let the neural network learn by itself when to clear the state based on its
input sequence.

Long Short-Term Memory (LSTM), initially proposed in [15, 16] (1995-1997), is able to
do this; it learns from its input sequence when to use short-term dependency (i.e., when to
clear the state) and when to use the long-term memory (i.e., when not to clear the state).
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Long Short-Term Memory Network
LSTM consists of several cells, each of which corresponds to a time slot. Every LSTM cell
contains several gates for learning different aspects of the input time series.
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The Input Gate
One of the gates in the LSTM cell is the input gate, first proposed in [15, 16].
This gate takes the input at the current time slot, x t ∈ Rd , and the hidden state of the
last time slot, ht−1 ∈ [−1, 1]p , and outputs the signal i t ∈ [0, 1]p :

i t = sig
(
W i ht−1 + U i x t + (pi ⊙ ct−1) + bi

)
, (28)

where W i ∈ Rp×p , U i ∈ Rp×d , and the bias bi ∈ Rp are the learnable weights for the
input gate, ⊙ denotes the Hadamard (element-wise) product, ct−1 ∈ Rp is the final
memory of the last time slot (which will be explained later), and pi ∈ Rp is the learnable
peephole weight [33] letting a possible leak of information from the previous final memory.
The function sig(.) ∈ (0, 1) is the sigmoid function which is applied element-wise:

sig(x) =
1

1 + exp(−x)
. (29)
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The Input Gate

As Eq. (28):

i t = sig
(
W i ht−1 + U i x t + (pi ⊙ ct−1) + bi

)
,

demonstrates, the input gate considers the effect of the input and the previous hidden
state.

It may also use a leak of information from the previous memory through the peephole.

This gate carries the importance of the information of the input at the current time slot.
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The Forget Gate
Another gate in the LSTM cell is the forget gate, first proposed in [34].

This gate also takes the input at the current time slot, x t ∈ Rd , and the hidden state of
the last time slot, ht−1 ∈ [−1, 1]p , and outputs the signal f t ∈ [0, 1]p :

f t = sig
(
W f ht−1 + U f x t + (pf ⊙ ct−1) + bf

)
, (30)

where W f ∈ Rp×p , U f ∈ Rp×d , and the bias bf ∈ Rp are the learnable weights for the
forget gate, and pf ∈ Rp is the learnable peephole weight [33] letting a possible leak of
information from the previous final memory.

As Eq. (30) shows, the forget gate considers the effect of the input and the previous
hidden state, and perhaps a leak of information from the previous memory.

This gate controls the amount of forgetting the previous information with respect to
the new-coming information.
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The Output Gate

The next gate in the LSTM cell is the output gate first proposed in [15, 16]. This gate
also takes the input at the current time slot, x t ∈ Rd , and the hidden state of the last
time slot, ht−1 ∈ [−1, 1]p , and outputs the signal ot ∈ [0, 1]p :

ot = sig
(
W o ht−1 + Uo x t + (po ⊙ ct) + bo

)
, (31)

where W o ∈ Rp×p , Uo ∈ Rp×d , and the bias bo ∈ Rp are the learnable weights for the
output gate, and po ∈ Rp is the learnable peephole weight [33] letting a possible leak of
information from the current final memory.

As shown in Eq. (31), the output gate considers the effect of the input and the previous
hidden state, and a possible information leak from the current memory.
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The New Memory Cell (Block Input)
The LSTM cell includes a gate named the new memory cell. This gate takes the input at
the current time slot, x t ∈ Rd , and the hidden state of the last time slot, ht−1 ∈ [−1, 1]p ,
and outputs the signal c̃t ∈ [−1, 1]p .
This gate considers the effect of the input and the previous hidden state to represent
the new information of current input. It is formulated as:

c̃t = tanh(W c ht−1 + Uc x t + bc ), (32)

where W c ∈ Rp×p , Uc ∈ Rp×d , and the bias bc are the learnable weights for the new
memory cell.

The new memory cell is also referred to as the block input in the literature [35]. The
signal c̃t is sometimes denoted by z t in the literature.
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The Final Memory Calculation
After computation of the outputs of the input gate i t , the forget gate f t , and the new
memory cell c̃t , we calculate the final memory ct ∈ Rp :

ct = (f t ⊙ ct−1) + (i t ⊙ c̃t), (33)

where ct−1 ∈ Rp is the final memory of the previous time slot.
As Eq. (33) demonstrates, the final memory considers the effect of the forget gate, the
previous memory, the input, and the new memory.
In the first term, i.e., f t ⊙ ct−1, the forget gate f t ∈ [0, 1]p controls how much of the
previous memory ct−1 should be forgotten. The closer the f t is to zero, the more the
network forgets the previous memory ct−1.
In the second term, i.e., i t ⊙ c̃t , the input gate i t ∈ [0, 1]p and the new memory cell
c̃t ∈ [−1, 1]p both control how much of the new input information should be used. The
closer the input gate i t is to one and the closer the new memory cell c̃t is to ±1, the
more the input information is used.
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The Final Memory Calculation

We had:

ct = (f t ⊙ ct−1) + (i t ⊙ c̃t).

In other words, the first and second terms in Eq. (33) determine the trade-off of usage of
old versus new information in the sequence.

The weights of these gates are trained in a way that they pass or block the input/previous
information based on the input sequence and the time step in the sequence.
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The Hidden State (Block Output)

After computation of the output of the output gate ot and the final memory ct , we
calculate the hidden state ht ∈ [−1, 1]p :

ht = ot ⊙ tanh(ct). (34)

This hidden state is also considered as the block output of the LSTM cell.
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The Output

The output y t ∈ Rq of the LSTM cell is as follows:

y t = Vht + by , (35)

where V ∈ Rq×p and the bias by ∈ Rq are the learnable weights for the output. It is
possible to use an activation function, such as Eq. (6), after this output signal.

Note that in the literature, the output is sometimes considered to be equal to the hidden
state, i.e., y t = ht , by setting V = I (the identity matrix) and by = 0 (the zero vector).
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History and Variants of
LSTM
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History and Variants of LSTM

LSTM has gone through various developments and improvements gradually [35].

Some of the variants of LSTM do not have the peepholes. In this case, the Eqs. (28),
(30), and (31) are simplified to:

i t = sig
(
W i ht−1 + U i x t + bi

)
, (36)

f t = sig
(
W f ht−1 + U f x t + bf

)
, (37)

ot = sig
(
W o ht−1 + Uo x t + bo

)
, (38)

respectively.

In the following, we review a history of variants of the LSTM networks.
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Original LSTM

LSTM was originally proposed by Hochreiter and Schmidhuber in years 1995 to 1997
[15, 16]. We call it the original LSTM [16].

The original LSTM had only the input and output gates, introduced before, and it did
not have a forget gate.

It also did not contain the peepholes; therefore, its gates were Eqs. (36) and (38).

The original LSTM trained the network using BPTT (introduced before) and a mixture of
real-time recurrent learning [2, 4].
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Vanilla LSTM

Later, Gers et. al. [34, 33] applied some changes to the original LSTM.

The forget gate, introduced before, was proposed for the first time in [34] to let the
network forget its previous states either completely or partially.

The peephole connections, introduced before, were first proposed in [33]. The peepholes
let a possible leak of information from the previous or current final memory. This lets the
memory control the gates.

These two papers [34, 33] also incorporated the full gate recurrence, in which all gates
receive additional recurrent inputs from all gates at the previous time step.

In full gate recurrence, the Eqs. (28), (30), and (31) become:

i t = sig
(
W i ht−1 + U i x t + (pi ⊙ ct−1) + bi + R ii i t−1 + R if f t−1 + R io ot−1

)
.

(39)
f t = sig

(
W f ht−1 + U f x t + (pf ⊙ ct−1) + bf + Rfi i t−1 + Rff f t−1 + R fo ot−1

)
.
(40)

ot = sig
(
W o ht−1 + Uo x t + (po ⊙ ct) + bo + Roi i t−1 + Rof f t−1 + Roo ot−1

)
,
(41)

where R ii ,R if ,R io ,Rfi ,Rff ,R fo ,Roi ,Rof ,Roo ∈ Rp×p are the learnable recurrent weights.

Note that the full gate recurrence often disappeared in later papers on LSTM.
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Vanilla LSTM

Later, Graves and Schmidhuber adapted the original LSTM and proposed the vanilla
LSTM in 2005 [18], which is one of the most common LSTMs in the literature.

The vanilla LSTM incorporated the structures of the original LSTM [16] and the papers
[34, 33].

The full BPTT, introduced before, was used for LSTM in the vanilla LSTM [18].
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Other LSTM Variants

There are other variants of LSTM [35, 36]; although, the most common used LSTM is the
vanilla LSTM [18].

BPTT was used for LSTM training in [18]; however, Kalman filtering was used for its
training [37] before that. Another training method for LSTM was evolutionary learning
[38]. Context-sensitive evolutionary learning was also used for LSTM training [39].

Finally in 2014, one the biggest improvements of LSTM was proposed, which was named
the Gated Recurrent Units (GRU) [17].

The philosophy of GRU was to simplify the LSTM cell because we may not need to have
a very complicated cell to learn the sequence information. In other words, GRU raised the
question of whether we need to be that flexible like LSTM to learn the sequence. GRU
is less flexible than LSTM but it is good enough for sequence learning.

GRU redesigned the LSTM cell by introducing reset gate, update gate, and new
memory cell; therefore, the number of gates were reduced from four to three.

It was empirically shown in [40] that the performance of LSTM improves by using GRU
cells.

Later in 2017, the GRU was further simplified by merging the reset and update gates
into a forget gate [41].

Nowadays, GRU is the most commonly used LSTM structure.
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Gated Recurrent Units
(GRU)
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GRU: Fully Gated Unit
The main GRU was the fully gated unit [17], whose gates are introduced in the following.
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GRU: Fully Gated Unit
The Reset Gate: One of the gates in the GRU cell is the reset gate. This gate takes the
input at the current time slot, x t ∈ Rd , and the hidden state of the last time slot,
ht−1 ∈ [−1, 1]p , and outputs the signal r t ∈ [0, 1]p :

r t = sig(W r ht−1 + U r x t + br ), (42)

where W r ∈ Rp×p , U r ∈ Rp×d , and the bias br ∈ Rp are the learnable weights for the
reset gate.

The reset gate considers the effect of the input and the previous hidden state, and it
controls the amount of forgetting/resetting the previous information with respect to
the new-coming information.

Comparing Eqs. (37) and (42) shows that the reset gate in the GRU cell is similar to the
forget gate in the LSTM cell.
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GRU: Fully Gated Unit
The Update Gate: Another gate in the GRU cell is the update gate. This gate also takes
the input at the current time slot, x t ∈ Rd , and the hidden state of the last time slot,
ht−1 ∈ [−1, 1]p , and outputs the signal z t ∈ [0, 1]p :

z t = sig(W z ht−1 + Uz x t + bz ), (43)

where W z ∈ Rp×p , Uz ∈ Rp×d , and the bias bz ∈ Rp are the learnable weights for the
update gate.

The update gate considers the effect of the input and the previous hidden state, and it
controls the amount of using the new input data for updating the cell by the coming
information of sequence.

Comparing Eqs. (36) and (43) shows that the update gate in the GRU cell is similar to
the input gate in the LSTM cell.
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GRU: Fully Gated Unit
The New Memory Cell: The GRU cell includes a gate named the new memory cell. This
gate takes the input at the current time slot, x t ∈ Rd , and the hidden state of the last

time slot, ht−1 ∈ [−1, 1]p , and outputs the signal h̃t ∈ [−1, 1]p :

h̃t = tanh
(
W c

(
r t ⊙ ht−1)

)
+ Uc x t + bc

)
, (44)

where W c ∈ Rp×p , Uc ∈ Rp×d , and the bias bc are the learnable weights for the new
memory cell.
This gate considers the effect of the input and the previous hidden state to represent
the new information of current input.
Comparing Eqs. (32) and (44) shows that the new memory cell in the GRU cell is similar
to the new memory cell in the LSTM cell.
Note that, in the LSTM cell, the hidden state (see Eq. (34)) and the new memory cell
(see Eq. (32)) were different; however, the hidden state of the GRU cell (see Eq. (44))
replaces the new memory signal in the LSTM cell.
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GRU: Fully Gated Unit

The Final Memory (Hidden State): After computation of the outputs of the update gate

z t and the new memory cell h̃t , we calculate the final memory or the hidden state
ht ∈ Rp :

ht =
(
(1− z t)⊙ ht−1

)
+ (z t ⊙ h̃t), (45)

where ht−1 ∈ Rp is the hidden state of the previous time slot.
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GRU: Fully Gated Unit
We had:

ht =
(
(1− z t)⊙ ht−1

)
+ (z t ⊙ h̃t),

where ht−1 ∈ Rp is the hidden state of the previous time slot.

As Eq. (45) demonstrates, the final memory considers the effect of the update gate, the
previous memory, and the new memory.

In the first term, i.e., (1− z t)⊙ ht−1, the update gate z t ∈ [0, 1]p controls how much of
the previous state ht−1 should be used based on the input data. The closer the z t is to
one (resp. zero), the more the network forgets (resp. considers) the previous state ht−1.

In the second term, i.e., z t ⊙ h̃t , the update gate z t ∈ [0, 1]p and the new memory cell

h̃t ∈ [−1, 1]p both control how much of the new input information should be used. In
other words, it controls how much the information should be updated by the new
information. The closer the update gate z t is to one and the closer the new memory cell

h̃t is to ±1, the more the input information is used.

Overall, the first and second terms in Eq. (45) determine the trade-off of usage of old
versus new information in the sequence. The weights of these gates are trained in a way
that they pass or block the input/previous information based on the input sequence and
the time step in the sequence.

Comparing Eqs. (33) and (45) shows that the final memory in the GRU cell is in the
form of the final memory in the LSTM cell; however, they have somewhat different
functionality.
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GRU: Minimal Gated Unit

Minimal gated unit [41] is another variant of GRU which has simplified the gate by
merging the reset and update gates into a forget gate. This merging is possible because
the forget gate can control both the previous and new information of the sequence.

The Forget Gate: The forget gate takes the input at the current time slot, x t ∈ Rd , and
the hidden state of the last time slot, ht−1 ∈ [−1, 1]p , and outputs the signal r t ∈ [0, 1]p :

f t = sig(W f ht−1 + U f x t + bf ), (46)

where W f ∈ Rp×p , U f ∈ Rp×d , and the bias bf ∈ Rp are the learnable weights for the
forget gate.

The forget gate considers the effect of the input and the previous hidden state, and it
controls the amount of forgetting the previous information with respect to the
new-coming information. Therefore, it controls both forgetting or using the previous
memory and using the new coming information.
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GRU: Minimal Gated Unit

The New Memory Cell and the Final Memory: Because the forget gate replaces the
reset and the update gate in the minimal gate unit, Eqs. (44) and (45):

h̃t = tanh
(
W c

(
r t ⊙ ht−1)

)
+ Uc x t + bc

)
,

ht =
(
(1− z t)⊙ ht−1

)
+ (z t ⊙ h̃t),

are changed to:

h̃t = tanh
(
W c

(
f t ⊙ ht−1)

)
+ Uc x t + bc

)
, (47)

ht =
(
(1− f t)⊙ ht−1

)
+ (f t ⊙ h̃t), (48)

respectively, to be the new memory cell and the final memory in the minimal gate unit.
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Bidirectional RNN and
LSTM
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Justification of Bidirectional Processing

A bidirectional RNN or LSTM network processes the sequence in both directions; left to
right and right to left.

In the first glance, online causal tasks such as reading a text or listening to a speech do
not have access to the future. Therefore, bidirectional networks seem to violate causality
in them.

However, in many of these tasks, it is possible to wait for the completion of a part of the
sequence such as a sentence and then decide about it.

For example, it is normal to wait for the completion of sentence in speech recognition
and then recognize it [18, 19].

In text processing, the text is usually available except in a streaming text. Even in
streaming text, it is possible to wait for a sentence to complete.

Therefore, it makes sense to use bidirectional networks for processing sequences because,
sometimes, the important related word comes after a word and not necessarily before it.

An example for such a case is the sentence “The police is chasing the thief” where the
word “thief” is a strongly related (opposite) word for the word “police”. In this sentence,
both the words “thief” and “police” are related and it is worth to process the sentence in
both directions.

Recurrent Neural Networks and Long Short-Term Memory Networks 60 / 72



Bidirectional RNN

The bidirectional RNN was first proposed in (1997) [20] and further exploited in (1999)
[21].

It uses two sets of states each for one of the directions in the sequence. Let the states

for left-to-right and right-to-left processing be denoted by
−→
h t and

←−
h t , respectively. In the

bidirectional RNN, Eq. (4) is replaced by two equations [42]:

−→
h t = tanh(

−→
W
−→
h t−1 +

−→
Ux t +

−→
b i ), (49)

←−
h t = tanh(

←−
W
←−
h t+1 +

←−
Ux t +

←−
b i ), (50)

and Eq. (5) is replaced by:

y t =
−→
V
−→
h t +

←−
V
←−
h t + by , (51)

where the arrows show the parameters for each direction of processing.
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Bidirectional RNN

The unfolding schematic of the bidirectional RNN is illustrated in figure below. As this
figure shows, the outputs of both directions are connected to an output layer. In some
cases, this output layer may be replaced by a third multi-layer neural network.

All weights of the bidirectional RNN are trained using backpropagation through time
similarly to what was explained before.

It is noteworthy that the deep variant of bidirectional RNN has been proposed in [42].
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Bidirectional LSTM

Bidirectional LSTM was first proposed in (2005) [18, 19].

As obvious from its name, the bidirectional LSTM includes two LSTM networks each of
which processes the sequence from one direction.

In other words, there are two LSTM networks which are fed with the sequence in
opposite orders.

Experiments have shown that the bidirectional LSTM outperforms the unidirectional
LSTM [18, 43].
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Embeddings from Language Model (ELMo)
The Embeddings from Language Model (ELMo) network, first proposed in (2018) [22],
is a language model which makes use of bidirectional LSTM networks.

It is one of the successful context-aware language modeling networks.

ELMo contains L layers of bidirectional LSTM networks where the output of each
bidirectional LSTM is fed to the next bidirectional LSTM.
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Embeddings from Language Model (ELMo)

In the bidirectional LSTM networks of ELMo, V = I is set so that the output y becomes
equal to the hidden states h.
At time slot t and layer l , the outputs (or hidden states) of the two directions of LSTM

are concatenated together to make h(l)
t :

h(l)
t := [

−→
h (l)⊤

t ,
←−
h (l)⊤

t ]⊤.

Then, a linear combination of these hidden states of layers is considered to be the
embedding vector of ELMo network at time t [22]:

yELMo
t := γ

L∑
l=1

sl h
(l)
t , (52)

where γ and {sl}Ll=1 are the hyperparameter scalar weights which are determined
according to the specific task (e.g., question answering, translation, etc) in natural
language processing.
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