
Backpropagation, SGD, and Adam

Deep Learning (ENGG*6600*01)

School of Engineering,
University of Guelph, ON, Canada

Course Instructor: Benyamin Ghojogh
Summer 2023

Backpropagation, SGD, and Adam 1 / 46

Gradient Descent

Backpropagation, SGD, and Adam 2 / 46

Gradient descent: introduction

Gradient descent is one of the fundamental first-order methods.

It was first suggested by Cauchy in 1874 [1] and Hadamard in 1908 [2] and its
convergence was later analyzed in [3].

Unconstrained optimization:
minimize

x
f (x). (1)

In numerical optimization for unconstrained optimization, we start with a random feasible
initial point and iteratively update it by step ∆x :

x (k+1) := x (k) +∆x . (2)

Continue until we converge to (or get sufficiently close to) the desired optimal point x∗.

The step ∆x is also denoted by p in the literature, i.e., p := ∆x .

Backpropagation, SGD, and Adam 3 / 46

Gradient descent: update

Assume the gradient of function f (x) is L-smooth where L is the Lipschitz constant. In
gradient descent, the update at every iteration is (see my “Optimization Techniques”
course for proof):

∆x = −
1

L
∇f (x (k)) =⇒ x (k+1) := x (k) −

1

L
∇f (x (k)). (3)

The problem is that often we either do not know the Lipschitz constant L or it is hard to
compute. Hence, rather than ∆x = − 1

L
∇f (x (k)), we use:

∆x = −η∇f (x (k)), i.e., x (k+1) := x (k) − η∇f (x (k)), (4)

where η > 0 is the step size, also called the learning rate in data science literature.

If the optimization problem is maximization rather than minimization, the step should be
∆x = η∇f (x (k)) rather than Eq. (4). In that case, the name of method is gradient
ascent.

The learning rate can be found by line search (see my “Optimization Techniques” course
for more information), which is used often in optimization and not in deep learning.

Backpropagation, SGD, and Adam 4 / 46

Gradient descent: series of solutions

For a convex function, the series of solutions converges to the optimal solution while the
function value decreases iteratively until the local minimum:

{x (0), x (1), x (2), . . . } → x∗,

f (x (0)) ≥ f (x (1)) ≥ f (x (2)) ≥ · · · ≥ f (x∗).

If the optimization problem is a convex problem, the solution is the global solution;
otherwise, the solution is local.

Backpropagation, SGD, and Adam 5 / 46

Gradient descent: cost versus iterations

{x (0), x (1), x (2), . . . } → x∗,

f (x (0)) ≥ f (x (1)) ≥ f (x (2)) ≥ · · · ≥ f (x∗).

Backpropagation, SGD, and Adam 6 / 46

Convergence criterion

Backpropagation, SGD, and Adam 7 / 46

Convergence criteria
For all numerical optimization methods including gradient descent, there exist several
methods for convergence criterion to stop updating the solution and terminate
optimization.

Some of them are:
▶ Small norm of gradient:

∥∇f (x (k+1))∥2 ≤ ϵ,

where ϵ is a small positive number.

⋆ The reason for this criterion is the first-order optimality condition
(recall that at the local optimum, we have ∥∇f (x∗)∥2 = 0).

⋆ If the function is not convex, this criterion has the risk of stopping at a
saddle point.

▶ Small change of cost function:

|f (x (k+1))− f (x (k))| ≤ ϵ.

▶ Small change of gradient of function:

|∇f (x (k+1))−∇f (x (k))| ≤ ϵ.

▶ Reaching maximum desired number of iterations, denoted by

k < max
k

.

Backpropagation, SGD, and Adam 8 / 46

Line-Search

Backpropagation, SGD, and Adam 9 / 46

Line-search
We saw the step size of gradient descent requires knowledge of the Lipschitz constant for
the smoothness of gradient. However, we may not know the exact Lipschitz constant.
Hence, we can find the suitable step size η by a search which is named the line-search.

In line-search of every optimization iteration, we start with η = 1 and if it does not satisfy:

f (x (k) +∆x)− f (x (k)) < 0, (5)

with step ∆x = −η∇f (x (k)):

f (x (k) +∆x) < f (x (k)) =⇒ f (x (k) − η∇f (x (k))) < f (x (k)), (6)

we halve it, η ← η/2.

This halving step size is repeated until this equation is satisfied, i.e., until we have a
decrease in the objective function. Note that this decrease will happen when the step size
becomes small enough to satisfy (see my “Optimization Techniques” course for proof):

η <
1

L
. (7)

A more sophisticated line-search method is the Armijo line-search [4], also called the
backtracking line-search. Another more sophisticated line-search is Wolfe conditions [5].
We will learn it later in the course. See my “Optimization Techniques” course for more
information about these.

Backpropagation, SGD, and Adam 10 / 46

Gradient descent with line-search

The algorithm of gradient descent with line-search:

As this algorithm shows, line-search has its own internal iterations inside every iteration of
gradient descent.

Backpropagation, SGD, and Adam 11 / 46

Momentum

Backpropagation, SGD, and Adam 12 / 46

Gradient descent with momentum
Gradient descent and other first-order methods can have a momentum term. Momentum,
proposed in [6], makes the change of solution ∆x a little similar to the previous change of
solution.

Hence, the change adds a history of previous change to Eq. (4):

(∆x)(k) := α(∆x)(k−1) − η(k)∇f (x (k)), (8)

where α > 0 is the momentum parameter which weights the importance of history
compared to the descent direction.

We use this (∆x)(k) in Eq. (2) for updating the solution:

x (k+1) := x (k) + (∆x)(k).

Because of faithfulness to the track of previous updates, momentum reduces the amount
of oscillation of updates in gradient descent optimization.

Backpropagation, SGD, and Adam 13 / 46

Steepest Descent

Backpropagation, SGD, and Adam 14 / 46

Steepest Descent

Steepest descent is similar to gradient descent but there is a difference between them.

In steepest descent, we move toward the negative gradient as much as possible to reach
the smallest function value which can be achieved at every iteration.

Hence, the step size at iteration k of steepest descent is calculated as [7]:

η(k) := argmin
η

f
(
x (k) − η∇f (x (k))

)
, (9)

and then, the solution is updated using Eq. (4) as in gradient descent:

x (k+1) := x (k) − η∇f (x (k)).

Backpropagation, SGD, and Adam 15 / 46

Backpropagation

Backpropagation, SGD, and Adam 16 / 46

Neural network
Neural network:

Every neuron in neural network:

Let xji denote the weight connecting neuron i to neuron j . Let ai and zi be the output of
neuron i before and after applying its activation function σi (.) : R→ R, respectively.

ai =
m∑

ℓ=1

xiℓzℓ, zi := σi (ai).

Backpropagation, SGD, and Adam 17 / 46

Backpropagation

Consider three neurons in three layers of a network:

We have ai =
∑

ℓ xiℓzℓ which sums over the neurons in layer ℓ. By chain rule, the
gradient of error e w.r.t. to the weight between neurons ℓ and i is:

∂e

∂xiℓ
=

∂e

∂ai
×

∂ai

∂xiℓ

(a)
= δi × zℓ, (10)

where (a) is because ai =
∑

ℓ xiℓzℓ and we define:

δi :=
∂e

∂ai
.

Backpropagation, SGD, and Adam 18 / 46

Backpropagation

If layer i is the last layer, δi can be computed by derivative of error (loss function) w.r.t.
the output.

However, if i is one of the hidden layers, δi is computed by chain rule as:

δi =
∂e

∂ai
=

∑
j

(∂e

∂aj
×

∂aj

∂ai

)
=

∑
j

(
δj ×

∂aj

∂ai

)
. (11)

The term ∂aj/∂ai is calculated by chain rule as:

∂aj

∂ai
=

∂aj

∂zi
×

∂zi

∂ai

(a)
= xji σ

′(ai), (12)

where (a) is because aj =
∑

i xjizi and zi = σ(ai) and σ′(.) denotes the derivative of
activation function. Putting Eq. (12) in Eq. (11) gives:

δi = σ′(ai)
∑
j

(δj xji).

Backpropagation, SGD, and Adam 19 / 46

Backpropagation

We found:

δi = σ′(ai)
∑
j

(δj xji).

Putting this equation in Eq. (10), ∂e
∂xiℓ

= δi × zℓ, gives:

∂e

∂xiℓ
= zℓ σ

′(ai)
∑
j

(δj xji). (13)

Backpropagation uses the gradient in Eq. (13) for updating the weight xiℓ, ∀i , ℓ by
gradient descent:

x
(k+1)
iℓ := x

(k)
iℓ − η(k)

∂e

∂xiℓ
.

This tunes the weights from last layer to the first layer for every iteration of optimization.

Therefore, backpropagation, proposed in 1986 [6], is actually gradient descent with chain
rule in derivatives because of having layers of parameters. It is the most well-known
optimization method used for training neural networks.

Backpropagation, SGD, and Adam 20 / 46

Stochastic gradient methods

Backpropagation, SGD, and Adam 21 / 46

Stochastic gradient descent

Assume we have a dataset of n data points, {ai ∈ Rd}ni=1 and their labels {li ∈ R}ni=1.

Let the cost function f (.) be decomposed into summation of n terms {fi (x)}ni=1. Some
well-known examples for the cost function terms are:

▶ Least squares error: fi (x) = 0.5(a⊤
i x − li)

2,
▶ Absolute error: fi (x) = a⊤

i x − li ,
▶ Hinge loss (for li ∈ {−1, 1}): fi (x) = max(0, 1− lia⊤

i x).
▶ Logistic loss (for li ∈ {−1, 1}): log(1

1+exp(−li a⊤i x)
).

The optimization problem becomes:

minimize
x

1

n

n∑
i=1

fi (x). (14)

In this case, the full gradient is the average gradient, i.e:

∇f (x) =
1

n

n∑
i=1

∇fi (x), (15)

so ∆x = −η∇f (x (k)), becomes ∆x = −(η/n)
∑n

i=1∇fi (x (k)). This is what gradient
descent uses for updating the solution at every iteration.

Backpropagation, SGD, and Adam 22 / 46

Stochastic gradient descent

∇f (x) =
1

n

n∑
i=1

∇fi (x),

Calculation of this full gradient is time-consuming and inefficient for large values of n,
especially as it needs to be recalculated at every iteration.

Stochastic Gradient Descent (SGD), also called stochastic gradient method,
approximates gradient descent stochastically and samples (i.e. bootstraps) one of the
points at every iteration for updating the solution. Hence, it uses:

x (k+1) := x (k) − η(k)∇fi (x (k)), (16)

rather than Eq. (4), x (k+1) := x (k) − η∇f (x (k)).

The idea of stochastic approximation was first proposed in 1951 [8]. It was first used for
machine learning in 1998 [9].

As Eq. (16) states, SGD often uses an adaptive step size which changes in every iteration.
The step size can be decreasing because in initial iterations, where we are far away from
the optimal solution, the step size can be large; however, it should be small in the last
iterations which is supposed to be close to the optimal solution. Some well-known
adaptations for the step size are:

η(k) :=
1

k
, η(k) :=

1
√
k
, η(k) := η. (17)

Backpropagation, SGD, and Adam 23 / 46

Convergence Rate of Gradient Descent

Consider a convex and differentiable function f (.), with domain D, whose gradient is
L-smooth. Let f ∗ be the minimum of cost function and x∗ be the minimizer. Starting
from the initial point x (0), after t iterations of the optimization algorithm, we will have
the following.

The convergence rate of gradient descent:

f (x (t+1))− f ∗ ≤
2L∥x (0) − x∗∥22

t + 1
= O(

1

t
). (18)

Backpropagation, SGD, and Adam 24 / 46

Convergence Rate of Stochastic Gradient Descent

Consider a function f (x) =
∑n

i=1 fi (x) and which is bounded below and each fi is
differentiable. Let the domain of function f (.) be D and its gradient be L-smooth.
Assume E[∥∇fi (xk)∥22 | xk] ≤ β2 where β is a constant. Assume E[∥∇fi (xk)∥22 | xk] ≤ β2

where β is a constant.

Depending on the step size, the convergence rate of SGD is:

f (x (t+1))− f ∗ ≤ O(
1

log t
) if η(τ) =

1

τ
, (19)

f (x (t+1))− f ∗ ≤ O(
log t
√
t
) if η(τ) =

1
√
τ
, (20)

f (x (t+1))− f ∗ ≤ O(
1

t
+ η) if η(τ) = η, (21)

where τ denotes the iteration index.

If the functions fi ’s are µ-strongly convex, then the convergence rate of SGD is:

f (x (t+1))− f ∗ ≤ O(
1

t
) if η(τ) =

1

µτ
, (22)

f (x (t+1))− f ∗ ≤ O
(
(1−

µ

L
)t + η

)
if η(τ) = η. (23)

Backpropagation, SGD, and Adam 25 / 46

Analysis of convergence rates

Recall Eqs. (21) and (23):

convex or non-convex: O(
1

t
+ η) if η(τ) = η,

strongly convex: O
(
(1−

µ

L
)t + η

)
if η(τ) = η.

These equations show that with a fixed step size η, SGD converges sublinearly for a
non-convex function and exponentially for a strongly convex function in the initial
iterations.

However, in the late iterations, it stagnates to a neighborhood around the optimal point
and never reaches it. Hence, SGD has less accuracy than gradient descent (whose
convergence rate is O(1

t
) as in Eq. (18)).

The advantage of SGD over gradient descent is that its every iteration is much faster than
every iteration of gradient descent because of less computations for gradient. This faster
pacing of every iteration shows off more when n is huge.

In summary, SGD has fast convergence to a low accurate optimal solution.

It is noteworthy that the full gradient is not available in SGD to use for checking
convergence, as discussed before. One can use other criteria or merely check the norm of
gradient for the sampled point.

SGD can be used with the line-search methods, too. SGD can also use a momentum term.

Backpropagation, SGD, and Adam 26 / 46

Mini-batch stochastic gradient descent

Gradient descent uses the entire n data points and SGD uses one randomly sampled point
at every iteration. For large datasets, gradient descent is very slow and intractable in
every iteration while SGD will need a significant number of iterations to roughly cover all
data. Besides, SGD has low accuracy in convergence to the optimal solution.

We can have a middle case where we use a batch of b randomly sampled points at every
iteration. This method is named the mini-batch SGD or the hybrid
deterministic-stochastic gradient method. This batch-wise approach is wise for large
datasets.

Usually, before start of optimization, the n data points are randomly divided into ⌊n/b⌋
batches of size b. This is equivalent to simple random sampling for sampling points into
batches without replacement. We denote the dataset by D (where |D| = n) and the i-th
batch by Bi (where |Bi | = b). The batches are disjoint:

⌊n/b⌋⋃
i=1

Bi = D, (24)

Bi ∩ Bj = ∅, ∀i , j ∈ {1, . . . , ⌊n/b⌋}, i ̸= j . (25)

Another less-used approach for making batches is to sample points for a batch during
optimization. This is equivalent to bootstrapping for sampling points into batches with
replacement. In this case, the batches are not disjoint anymore and Eqs. (24) and (25) do
not hold.

Backpropagation, SGD, and Adam 27 / 46

Mini-batch stochastic gradient descent

Definition (Epoch)

In mini-batch SGD, when all ⌊n/b⌋ batches of data are used for optimization once, an epoch is
completed. After completion of an epoch, the next epoch is started and epochs are repeated
until convergence of optimization.

In mini-batch SGD, if the k-th iteration of optimization is using the k ′-th batch, the
update of solution is done as:

x (k+1) := x (k) − η(k)
1

b

∑
i∈Bk′

∇fi (x (k)). (26)

The scale factor 1/b is sometimes dropped for simplicity.

Mini-batch SGD is used significantly in machine learning, especially in neural networks
[9, 10].

Because of dividing data into batches, mini-batch SGD can be solved on parallel servers as
a distributed optimization method.

Backpropagation, SGD, and Adam 28 / 46

Mini-batch stochastic gradient descent

Theorem (Convergence rates for mini-batch SGD)

Consider a function f (x) =
∑n

i=1 fi (x) which is bounded below and each fi is differentiable. Let

the domain of function f (.) be D and its gradient be L-smooth and assume η(k) = η is fixed.
The batch-wise gradient is an approximation to the full gradient with some error et for the t-th
iteration:

1

b

∑
i∈Bt′

∇fi (x (t)) = ∇f (x (t)) + et . (27)

The convergence rate of mini-batch SGD for non-convex and convex functions are:

O
(1
t
+ ∥et∥22

)
, (28)

where t denotes the iteration index. If the functions fi ’s are µ-strongly convex, then the
convergence rate of mini-batch SGD is:

O
(
(1−

µ

L
)t + ∥et∥22

)
. (29)

Therefore, the convergence rate of mini-batch gets closer to that of gradient descent, O(1/t), if
the batch size increases.

Backpropagation, SGD, and Adam 29 / 46

Mini-batch stochastic gradient descent

If we sample the batches without replacement (i.e., sampling batches by simple random
sampling before start of optimization) or with replacement (i.e., bootstrapping during
optimization), the expected error is [11, Proposition 3]:

E[∥et∥22] = (1−
b

n
)
σ2

b
, (30)

E[∥et∥22] =
σ2

b
, (31)

respectively, where σ2 is the variance of whole dataset.

According to Eqs. (30) and (31), the accuracy of SGD by sampling without and with
replacement increases by b → n and b →∞, respectively.

However, this increase makes every iteration slower so there is trade-off between accuracy
and speed.

Backpropagation, SGD, and Adam 30 / 46

Adaptive Learning Rate

Backpropagation, SGD, and Adam 31 / 46

Adaptive Gradient (AdaGrad)
We can adapt the learning rate in stochastic gradient methods. Three most well-known
methods for adapting the learning rate are AdaGrad, RMSProp, and Adam.
Adaptive Gradient (AdaGrad) method, proposed in 2011 [12], updates the solution
iteratively as:

x (k+1) := x (k) − η(k)G−1∇fi (x (k)), (32)

where G is a (d × d) diagonal matrix whose (j , j)-th element is:

G(j , j) :=

√√√√ε+
k∑

τ=0

(
∇j fiτ (x (τ))

)2
, (33)

where ε ≥ 0 is for stability (making G full rank), iτ is the randomly sampled point (from
{1, . . . , n}) at iteration τ , and ∇j fiτ (.) is the partial derivative of fiτ (.) w.r.t. its j-th
element (note that fiτ (.) is d-dimensional).
Putting Eq. (33) in Eq. (32) can simplify AdaGrad to:

x (k+1)
j := x (k)

j −
η(k)√

ε+
∑k

τ=0

(
∇j fiτ (x (τ))

)2∇fj (x (k)
j). (34)

AdaGrad keeps a history of the sampled points and it takes derivative for them to use.
During the iterations so far, if a dimension has changed significantly, it dampens the
learning rate for that dimension (see the inverse in Eq. (32)); hence, it gives more weight
for changing the dimensions which have not changed noticeably. In this way, all
dimensions will have a fair chance to change.

Backpropagation, SGD, and Adam 32 / 46

Root Mean Square Propagation (RMSProp)

Root Mean Square Propagation (RMSProp) was first proposed in 2012 [13] which is
unpublished.

It is an improved version of Rprop (resilient backpropagation), proposed in 1992 [14],
which uses the sign of gradient in optimization.

Inspired by momentum in Eq. (8):

(∆x)(k) := α(∆x)(k−1) − η(k)∇f (x (k)),

it updates a scalar variable v as [15]:

v (k+1) := γv (k) + (1− γ)∥∇fi (x (k))∥22, (35)

where γ ∈ [0, 1] is the forgetting factor (e.g., γ = 0.9). Then, it uses this v to weight the
learning rate:

x (k+1) := x (k) −
η(k)√

ε+ v (k+1)
∇fj (x

(k)
j), (36)

where ϵ ≥ 0 is for stability not to have division by zero.

Comparing Eqs. (34) and (36) shows that RMSProp has a similar form to AdaGrad.

Backpropagation, SGD, and Adam 33 / 46

Adaptive Moment Estimation (Adam)

Adam (Adaptive Moment Estimation) optimizer [16] improves over RMSProp by adding
a momentum term.

It updates the scalar v and the vector m ∈ Rd as:

m(k+1) := γ1m(k) + (1− γ1)∇fi (x (k)), (37)

v (k+1) := γ2v
(k) + (1− γ2)∥∇fi (x (k))∥22, (38)

where γ1, γ2 ∈ [0, 1]. It normalizes these variables as:

m̂(k+1) :=
1

1− γk
1

m(k+1), v̂ (k+1) :=
1

1− γk
2

v (k+1).

Then, it updates the solution as:

x (k+1) := x (k) −
η(k)√

ε+ v̂ (k+1)
m̂(k+1), (39)

which is stochastic gradient descent with momentum while using RMSProp.

The Adam optimizer is one of the mostly used optimizers in neural networks.

Backpropagation, SGD, and Adam 34 / 46

Coding a Neural Network

Backpropagation, SGD, and Adam 35 / 46

Neural network: importing packages

Backpropagation, SGD, and Adam 36 / 46

Neural network: defining the network

Backpropagation, SGD, and Adam 37 / 46

Neural network: optimizer

Backpropagation, SGD, and Adam 38 / 46

Neural network: data loader

Backpropagation, SGD, and Adam 39 / 46

Neural network: dataset

Backpropagation, SGD, and Adam 40 / 46

Neural network: training

Backpropagation, SGD, and Adam 41 / 46

Neural network: test (evaluation)

Backpropagation, SGD, and Adam 42 / 46

Acknowledgement

Some slides of this slide deck are inspired by the lectures of Prof. Kimon Fountoulakis at
the University of Waterloo.

Some slides of this slide deck are inspired by the lectures of Prof. Stephen Boyd at the
Stanford University.

Our tutorial also has the materials of this slide deck: [17]

See my “Optimization Techniques” course on my YouTube channel for more information
about first-order optimization including these methods.

Backpropagation, SGD, and Adam 43 / 46

References

[1] C. Lemaréchal, “Cauchy and the gradient method,” Doc Math Extra, vol. 251, no. 254,
p. 10, 2012.

[2] J. Hadamard, Mémoire sur le problème d’analyse relatif à l’équilibre des plaques élastiques
encastrées, vol. 33.
Imprimerie nationale, 1908.

[3] H. B. Curry, “The method of steepest descent for non-linear minimization problems,”
Quarterly of Applied Mathematics, vol. 2, no. 3, pp. 258–261, 1944.

[4] L. Armijo, “Minimization of functions having Lipschitz continuous first partial derivatives,”
Pacific Journal of mathematics, vol. 16, no. 1, pp. 1–3, 1966.

[5] P. Wolfe, “Convergence conditions for ascent methods,” SIAM review, vol. 11, no. 2,
pp. 226–235, 1969.

[6] D. E. Rumelhart, G. E. Hinton, and R. J. Williams, “Learning representations by
back-propagating errors,” nature, vol. 323, no. 6088, pp. 533–536, 1986.

[7] E. K. Chong and S. H. Zak, An introduction to optimization.
John Wiley & Sons, 2004.

[8] H. Robbins and S. Monro, “A stochastic approximation method,” The annals of
mathematical statistics, pp. 400–407, 1951.

Backpropagation, SGD, and Adam 44 / 46

References (cont.)

[9] L. Bottou et al., “Online learning and stochastic approximations,” On-line learning in
neural networks, vol. 17, no. 9, p. 142, 1998.

[10] I. Goodfellow, Y. Bengio, and A. Courville, Deep learning.
MIT press, 2016.

[11] B. Ghojogh, H. Nekoei, A. Ghojogh, F. Karray, and M. Crowley, “Sampling algorithms,
from survey sampling to Monte Carlo methods: Tutorial and literature review,” arXiv
preprint arXiv:2011.00901, 2020.

[12] J. Duchi, E. Hazan, and Y. Singer, “Adaptive subgradient methods for online learning and
stochastic optimization,” Journal of machine learning research, vol. 12, no. 7, 2011.

[13] T. Tieleman and G. Hinton, “Lecture 6.5-rmsprop: Divide the gradient by a running
average of its recent magnitude,” COURSERA: Neural networks for machine learning,
vol. 4, no. 2, pp. 26–31, 2012.

[14] M. Riedmiller and H. Braun, “Rprop-a fast adaptive learning algorithm,” in Proceedings of
the International Symposium on Computer and Information Science VII, 1992.

[15] G. Hinton, N. Srivastava, and K. Swersky, “Neural networks for machine learning lecture
6a overview of mini-batch gradient descent,” tech. rep., Department of Computer Science,
University of Toronto, 2012.

[16] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,” arXiv preprint
arXiv:1412.6980, 2014.

Backpropagation, SGD, and Adam 45 / 46

References (cont.)

[17] B. Ghojogh, A. Ghodsi, F. Karray, and M. Crowley, “KKT conditions, first-order and
second-order optimization, and distributed optimization: Tutorial and survey,” arXiv
preprint arXiv:2110.01858, 2021.

Backpropagation, SGD, and Adam 46 / 46

