Introduction to the Course

Deep Learning (ENGG*6600*01)

School of Engineering, University of Guelph, ON, Canada

Course Instructor: Benyamin Ghojogh Summer 2023

Introduction of the Instructor and Students

Let us know each other by introducing ourselves!

Feel free to let us know (if you would like):

- Your name
- Your major
- Whether you are studying MEng, MASc, or PhD
- What it your goal for taking this course? What are your expectations from this course?
- How much you know about deep learning?
- How was your vacation between semesters? :)

Introduction of the Course

- This course focuses on various topics in deep learning, covering topics from fundamental concepts in neural networks to state-of-the-art deep learning.
- We start with neuron and basic learning methods.
- Then, we cover feed-forward nets and backpropagation.
- Then, we cover regularization techniques such as batch normalization and dropout.
- Then, we cover <u>convolutional neural nets</u> and some well-known networks such as <u>ResNet</u>, Alex<u>Net</u>, etc.
- Then, we cover sequence modeling (useful for NLP and speech processing) including RNN, LSTM, attention, transformers, BERT, and GPT.
- Next, generative models are covered including variational models, generative moment matching nets, GAN, and diffusion models.
- The other covered topics are Boltzmann machines, graph neural nets, deep reinforcement learning, meta-learning, network compression, federated learning, explainable AI, and self-supervised learning.
- Some applications of deep learning, including usage in computer vision, image processing, and NLP, are introduced.
- If time allows, the theory of optimization in networks is also discussed.

The Tentative Schedule of Weeks

Week 1		Week 6	
Topics:	Preliminaries (probability and expectation, the learning model, overfitting, etc.) logistic regression, feedforward neural network (perceptron, backpropagation, feed-forward neural network, stochastic gradient descent)	Topics:	Generative Models (variational models, generative moment matching, adversarial learning, GAN, diffusion models)
		Week 7	
Week 2		Topics:	Midterm exam
Topics:	Regularization techniques (overfitting/underfitting, cross validation, weight decay, dataset augmentation, adding noise, early stopping, parameter tynig and parameter sharing, bagging, dropout, batch normalization)	Week 8	
		Topics:	Graph Neural Networks (convolution on graphs, GNN vanilla spectral GCN, ChebNet, GCNs, Graph Attention
Week 3			Networks), Few-shot Learning (meta-learning)
Topics:	Convolutional Networks (CNN, its philosophy, and variants like ResNet, UNet, DenseNet, AlexNet, etc), Deep metric learning, Stell-supervised learning, Deep Learning Tuning (choosing the model architecture, choosing the optimizer, and hyper-parameter tuning in networks, e.g., batch size, learning rate, early stopping parameters, etc)	Week 9	
		Topics:	Deep Reinforcement Learning
		Week 9	
		Topics:	Federated learning, Adversarial attacks
Week 4		Week 10	
Topics:	Sequence Modeling (introduction to NLP, RNN, LSTM, GRU, ELMo, etc), Attention mechanism (attention, transformers,	Topics:	Explainable AI (including shortcut learning and saliency
	BERT, GPT), introduction to Large Language Models (LLM)		maps)
Week 5		Week 11	
Topics:	Network Compression (knowledge distillation, etc), Restricted Boltzmann Machine (RBM) and deep belief network	Topics:	Theory of neural networks (SAM optimization, optimization landscape, probability bounds, information bottleneck, etc)

Course Materials

- Lecture notes will be provided to you.
- YouTube channel of the course: [Link]
- Our tutorial papers: [Link]
- Additional resource for interested students:
 - ▶ Prof. Ali Ghodsi's lectures at the University of Waterloo: [Link]
 - ▶ YouTube channel "Carnegie Mellon University Deep Learning": [Link]
- Additional books:
 - Benyamin Ghojogh, Mark Crowley, Eakhri Karray, Ali Ghodsi, "Elements of Dimensionality Reduction and Manifold Learning", Springer, 2023, [Link]
 - Ian Goodfellow, Yoshua Bengio, Aaron Courville, <u>Deep Tearning</u>, MIT press, 2016, [Link]
 - ► Simon J.D. Prince, Understanding Deep Learning, to be published by MIT press, [Link]
 - Christopher M. <u>Bishop</u>, "Pattern Recognition and Machine Learning", Springer, 2006, [Link]
- Research articles in the literature

Course's Websites

Introducing the instructor and TA of the course:

- Instructor: Benyamin Ghojogh, email address: bghojogh@uoguelph.ca
- TA: Sepideh Emami Tabrizi, email address: semamita@uoguelph.ca

Course info:

- Classes will be in-person.
- Discussion chats and questions will be in <u>Microsoft Teams group</u> of the course. The students will be added to the Teams group. Please mention (tag) my name and TA's name when you post a question or message in Teams (so it notifies us).
- The course's website is: https://bghojogh.github.io/pages/uoguelph/engg-6600-01-s23/
- I will probably upload the videos of the classes to my YouTube channel [Click here].
 I will eliminate personal information of students (such as when they introduce themselves) in the videos.

Course Evaluation

- Assignments (20%): Assignments will be posted on CourseLink along with the due dates.
 They are performed individually. We will probably have several (two to three) assignments.
- The midterm exam (30%): Date will be around week 6. Details to be discussed in class.
- Course project (40%)
 - ▶ Date: Week 6 11
 - More details will be discussed in class. Report will be electronic submission due in CourseLink.
 - The number of people in each group will be announced in the class.
 - Pick a topic after 6 weeks.
 - Submit the title and proposal/objectives in CourseLink to be checked and approved.
- Group Presentation (10%):
 - ▶ Date: Week 11 12
 - During class time
- Bonus points: participation in class, participation in the discussions, asking questions, and answering questions.

Course's Goal

- Don't worry much about your marks!
- Focus on understanding the materials of the course.
- Our goal is to learn the important practical and theoretical algorithms in statistical machine learning, so you can use them in both your <u>industrial projects</u> and <u>academic</u> research
- About theory and practice:
 - ▶ We will learn **some theory** to understand why these methods work.
 - We will also learn how to use the methods in practice for practical usage.

Ask Questions!

- Please ask questions whenever you do not understand something.
- Let the class be discussion-based. I do not want to be the sole speaker. We are gonna learn all together.