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MLP
A fully connected neural network is a stack of layers of neural network where in every
layer, all the neurons of the previous layer are connected to all the neurons of the next
layer.

Every layer of the fully connected neural network is called a fully connected layer or a
dense layer.

Each neuron in the fully connected neural network is a Perceptron neuron. That is why
this network is also called the Multi-Layer Perceptron (MLP).

MLP was proposed by Rosenblatt in 1958, in the same paper as Perceptron [1]. In that
paper, he proposed an MLP with three layers.
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Neuron
Each neuron in the fully connected neural network is a Perceptron neuron. So it has:

▶ Summation of the outputs of previous layer multiplied by the weights of previous
layer:

ai =
m∑

ℓ=1

wiℓzℓ. (1)

▶ Activation function:

zi := σi (ai ). (2)
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Layer as a Projection
Every layer in the fully connected network can be seen as a linear projection followed by
an activation function.

y = σ3

(
W⊤

3 σ2

(
W⊤

2 σ1(W⊤
1 x)

))
. (3)

The activation function is usually a nonlinear function because if all activation functions
are linear in the network, the entire network is collapsed to be one linear projection.

y = W⊤
3 W⊤

2 W⊤
1 x = V⊤x , (4)

where:

V := W 1W 2W 3. (5)
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Activation Function
There exist various activation functions. Some of them are:

Linear (identity) function:

σ(a) = a, σ(a) ∈ (−∞,∞), σ′(a) = 1. (6)

Binary step:

σ(a) =

{
0 if a < 0
1 if a ≥ 0

, σ(a) ∈ [0, 1], σ′(a) =

{
0 if a ̸= 0
undefined if a = 0.

(7)

Sign (signum) function:

σ(a) =

{
−1 if a < 0
1 if a ≥ 0

, σ(a) ∈ [−1, 1], σ′(a) =

{
0 if a ̸= 0
undefined if a = 0.

(8)
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Activation Function
Logistic (sigmoid) function:

σ(a) =
1

1 + e−a
, σ(a) ∈ [0, 1], σ′(a) = σ(a)(1− σ(a)). (9)

Hyperbolic tangent (tanh):

σ(a) =
ea − e−a

ea + e−a
, σ(a) ∈ [−1, 1], σ′(a) = 1− σ(a)2. (10)

Gaussian (radial basis function):

σ(a) = e−a2 , σ(a) ∈ (0, 1], σ′(a) = −2ae−a2 . (11)
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Activation Function
Softplus [2] (2011):

σ(a) = ln(1 + ea), σ(a) ∈ [0,∞), σ′(a) =
1

1 + e−a
. (12)

Rectified linear unit (ReLU) [3] (2010):

σ(a) =

{
0 if a < 0
a if a ≥ 0

= max(0, a), σ(a) ∈ [0,∞), σ′(a) =

 0 if a < 0
undefined if a = 0
1 if a > 0.

(13)

Exponential Linear Unit (ELU) [4] (2015):

σ(a) =

{
α(ea − 1) if a < 0
a if a ≥ 0

, σ(a) ∈ (−α,∞), σ′(a) =

 αea if a < 0
1 if a = 0, α = 1
1 if a > 0.

(14)
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Activation Function
Leaky rectified linear unit (Leaky ReLU) [5] (2013):

σ(a) =

{
0.01a if a < 0
a if a ≥ 0

, σ(a) ∈ (−∞,∞), σ′(a) =

 0.01 if a < 0
undefined if a = 0
1 if a > 0.

(15)

Parametric rectified linear unit (PReLU) [6] (2015):

σ(a) =

{
αa if a < 0
a if a ≥ 0

, σ(a) ∈ (−∞,∞), σ′(a) =

 α if a < 0
undefined if a = 0
1 if a > 0.

(16)
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Activation Function
Softmax:

σi (a) =
eai∑m
i=1 e

ai
, ∀i ∈ {1, . . . ,m}, σi (a) ∈ (0, 1), σ′(a) = σi (a)

(
δij − σj (a)

)
, (17)

where δij is the Kronecker delta:

δij :=

{
1 if i = j
0 if i ̸= j .

(18)

Maxout [7] (2013):

σi (a) = max
j

(σj ), σi (a) ∈ (−∞,∞), σ′(a) =

{
1 if i = argmaxj (σj )
0 if i ̸= argmaxj (σj ).

(19)
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