Fully Connected Neural Network

Deep Learning (ENGG*6600*01)

School of Engineering,
University of Guelph, ON, Canada

Course Instructor: Benyamin Ghojogh
Summer 2023

Fully Connected Neural Network



MLP

@ A fully connected neural network is a stack of layers of neural network where in every

layer, all the neurons of the previous layer are connected to all the neurons of the next
layer.

@ Every layer of the fully connected neural network is called a fully connected layer or a
dense layer.

@ Each neuron in the fully connected neural network is a Perceptron neuron. That is why
this network is also called the Multi-Layer Perceptron (MLP).

@ MLP was proposed by Rosenblatt in 1958, in the same paper as Perceptron [1]. In that
paper, he proposed an MLP with three layers.
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Neuron

@ Each neuron in the fully connected neural network is a Perceptron neuron. So it has:
> Summation of the outputs of previous layer multiplied by the weights of previous

layer:
m
aj =y wirz. (1)
=1
> Activation function:
zZj = a,-(a,-). (2)
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Layer as a Projection

@ Every layer in the fully connected network can be seen as a linear projection followed by
an activation function.

y = o3 (W] o2(W] o (W] x)). 3

@ The activation function is usually a nonlinear function because if all activation functions
are linear in the network, the entire network is collapsed to be one linear projection.

y=W;5W; Wix=V'x 4
where:

V= Wi W,Ws. (5)
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Activation Function
There exist various activation functions. Some of them are:

@ Linear (identity) function:

o(a)=a, o(a)€ (—o0,0),

@ Binary step:

0 ifa<o
o@={ 7 §250. s@econ 7O={ dne

@ Sign (signum) function:

-1 ifa<o0
o(a) = { 1 if : >0 o(a) € [-1,1], o'(a) = { undefined
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o'(a) = 1.
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Activation Function

@ Logistic (sigmoid) function:

1

7@ =1

@ Hyperbolic tangent (tanh):

o(a)= "5 sa)el-1,1, o'(a)=1-o(a)

o(a) = e, a(a) € (0,1], o'(a) = 226~
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a(a) €[0,1], o’'(a) =o(a)(l — o(a)).
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Activation Function
@ Softplus [2] (2011):

1
o(a) =In(1+e%), o(a) €[0,00), o'(a) = = = (12)
@ Rectified linear unit (ReLU) [3] (2010):
. 0 ifa<O
0 ifa<o . .
o(a) = { 2 ifa>0 = max(0,a), o(a) €[0,00), o'(a)= { undefined if 2 =0
1 if a> 0.
(13)

@ Exponential Linear Unit (ELU) [4] (2015):

. ae? ifa<O
o(a) = afe?—1) ifa<0 o(a) € (—a,00), od'(a)=4¢ 1 ifa=0,a=1
2 faz0’ 1 ifa>0

(14)

Soﬂplu: RelV ELU
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Activation Function

@ Leaky rectified linear unit (Leaky ReLU) [5] (2013):

. 0.01 ifa<O
o(a) = { 0.01a !f a<o ,  o(a) € (—o0,00), 0o'(a) =14 undefined ifa=0
a ifa>0 .
1 if a>0.
(15)
@ Parametric rectified linear unit (PReLU) [6] (2015):
. «a ifa<O
o(a) = { «a !f a<0 ,  o(a) € (—o0,00), o'(a) =14 undefined ifa=0
a ifa>0 .
1 if a>0.
(16)
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Activation Function

@ Softmax:
oi(a) = ﬁ, vie{l,...,m}, oi(a)€(0,1), o'(a)= a,-(a)((s,-j — aj(a)), (17)

where §;; is the Kronecker delta:

o 1 ifi=j
0 = { 0 ifiA) (18)
@ Maxout [7] (2013):
oi(@) = max(0;), oi(a) € (—o0,00), o'(a) =4 L Fi=aremaxi(o) g
! oAb P 0 if i # arg max;(o;).
O 0.0\ O O‘Z?,
0 009 7 gum= O 100 ¥ mat=301
é) 0.9 O 3.0
O o.00 O 0%
cofrmax maout
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