Fully Connected Neural Network

Deep Learning (ENGG*6600*01)

School of Engineering,
University of Guelph, ON, Canada

Course Instructor: Benyamin Ghojogh
Summer 2023

Fully Connected Neural Network



MLP

@ A fully connected neural network is a stack of layers of neural network where in every

layer, all the neurons of the previous layer are connected to all the neurons of the next
layer.

@ Every layer of the fully connected neural network is called a fully connected layer or a
dense layer.

@ Each neuron in the fully connected neural network is a_Perceptron neuron. That is why
this network is also called the Multi-Layer Perceptron (MLP).

@ MLP was proposed by Rosenblatt in 1958, in the same paper as Perceptron [1]. In that
paper, he proposed an MLP with ghree layers. —_—
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Neuron

@ Each neuron in the fully connected neural network is a Perceptron neuron. So it has:

> Summation of the outputs of previous layer multiplied by the weights of previous

layer:
m
= Z WigZg. (1)
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1

> Activation function:

@::Q(Q). (2)
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@ Every layer in the fully connected network can be seen as a linear projection followed by

an activation function. )
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@ The activation function is usually a nonlinear function because if all activation functions
are linear in the network, the entire network is collapsed to be one linear projection.
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where: A 2,
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Activation Function
There exist various activation functions. Some of them are:

@ Linear (identity) function:
— _ () —
o(a)=a. o(a) € (~00,00), o(a) = 1. )
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@ Sign (signum) function:
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@ Binary step:
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Activation Function
@ Logistic (sigmoid) function:

- —

@ Hyperbolic tangent (tanh): X

_ea;e—a o(a — o'(a) =1 — o(a)?
* |- Gte et o= o

@ Gaussian (radial basis function):

i logsshic ( sigmoil ) M
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a(a) €[0,1], o'(a) =o(a)(l — o(a)).
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Activation Function
@ Softplus [2] (_20£)
1

o(a) =In(1 +€%),]| o(a) € [0,00), o'(a) = gt (12)
. J
<% @ Rectified linear unit (ReLU) [3] (2010)
ifa<O
o(a) = { :I. z ; g _ o(a) €[0,00), o'(a) = {gjeﬁned |; a=0
;;3)

@ Exponential Linear Unit (ELU) [4] (2015):
e e —
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o(a) = {%Af:-l) if a<0 o(a) € (—a,00), o'(a) = @ Ifa -1
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(14)
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Activation Function

@ Leaky rectified linear unit (Leaky ReLU) [5] (2013):

501 fa<o 0.01 ifa<o
o(a) = { =32 if%;T)- ,  o(a) € (—o0,0), o'(a) = undeflned -

if a> 0.
(15)
@ PRarametric rectified linear unit (PReLU) [6] (2015):
. e? ifa<0
|1f: 2 ; g o(a) € (—00,00), o'(a) =<{ undefi ifa=0
na= 1 ifa>o0.
(16)
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Activation Function A9 —Z 5
@ Softmax: & I
KE = An

o'(a) = oi(a) (65 — o;(a)), (17)

Lo@ rﬁ,a’L@)] - :—: (18)

@ Maxout [7] (2013):

(BY — . ) Iy @ if i = arg max;(o;)
i@ = mex(ay). - gila) € (oo o0, L @ - {@ iti # argmana). )
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