
Training One Neuron

Deep Learning (ENGG*6600*01)

School of Engineering,
University of Guelph, ON, Canada

Course Instructor: Benyamin Ghojogh
Summer 2023

Training One Neuron 1 / 45



Neuron and The
McCulloch-Pitts Model

Training One Neuron 2 / 45



Biological Neuron

Nucleus: The nucleus in the neuron cell

Soma: Soma is the cell body of neuron containing the nucleus

Dendrite: the branched protoplasmic extensions of a nerve cell that propagate the
electrochemical stimulation received from other neural cells to the cell body, or soma, of
the neuron

Synapse: the small gap between the dendrites of connecting neurons.

Training One Neuron 3 / 45



McCulloch-Pitts Model
in 1943: First model of neuron was invented by McCulloch (physiologist) and Pitts
(logician) [1]. It was later named the McCulloch-Pitts model.

The model had two inputs and a single output.

A neuron would not activate if only one of the inputs was active.

Weights for each input were equal and fixed and the output was binary.

Until inputs summed up to a certain threshold level, output would remain zero.

This model is known nowadays as a logical gate, such as AND, OR, NOT, etc.

Formula:

o = f
( d∑

j=1

wjxj + w0

)
= f

( d∑
j=0

wjxj

)
, (1)

where x0 = 1 is for bias (intercept).

Training One Neuron 4 / 45





Perceptron

Training One Neuron 5 / 45



Hebbian learning

Hebbian theory is a neuropsychological theory claiming that an increase in synaptic
efficacy arises from a presynaptic cell’s repeated and persistent stimulation of a
postsynaptic cell.

In simple words: the more two adjacent neurons are activated (fired) together, the
stronger the connection becomes between them.

Hebbian learning - proposed by Donald Hebb in his 1949 book “The Organization of
Behavior” [2]:

Training One Neuron 6 / 45



Perceptron

Perceptron tried to learn by neuron, as done in brain.

Perceptron is the building block of nowadays’ neural networks.

Perceptron was implemented by Rosenblatt (physiologist) in 1958, at Cornell Aeronautical
Laboratory [3].

It was for binary classification. It was useful because:
▶ Binary logic could do computer operations.
▶ Even when we have multiple classes, we can consider pairs of classes.

Rosenblatt randomly connected Perceptrons and changed the weights in order to achieve
“learning”. In later attempts, Hebbian learning [2] was used for learning in Perceptron.

In a 1958 press conference organized by the US Navy, Rosenblatt gave a speech about the
perceptron. Afterwards, New York Times reported the Perceptron to be “The embryo of
an electronic computer that [the Navy] expects will be able to walk, talk, see, write,
reproduce itself, and be conscious of its existence.” [4]

They thought they have solved AI!

Training One Neuron 7 / 45



Perceptron

Hebbian learning [2]:

wj := wj + η(yi − oi )xij , ∀j ∈ {1, . . . , d}, ∀i ∈ {1, . . . , n},
w0 := w0 + η(yi − oi ), ∀i ∈ {1, . . . , n},

(2)

where η > 0 is the learning rate, x i = [xi1, . . . , xid ]
⊤ ∈ Rd is the i-th input data, yi is its

target label and oi is the corresponding output of Perceptron for that input data.

We can merge these two into one formula:

wj := wj + η(yi − oi )xij , ∀j ∈ {0, . . . , d}, ∀i ∈ {1, . . . , n}, (3)

where xi0 := 1.

Training One Neuron 8 / 45



Perceptron

In batch learning of Hebbian learning:

wj := wj + η
b∑

i=1

(yi − oi )xij , ∀j ∈ {1, . . . , d},

w0 := w0 + η
b∑

i=1

(yi − oi ),

(4)

where b is the batch size.

Interpretation:

wj := wj + η(yi − oi )xij , ∀j ∈ {1, . . . , d}, ∀i ∈ {1, . . . , n}.

When the output oi is the same as the target ti , then we should not have any update:

oi = yi =⇒ η(yi − oi )xij = 0.

Training One Neuron 9 / 45



Perceptron with Signum Activation Function

If the activation function is the sign (signum) function, then we have:

wj :=

{
wj + 2ηyixij if oi ̸= yi
wj if oi = yi ,

(5)

∀j ∈ {1, . . . , d}, ∀i ∈ {1, . . . , n}.

w0 :=

{
w0 + 2ηyi if oi ̸= yi
w0 if oi = yi ,

(6)

Training One Neuron 10 / 45



Perceptron with Signum Activation Function

If the activation function is the sign (signum) function, in batch learning of Hebbian
learning:

wj := wj + 2η
b∑

i=1

yi xij I(oi ̸= yi ), (7)

∀j ∈ {1, . . . , d}.

w0 := w0 +
b∑

i=1

yi I(oi ̸= yi ), (8)

Training One Neuron 11 / 45



Perceptron with Signum Activation Function

Proof 1:
wj := wj + η(yi − oi )xij , ∀j ∈ {1, . . . , d}, ∀i ∈ {1, . . . , n}.

When the output oi and the target label yi have levels ±1:

yi , oi ∈ {−1, 1},
yi = 1, oi = 1 =⇒ η(yi − oi )xij = 0,

yi = 1, oi = −1 =⇒ η(yi − oi )xij = η(1− (−1))xij = 2ηxij = 2ηyixij ,

yi = −1, oi = 1 =⇒ η(yi − oi )xij = η(−1− 1)xij = −2ηxij = 2ηyixij ,

yi = −1, oi = −1 =⇒ η(yi − oi )xij = η(−1− (−1))xij = 0,

Training One Neuron 12 / 45



Perceptron with Signum Activation Function
Proof 2 (using gradient descent):

We want to find a linear decision boundary where one class falls in one side and the other
class falls on the other side.

The equation of a line for linear decision boundary:

w⊤x + w0 = 0, (9)

where x ∈ Rd is the data point, w ∈ Rd is the normal vector of the linear line, and w0 is
the bias (intercept) of the line.

Consider any two points x1 and x2 on the decision boundary. As the line passes through
each of them, they both satisfy Eq. (9):

w⊤x1 + w0 = 0, w⊤x2 + w0 = 0 =⇒ w⊤x1 + w0 = w⊤x2 + w0,

=⇒ w⊤(x1 − x2) = 0 =⇒ w ⊥ (x1 − x2),

which verifies that w is the normal vector of the decision boundary.

Training One Neuron 13 / 45



Perceptron with Signum Activation Function

Consider a point x0 on the decision boundary and a point x on one of the sides of the
decision boundary. Therefore:

w⊤x0 + w0 = 0 =⇒ w0 = −w⊤x0. (10)

Assume the normal vector w is normalized, i.e., it has unit length. The distance of point
x from the decision boundary is:

d = w⊤(x − x0) = w⊤x − w⊤x0
(10)
= w⊤x + w0. (11)

The distance should be non-negative so we have:

d = |w⊤x + w0|.

However, the absolute value is non-smooth and non-differentiable. Therefore, we can
multiply the distance with the target label to make it always non-negative:

y = +1 =⇒ w⊤x + w0 > 0, y = −1 =⇒ w⊤x + w0 < 0, (12)

=⇒ d := y(w⊤x + w0). (13)

Training One Neuron 14 / 45



Perceptron with Signum Activation Function
A possible cost function: number of misclassified data points to be minimized. But it is
discrete and hard to optimize. So, let’s optimize the distance as the cost function.

Approach 1: We want to maximize the distance of points from the decision boundary, so
we use gradient ascent for maximizing the distances of points from the decision boundary1:

distance =
b∑

i=1

yi (w⊤x i + w0),

∂distance

∂w
=

b∑
i=1

yix i ,
∂distance

∂w0
=

b∑
i=1

yi .

We should use gradient ascent to maximize the distances:

w := w + η
b∑

i=1

yixij , ∀j ∈ {1, . . . , d},

w0 = w0 + η
b∑

i=1

yi ,

(14)

where we can update only for oi ̸= yi cases to have Eqs. (7) and (8).
1
Note that it is not like support vector machine which maximizes the distance of only support vectors, and not all points,

from the decision boundary.

Training One Neuron 15 / 45



Perceptron with Signum Activation Function

Approach 2: We take the distances of misclassified data points as the cost function.
According to Eq. (12), the distance in Eq. (13) is for correctly classified data points. So,
we should multiply distance by −1 to have the distances of misclassified points:

error =
b∑

i=1

−yi (w⊤x i + w0) = −
b∑

i=1

yi (w⊤x i + w0),

∂error

∂w
= −

b∑
i=1

yix i ,
∂error

∂w0
= −

b∑
i=1

yi .

We should use gradient descent to minimize the error:

w := w + η
b∑

i=1

yixij , ∀j ∈ {1, . . . , d},

w0 = w0 + η
b∑

i=1

yi ,

(15)

where we can update only for oi ̸= yi cases to have Eqs. (7) and (8).

Training One Neuron 16 / 45



Problems with Perceptron
Perceptron is for binary classification.

In 1969, Minsky and Papert published a book titled “Perceptrons” [5] and showed that
Perceptron can only solve linearly separable problems. For example, they showed that it
cannot classify XOR classes, which is a nonlinear classification problem.

Therefore, researchers lost interest in Perceptron and artificial neural networks!

Researchers guessed that they should have multilayer Perceptrons but they did not know
how to train multilayer Perceptrons.

Also, Perceptron cannot generalize well enough
because, for linearly separable classes, it finds one of the many possible decision boundaries.

Because of this problem, two things were developed:
▶ ADALINE which generalizes better.
▶ Support Vector Machines (SVM) which found the best decision boundary by

optimization of teh distances of the support vectors from the decision boundary.

Training One Neuron 17 / 45



ADALINE

Training One Neuron 18 / 45



ADALINE

In 1960: Widrow and his student Hoff, at Stanford University, proposed a method, named
ADALINE, for adjusting adjusting weights [6, 7].

In 1960: articles claimed that robots can think!

It has more generalization compared to Perceptron.

ADALINE minimizes least mean squares (LMS) error using gradient descent. This training
method is referred to as LMS algorithm or Widrow-Hoff learning rule.

Training One Neuron 19 / 45



ADALINE

In ADALINE, the target label is compared with the output before activation function. This
is while Perceptron compares the target label with the output after activation function.

LMS error:

e =
1

2

b∑
i=1

(
yi −

( d∑
j=1

wjxij + w0

))2

, (16)

where b is the batch size, x i = [xi1, . . . , xid ]
⊤ ∈ Rd is the i-th input data, and yi is its

target label.

Training One Neuron 20 / 45



ADALINE
We had the LMS error:

e =
1

2

b∑
i=1

(
yi −

( d∑
j=1

wjxij + w0

))2

. (17)

The gradients:

∂e

∂wj
= −

b∑
i=1

(
yi −

( d∑
j=1

wjxij + w0

))
xij , ∀j ∈ {1, . . . , d},

∂e

∂w0
= −

b∑
i=1

(
yi −

( d∑
j=1

wjxij + w0

))
.

(18)

The gradient descent updates:

wj := wj − η
∂e

∂wj
, ∀j ∈ {1, . . . , d},

w0 := w0 − η
∂e

∂w0
,

(19)

where η > 0 is the leanring rate.

Training One Neuron 21 / 45



MADALINE

Training One Neuron 22 / 45



MADALINE

At Stanford university, Widrow and his students stacked several ADALINE neurons to be
able to have nonlinear classification. They proposed MADALINE (Many ADALINEs).

MADALINE Rule 1 (MRI): proposed in 1962 [8] and could not adapt the weights of the
hidden-output layer.

MADALINE Rule 2 (MRII): proposed in 1988 [9] and improved MRI to be able to also
train the weights of the hidden-output layer.

MADALINE Rule 3 (MRIII): proposed in 1990 [10] and changed signum activation
function to sigmoid function for having float outputs rather than merely binary outputs.

Training One Neuron 23 / 45



Logistic Regression

Training One Neuron 24 / 45



Logistic Regression

Logistic regression is popular in bio-statistics and bio-informatics.

Let x ∈ Rd be data and y ∈ R be class label. Baye’s rule:

P(y |x) =
P(x |y)P(y)

P(x)
, (20)

where P(y |x) and P(x |y) are the posterior and likelihood, respectively, and P(x) and P(y)
are the priors.

In contrast to Linear Discriminant Analysis (LDA), logistic regression works on the
posterior P(y |x) directly rather than working on likelihood P(x |y) and prior P(y).

Training One Neuron 25 / 45



Logistic Regression

Logistic regression is a binary classifier where it assigns probability between zero and one
for belonging to one of the classes.

The logistic function, used in logistic regression, was initially proposed in 1845 for
modeling the population growth [11]. It was further improved in the 20th century [12].
See [13] for the history of logistic regression.

It considers the classification problem as a regression problem where it regresses (predicts)
the probability of belonging to a class. It first considers a linear regression β⊤x + β0.
However, in order to not have the bias, it assumes that x is d + 1 dimensional with an
additional element of 1 for bias, i.e., x = [x1, . . . , xd , 1]

⊤. The β ∈ Rd+1 is the learnable
parameter of the logistic regression model. As a result, the linear regression becomes β⊤x .
However, there is no bound on this regression while logistic regression desires the output
to be in the range [0, 1] to behave like a probability. Therefore, Logistic regression models
the posterior using a logistic function, also called the sigmoid function, to make this
regression between zero and one.

Training One Neuron 26 / 45



Logistic Regression

Assume we have two classes y ∈ {0, 1}.
Logistic regression models the posterior using a logistic function, also called the sigmoid
function:

P(y = 1|X = x) =
eβ

⊤x

1 + eβ⊤x
, (21)

P(y = 0|X = x) = 1− P(y = 1|X = x) =
1

1 + eβ⊤x
, (22)

where β ∈ Rd is the learnable parameter of the logistic regression model.

Training One Neuron 27 / 45



Logistic Regression as a Neural Network

Logistic regression can be seen as a neural network with one neuron where the activation
function is the nonlinear sigmoid (logistic) function.

Training One Neuron 28 / 45



Logistic Regression

Consider n data points {(x i , yi )}ni=1 in the dataset. Assuming that they are independent
and identically distributed (i.i.d), the posterior over all data points is:

P(y |X ) =
n∏

i=1

(
P(yi = 1|X = xi )I(yi = 1) + P(yi = 0|X = xi )I(yi = 0)

)
, (23)

where I(.) is the indicator function which is one if its condition is satisfied and is zero
otherwise.

As the labels are either zero or one, i.e., yi ∈ {0, 1}, this equation can be restated as:

P(y |X ) =
n∏

i=1

(
P(yi = 1|X = xi )

)yi (P(yi = 0|X = xi )
)1−yi . (24)

Substituting Eqs. (21) and (22) in this equation gives:

P(y |X ) =
n∏

i=1

( eβ
⊤x i

1 + eβ⊤x i

)yi ( 1

1 + eβ⊤x i

)1−yi . (25)

Training One Neuron 29 / 45



Logistic Regression

The log posterior is:

ℓ(β) := P(y |X = x) = log
n∏

i=1

( eβ
⊤x i

1 + eβ⊤x i

)yi ( 1

1 + eβ⊤x i

)1−yi

=
n∑

i=1

(
log

( eβ
⊤x i

1 + eβ⊤x i

)yi + log
( 1

1 + eβ⊤x i

)1−yi
)

=
n∑

i=1

(
yi log(e

β⊤x i )− yi log(1 + eβ
⊤x i )− (1− yi ) log(1 + eβ

⊤x i )
)

=
n∑

i=1

(
yiβ

⊤x i − yi log(1 + eβ
⊤x i )− log(1 + eβ

⊤x i ) + yi log(1 + eβ
⊤x i )

)

=
n∑

i=1

(
yiβ

⊤x i − log(1 + eβ
⊤x i )

)
.

Training One Neuron 30 / 45



Logistic Regression

The log likelihood of the posterior is:

ℓ(β) =
n∑

i=1

(
yiβ

⊤x i − log(1 + eβ
⊤x i )

)
.

Newton’s method can be used to find the optimum β. The first derivative, or the
gradient, it:

∂ℓ(β)

∂β
=

n∑
i=1

(
yix i −

1

1 + eβ⊤x i
eβ

⊤x i x i

)
=

n∑
i=1

(
yi −

eβ
⊤x i

1 + eβ⊤x i

)
x i . (26)

Its transpose is:

∂ℓ(β)

∂β⊤ =
n∑

i=1

(
yi −

eβ
⊤x i

1 + eβ⊤x i

)
x⊤
i .

Training One Neuron 31 / 45



Logistic Regression

The second derivative is:

∂2ℓ(β)

∂β∂β⊤ =
∂

∂β
(
∂ℓ(β)

∂β⊤ ) =
∂

∂β

( n∑
i=1

(
yi −

eβ
⊤x i

1 + eβ⊤x i

)
x⊤
i

)

=
n∑

i=1

(
−

∂

∂β

( eβ
⊤x i

1 + eβ⊤x i

))
x⊤
i .

We define:

P(x i |β) :=
eβ

⊤x i

1 + eβ⊤x i
. (27)

Therefore:

∂2ℓ(β)

∂β∂β⊤ = −
n∑

i=1

( ∂

∂β

(
P(x i |β)

))
x⊤
i . (28)

Training One Neuron 32 / 45



Logistic Regression

We have:

∂

∂β

(
P(x i |β)

)
=

∂

∂β

( eβ
⊤x i

1 + eβ⊤x i

)
=

1

(1 + eβ⊤x i )2

(
eβ

⊤x i x i (1 + eβ
⊤x i )− eβ

⊤x i (eβ
⊤x i x i )

)
=

eβ
⊤x i

(1 + eβ⊤x i )2

(
1 + eβ

⊤x i − eβ
⊤x i

)
x i =

eβ
⊤x i

(1 + eβ⊤x i )2
x i

=
eβ

⊤x i

(1 + eβ⊤x i )

1

(1 + eβ⊤x i )
x i

(27)
= P(x i |β)

(
1− P(x i |β)

)
x i

Substituting it in Eq. (28) gives the second derivative, i.e., the Hessian matrix:

∂2ℓ(β)

∂β∂β⊤ = −
n∑

i=1

(
P(x i |β)

(
1− P(x i |β)

)
x i

)
x⊤
i . (29)

Training One Neuron 33 / 45



Logistic Regression
It is possible to write the Newton’s method in matrix form. We define:

R(d+1)×n ∋ X :=

[
x1 x2 . . . xn

1 1 . . . 1

]
,

Rn×n ∋ W := diag
(
P(x i |β)

(
1− P(x i |β)

))
,

Rn ∋ y := [y1, . . . , yn]
⊤,

Rn ∋ p :=
[ eβ

⊤x1

1 + eβ⊤x1
, . . . ,

eβ
⊤xn

1 + eβ⊤xn

]⊤
.

The Eqs. (26) and (29) can be restated as:

R(d+1) ∋
∂ℓ(β)

∂β
= X (y − p), (30)

R(d+1)×(d+1) ∋
∂2ℓ(β)

∂β∂β⊤ = −XWX⊤. (31)

Using Newton’s method for maximization of the log posterior is:

β(τ+1) := β(τ) + (
∂2ℓ(β)

∂β∂β⊤ )−1 ∂ℓ(β)

∂β
=⇒

β(τ+1) := β(τ) − (XWX⊤)−1X (y − p), (32)

where τ is the iteration index. It is repeated until convergence of β.

Training One Neuron 34 / 45



Logistic Regression

In the test phase, the class of a point x is determined as:

y =

{
1 if eβ

⊤x

1+eβ
⊤x

≥ 0.5,

0 Otherwise.
(33)

Comparison to LDA:

▶ Logistic regression estimates (d + 1) parameters in β, but LDA estimates many

more parameters:

⋆ prior of each class: 1. We have two classes: 2× 1 = 2.
⋆ mean of each class: d . We have two classes: 2× d = 2d .
⋆ covariance matrix of each class: d(d + 1)/2. We have two classes:

2× (d(d + 1)/2) = d(d + 1).
⋆ so, in total: 2 + 2d + d(d + 1) = d2 + 2d + 2.

▶ LDA assumes the distribution of each class is Gaussian which may not be true.
However, logistic regression does not assume anything about the distribution of
data.

Training One Neuron 35 / 45



Other History

Training One Neuron 36 / 45



Other History

in 1969: Arthur E. Bryson and Yu-Chi Ho described backpropagation as a multi-stage
dynamic system optimization method [14, 15].

Starting 1969, people started inventing and re-inventing backpropagation algorithm for
training multilayer Perceptron.

in 1972: Stephen Grossberg proposed networks capable of learning XOR function.

in 1986: the main and succesful backpropagation was proposed by David E Rumelhart,
Geoffrey E Hinton, and Ronald J Williams [16].

in 1980’s: successful era of neural networks.

Kernel support vector machines [17] resulted in the winter of neural networks in the last
years of previous century until around 2006.

Training One Neuron 37 / 45



Other History

Hinton et. al. had proposed Boltzmann Machine (BM) and Restricted Boltzmann
Machine (RBM) in 1983 and 1985 [18, 19].

During the winter of neural networks, Hinton tried to save neural networks from being
forgotten in the history of machine learning. So, he returned to his previously proposed
RBM and proposed a learning method for RBM with the help of some other researchers
including Max Welling [20, 21].

They proposed training the weights of BM and RBM using maximum likelihood
estimation. BM and RBM can be seen as generative models where new values for neurons
can be generated using Gibbs sampling [22].

Hinton noticed RBM because he knew that the set of weights between every two layers of
a neural network is an RBM. It was in the year 2006 [23, 24] that he thought it is possible
to train a network in a greedy way2 [25] where the weights of every layer of network is
trained using RBM training.

This stack of RBM models with a greedy algorithm for training was named Deep Belief
Network (DBN) [24, 26]. DBN allowed the networks to become deep by preparing a good
initialization of weights (using RBM training) for backpropagation. This good starting
point for backpropagation optimization did not face the problem of vanishing gradients
anymore.

2
A greedy algorithm makes every decision based on the most benefit at the current step and does not care about the final

outcome at the final step. This greedy approach hopes that the final step will obtain a good result by small best steps based on
their current benefits.

Training One Neuron 38 / 45



Other History

Since the breakthrough in 2006 [23], the winter of neural networks started to end
gradually because the networks could get deep to become more nonlinear and handle more
nonlinear data.

DBN was used in different applications including speech recognition [27, 28, 29] and
action recognition [30].

Hinton was very excited about the success of RBM and was thinking that the future of
neural networks belongs to DBN.

However, two important techniques were proposed, which were the ReLU activation
function (2011) [31] and the dropout technique (2014) [32]. These two regularization
methods prevented overfitting [33] and resolved vanishing gradients even without RBM
pre-training.

Hence, backpropagation could be used alone if the new regularization methods were
utilized. The success of neural networks was found out more [34] by its various
applications, for example in image recognition [35].

Training One Neuron 39 / 45



Acknowledgment

For more information on early history of artificial neural networks, see the book [36]:
“Fundamentals of neural networks: architectures, algorithms and applications”

Some slides of this slide deck were inspired by teachings of Prof. Ali Ghodsi (at University
of Waterloo, Department of Statistics), Prof. Fakhri Karray (at University of Waterloo,
Department of Electrical and Computer Engineering), and Prof. Saeed Bagheri Shouraki
(at Sharif University of Technology, Department of Electrical Engineering).

Training One Neuron 40 / 45



References

[1] W. S. McCulloch and W. Pitts, “A logical calculus of the ideas immanent in nervous
activity,” The bulletin of mathematical biophysics, vol. 5, pp. 115–133, 1943.

[2] D. O. Hebb, The Organization of Behavior.
New York: Wiley & Sons, 1949.

[3] F. Rosenblatt, “The Perceptron – a perceiving and recognizing automaton project para,”
tech. rep., Report 85-460-1, Cornell Aeronautical Laboratory., 1957.

[4] M. Olazaran, “A sociological study of the official history of the perceptrons controversy,”
Social Studies of Science, vol. 26, no. 3, pp. 611–659, 1996.

[5] M. Minsky and S. A. Papert, Perceptrons.
MIT press, 1969.

[6] B. Widrow and M. E. Hoff, “Adaptive switching circuits,” tech. rep., Stanford University,
California, Stanford Electronics Labs, 1960.

[7] B. Widrow, “An adaptive ”adaline” neuron using chemical ”memistors”,” tech. rep., No.
1553-2, Stanford Electronics Laboratories, 1960.

[8] B. Widrow, “Generalization and information storage in networks of adaline neurons,”
Self-organizing systems, pp. 435–461, 1962.

[9] C. R. Winter and B. Widrow, “Madaline rule ii: A training algorithm for neural networks,”
in Secondf Annual International Conference on Neural Networks, pp. 1–401, 1988.

Training One Neuron 41 / 45



References (cont.)

[10] B. Widrow and M. A. Lehr, “30 years of adaptive neural networks: perceptron, madaline,
and backpropagation,” Proceedings of the IEEE, vol. 78, no. 9, pp. 1415–1442, 1990.

[11] P. F. Verhulst, “Resherches mathematiques sur la loi d’accroissement de la population,”
Nouveaux memoires de l’academie royale des sciences, vol. 18, pp. 1–41, 1845.

[12] S. H. Walker and D. B. Duncan, “Estimation of the probability of an event as a function of
several independent variables,” Biometrika, vol. 54, no. 1-2, pp. 167–179, 1967.

[13] J. S. Cramer, “The origins of logistic regression,” 2002.

[14] A. E. Bryson Jr, W. F. Denham, and S. E. Dreyfus, “Optimal programming problems with
inequality constraints,” AIAA journal, vol. 1, no. 11, pp. 2544–2550, 1963.

[15] A. E. Bryson and H. Yu-Chi, Applied optimal control: optimization, estimation and
control.
CRC Press, 1969.

[16] D. E. Rumelhart, G. E. Hinton, and R. J. Williams, “Learning representations by
back-propagating errors,” nature, vol. 323, no. 6088, pp. 533–536, 1986.

[17] B. E. Boser, I. M. Guyon, and V. N. Vapnik, “A training algorithm for optimal margin
classifiers,” in Proceedings of the fifth annual workshop on Computational learning theory,
pp. 144–152, 1992.

Training One Neuron 42 / 45



References (cont.)

[18] G. E. Hinton and T. J. Sejnowski, “Optimal perceptual inference,” in Proceedings of the
IEEE conference on Computer Vision and Pattern Recognition, vol. 448, IEEE, 1983.

[19] D. H. Ackley, G. E. Hinton, and T. J. Sejnowski, “A learning algorithm for Boltzmann
machines,” Cognitive science, vol. 9, no. 1, pp. 147–169, 1985.

[20] G. E. Hinton, “Training products of experts by minimizing contrastive divergence,” Neural
computation, vol. 14, no. 8, pp. 1771–1800, 2002.

[21] M. Welling, M. Rosen-Zvi, and G. E. Hinton, “Exponential family harmoniums with an
application to information retrieval.,” in Advances in neural information processing
systems, vol. 4, pp. 1481–1488, 2004.

[22] S. Geman and D. Geman, “Stochastic relaxation, Gibbs distributions, and the Bayesian
restoration of images,” IEEE Transactions on pattern analysis and machine intelligence,
vol. PAMI-6, no. 6, pp. 721–741, 1984.

[23] G. E. Hinton and R. R. Salakhutdinov, “Reducing the dimensionality of data with neural
networks,” Science, vol. 313, no. 5786, pp. 504–507, 2006.

[24] G. E. Hinton, S. Osindero, and Y.-W. Teh, “A fast learning algorithm for deep belief nets,”
Neural computation, vol. 18, no. 7, pp. 1527–1554, 2006.

[25] Y. Bengio, P. Lamblin, D. Popovici, and H. Larochelle, “Greedy layer-wise training of deep
networks,” in Advances in neural information processing systems, pp. 153–160, 2007.

Training One Neuron 43 / 45



References (cont.)

[26] G. E. Hinton, “Deep belief networks,” Scholarpedia, vol. 4, no. 5, p. 5947, 2009.

[27] A.-r. Mohamed, G. Dahl, G. Hinton, et al., “Deep belief networks for phone recognition,”
in Nips workshop on deep learning for speech recognition and related applications, vol. 1,
p. 39, Vancouver, Canada, 2009.

[28] A.-r. Mohamed and G. Hinton, “Phone recognition using restricted Boltzmann machines,”
in 2010 IEEE International Conference on Acoustics, Speech and Signal Processing,
pp. 4354–4357, IEEE, 2010.

[29] A.-r. Mohamed, G. E. Dahl, and G. Hinton, “Acoustic modeling using deep belief
networks,” IEEE transactions on audio, speech, and language processing, vol. 20, no. 1,
pp. 14–22, 2011.

[30] G. W. Taylor, G. E. Hinton, and S. T. Roweis, “Modeling human motion using binary latent
variables,” in Advances in neural information processing systems, pp. 1345–1352, 2007.

[31] X. Glorot, A. Bordes, and Y. Bengio, “Deep sparse rectifier neural networks,” in
Proceedings of the fourteenth international conference on artificial intelligence and
statistics, pp. 315–323, JMLR Workshop and Conference Proceedings, 2011.

[32] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov, “Dropout: a
simple way to prevent neural networks from overfitting,” The journal of machine learning
research, vol. 15, no. 1, pp. 1929–1958, 2014.

Training One Neuron 44 / 45



References (cont.)

[33] B. Ghojogh and M. Crowley, “The theory behind overfitting, cross validation,
regularization, bagging, and boosting: tutorial,” arXiv preprint arXiv:1905.12787, 2019.

[34] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” nature, vol. 521, no. 7553,
pp. 436–444, 2015.

[35] A. Karpathy and L. Fei-Fei, “Deep visual-semantic alignments for generating image
descriptions,” in Proceedings of the IEEE conference on computer vision and pattern
recognition, pp. 3128–3137, 2015.

[36] L. V. Fausett, Fundamentals of neural networks: architectures, algorithms and
applications.
Pearson Education India, 2006.

Training One Neuron 45 / 45


