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Prerequisite for This Lecture

The prerequisite for this lecture is the lecture of overfitting and regularization on my
YouTube channel.

The name of video is “Overfitting, Cross Validation, Regularization, and L1 and L2 Norm
Regularization in Machine Learning” in my YouTube channel.

The link of video: https://www.youtube.com/watch?v=wds4KdXQJIA

Please see that lecture first before watching this lecture. We assume you have studied it.
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Weight Decay
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Weight Decay
Recall the ℓ2 regularization from the lecture of overfitting. If we replace the objective
variable x with the vector of neural network weights w , we will have:

minimize
w

J̃(w ; θ) := J(w ; θ) +
α

2
||w ||22, (1)

which can be the loss function optimized in a neural network [1].

Penalizing the weights with regularization is referred to as weight decay [2, 3].

This penalty prevents neural network from becoming too non-linear (complex) and thus
overfitted.

The reason is that according to non-linear activation functions such as hyperbolic
tangent, very large weights (very positive or very negative) are in the very non-linear
parts of the activation functions.

Although neural network should not be completely linear in order to be able to learn
non-linear patterns, it should not be very non-linear as well, not to be overfitted to the
training data.

Penalizing the weights makes the weights relatively small (where the activation functions
are almost linear) to have a balance in linearity and non-linearity.

In the lecture of overfitting, we proved that the result of Eq. (1) is:

w† = U(Λ+ αI )−1ΛU⊤w∗, (2)

where w∗ is the solution of non-regularized problem and U and Λ contain the
eigenvectors and eigenvalues of Hessian of J, respectively.

It has the similar interpretations as we discussed before in the lecture of overfitting.
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Noise Injection to
Input in Neural
Networks
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Noise Injection to Input in Neural Networks
In training neural networks, it is beneficial to add noise to the input [4].

One perspective to why adding noise to input helps better training of network is data
augmentation [5, 6]. Data augmentation is useful for training deep networks because they
have a huge number of weights (parameters) and if we do not introduce enough training
data to them, they will overfit to the training data.

Another interpretation of noise injection to input is regularization [7, 1]. Assume that the
optimization of neural network is:

minimize
w

J := E((ŷ(x)− y)2), (3)

where x , ŷ(x), and y are the input, the estimation (output) of network, and the training
label, respectively.

We add noise ε ∼ N (0, σ2I ) to the input, so the objective function changes to:

J̃ := E((ŷ(x + ε)− y)2) = E(ŷ2(x + ε)− 2yŷ(x + ε) + y2)

= E(ŷ2(x + ε))− 2E(yŷ(x + ε)) + E(y2).

Assuming that the variance of noise is small, the Taylor series expansion of ŷ(x + ε) is:

ŷ(x + ε) = ŷ(x) + ε⊤∇x ŷ(x) +
1

2
ε⊤∇2

x ŷ(x) ε+ o(ε3).

Regularization in Deep Learning 6 / 26



Noise Injection to Input in Neural Networks
We had:

J̃ = E(ŷ2(x + ε))− 2E(yŷ(x + ε)) + E(y2),

ŷ(x + ε) = ŷ(x) + ε⊤∇x ŷ(x) +
1

2
ε⊤∇2

x ŷ(x) ε+ o(ε3).

Therefore:

J̃ ≈ E
((

ŷ(x) + ε⊤∇x ŷ(x) +
1

2
ε⊤∇2

x ŷ(x) ε
)2)

− 2E
(
yŷ(x) + yε⊤∇x ŷ(x) +

1

2
yε⊤∇2

x ŷ(x) ε
)
+ E(y2)

= E
(
ŷ(x)2 + y2 − 2yŷ(x)

)
− 2E

(1

2
yε⊤∇2

x ŷ(x) ε
)

+ E
(
ŷ(x)ε⊤∇2

x ŷ(x)ε+ (ε⊤∇x ŷ(x))2 + o(ε3)
)
.

The first term, E(ŷ(x)2 + y2 − 2yŷ(x)) = E((ŷ(x)− y)2), is the loss function before
adding the noise to the input, according to Eq. (3).

Also, because of ε ∼ N (0, σ2I ), we have E(ε⊤ε) = σ2. As the noise and the input are
independent, the following term is simplified as:

E
(
(ε⊤∇x ŷ(x))2

)
⊥⊥
= E(ε⊤ε)E(||∇x ŷ(x)||22) = σ2 E(||∇x ŷ(x)||22).
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Noise Injection to Input in Neural Networks

The rest of expression is simplified as:

E
(
ŷ(x)ε⊤∇2

x ŷ(x)ε
)
− 2E

(1

2
yε⊤∇2

x ŷ(x) ε
)

= E
(
ŷ(x)ε⊤∇2

x ŷ(x)ε
)
− E

(
yε⊤∇2

x ŷ(x) ε
)

⊥⊥
= E(ε⊤ε)E

(
ŷ(x)∇2

x ŷ(x)
)
− E(ε⊤ε)E

(
y∇2

x ŷ(x)
)

= σ2 E
((

ŷ(x)− y
)
∇2

x ŷ(x)
)
.

Hence, the overall loss function after noise injection to the input is simplified to:

J̃ ≈ J + σ2 E
((

ŷ(x)− y
)
∇2

x ŷ(x)
)
+ σ2 E(||∇x ŷ(x)||22), (4)

which is a regularized optimization problem with ℓ2 norm penalty.

The penalty is on the second derivatives of outputs of neural network. This means that
we do not want to have significant changes in the output of neural network. This
penalization prevents from overfitting.
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Noise Injection to Input in Neural Networks

Note that the technique of adding noise to the input is also used in denoising
autoencoders [8].

Moreover, an overcomplete autoencoder with one hidden layer [1] (where the number of
hidden neurons is greater than the dimension of data) needs a noisy input; otherwise, the
mapping in the autoencoder will be just copying the input to output without learning a
latent space.

It is also noteworthy that injecting noise to the weights of neural network [1, 9] can be
interpreted similar to injecting noise to the input. Therefore, noise injection to the weights
can also be interpreted as regularization where the regularization penalty term is
σ2 E(||∇w ŷ(x)||22) where w is the vector of weights [1].
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Early Stopping in
Neural Networks
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Early Stopping in Neural Networks

As we mentioned in the explanations of overfitting lecture, we train neural network up to
a point where the overfitting is starting. This is referred to as early stopping [10, 11]
which helps avoid overfitting [12].
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Early Stopping in Neural Networks
Recall the overfitting lecture:

▶ A regularized optimization:

minimize
w

J̃(w ; θ) := J(w ; θ) +
α

2
||w ||22. (5)

The ℓ2 norm regularization is also referred to as ridge regression or Tikhonov
regularization [1].

▶ Suppose w∗ is minimizer of the J(w ; θ), i.e.:

∇J(w∗; θ) = 0. (6)

▶ The Taylor series expansion of J(w ; θ) up to the second derivative at w∗ gives:

Ĵ(w ; θ) ≈ J(w∗; θ) +
1

2
(w − w∗)⊤H(w − w∗), (7)

where H ∈ Rd×d is the Hessian.
▶ If we apply eigenvalue decomposition on the Hessian matrix, we will have:

H = UΛU⊤, (8)

where U and Λ contain the eigenvectors and eigenvalues, respectively.
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Early Stopping in Neural Networks
According to Eq. (7), we have:

∇w Ĵ(w) ≈ ∇wJ(w∗) + H(w − w∗)
(6)
= H(w − w∗).

The gradient descent (with η as the learning rate) used in back-propagation of neural
network is [13]:

w (t) := w (t−1) − η∇w Ĵ(w (t)) = w (t−1) − ηH(w (t−1) − w∗)

=⇒ w (t) − w∗ = (I − ηH)(w (t−1) − w∗),

where t is the index of iteration.

According to Eq. (8), we have:

w (t) − w∗ = (I − ηUΛU⊤)(w (t−1) − w∗).

Assuming the initial weights are w (0) = 0, we have:

w (1) − w∗ = −(I − ηUΛU⊤)w∗ =⇒ w (1) =
(
I − (I − ηUΛU⊤)

)
w∗

(a)
=⇒ w (1) =

(
UU⊤ − (UU⊤ − ηUΛU⊤)

)
w∗ =⇒ w (1) = U

(
I − (I − η Λ)

)
U⊤w∗,

where (a) is because U is a non-truncated orthogonal matrix so UU⊤ = I .
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Early Stopping in Neural Networks

We found:

w (1) = U
(
I − (I − η Λ)

)
U⊤w∗.

By induction, we have:

w (t) = U
(
I − (I − η Λ)t

)
U⊤w∗ =⇒ U⊤w (t) = U⊤U

(
I − (I − η Λ)t

)
U⊤w∗,

(a)
=⇒ U⊤w (t) =

(
I − (I − η Λ)t

)
U⊤w∗, (9)

where (a) is because U is an orthogonal matrix so U⊤U = I .
On the other hand, recall Eq. (2):

w† = U(Λ+ αI )−1ΛU⊤w∗,

=⇒ U⊤w† = (Λ+ αI )−1ΛU⊤w∗,

(a)
=⇒ U⊤w† =

(
I − (Λ+ αI )−1α

)
U⊤w∗, (10)

where (a) is because of an expression rearrangement asserted in [1].

Comparing Eqs. (9) and (10) shows that early stopping can be seen as a ℓ2 norm
regularization or weight decay [1].
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Early Stopping in Neural Networks
The Eqs. (9) and (10):

U⊤w (t) =
(
I − (I − η Λ)t

)
U⊤w∗,

U⊤w† =
(
I − (Λ+ αI )−1α

)
U⊤w∗.

Actually, the Eqs. (9) and (10) are equivalent if:

(I − η Λ)t = (Λ+ αI )−1α, (11)

for some η, t, and α.

If we take the logarithm from these expressions and use Taylor series expansion for
log(1 + x), we have:

log(I − η Λ)t = t log(I − η Λ) ≈ −t (ηΛ+
1

2
η2Λ2 +

1

3
η3Λ3 + · · · ), (12)

log(Λ+ αI )−1α = − log(Λ+ αI ) + logα = − log(α(I +
1

α
Λ)) + logα

= − logα− log(I +
1

α
Λ) + logα ≈

−1

α
Λ+

1

2α2
Λ2 −

1

3α3
Λ3 + · · · . (13)

Equating Eqs. (12) and (13) because of Eq. (11) gives us:

α ≈
1

t η
, t ≈

1

αη
. (14)
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Early Stopping in Neural Networks

We found:

α ≈
1

t η
, t ≈

1

αη
,

which shows that the inverse of number of iterations is proportional to the weight decay
(ℓ2 norm) regularization parameter.

In other words, the more training iterations we have, the less we are penalizing the
weights and the more the network might get overfitted.

Moreover, some empirical studies [14] show that noise injection and weight decay have
more effectiveness than early stopping for avoiding overfitting, although early stopping has
its own merits.
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Dropout
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Bagging
Bagging is short for Bootstrap AGGregatING, first proposed by [15] (1996).

It is a meta algorithm which can be used with any model (classifier, regression, etc).

The definition of bootstrapping is as follows. Suppose we have a sample {x i}ni=1 with

size n where f (x) is the unknown distribution of the sample, i.e., x i
iid∼ f (x). We would

like to sample from this distribution but we do not know the f (x). Approximating the
sampling from the distribution by randomly sampling from the available sample is
named bootstrapping. In bootstrapping, we use simple random sampling with
replacement. The drawn sample is named bootstrap sample.

In bagging, we draw k bootstrap samples each with some sample size. Then, we train the
model hj using the j-th bootstrap sample, ∀j ∈ {1, . . . , k}. Hence, we have k trained
models rather than one model. Finally, we aggregate the results of estimations of the k
models for an instance x :

f̂ (x) =
1

k

k∑
j=1

hj (x). (15)

If the model is classifier, we should probably use sign function:

f̂ (x) = sign
( 1
k

k∑
j=1

hj (x)
)
. (16)
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Bagging

Let ej denote the error of the j-th model in estimation of the observation of an instance.
Suppose this error is a random variable with normal distribution having mean zero, i.e.,

ej
iid∼ N (0, s) where s := σ2.

We denote the covariance of estimations of two trained models using two different
bootstrap samples by c.

Therefore, we have:

E(e2j ) = s =⇒ Var(ej ) = E(e2j )− (E(ej ))2 = s − 0 = s =⇒ Var(hj (x)) = s, (17)

E(ej eℓ) = c =⇒ Cov(ej , eℓ) = E(ej eℓ)− E(ej )E(eℓ) = c − (0× 0) = c

=⇒ Cov(hj (x), hℓ(x)) = c, (18)

for all j , ℓ ∈ {1, . . . , k}, j ̸= ℓ.

According to Eqs. (15), (17), and (18), we have:

Var
(
f̂ (x)

)
=

1

k2
Var

( k∑
j=1

hj (x)
)
=

1

k2

k∑
j=1

Var(hj (x)) +
1

k2

k∑
j=1

k∑
ℓ=1,ℓ̸=j

Cov(hj (x), hℓ(x))

=
1

k2
ks +

1

k2
k(k − 1)c =

1

k
s +

k − 1

k
c. (19)
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Bagging
We found:

Var
(
f̂ (x)

)
=

1

k
s +

k − 1

k
c.

The obtained expression has an interesting interpretation: If two trained models with two
different bootstrap samples are very correlated, we will have c ≈ s, thus:

lim
c→s

Var
(
f̂ (x)

)
=

1

k
s +

k − 1

k
s = s, (20)

and if the two trained models are very different (uncorrelated), we will have c ≈ 0, hence:

lim
c→0

Var
(
f̂ (x)

)
=

1

k
s +

k − 1

k
0 =

1

k
s. (21)

This means that if the trained models are very correlated in bagging, there is not any
difference from using only one model; however, if we have different trained models, the
variance of estimation improves significantly by the factor of k.
This also implies that bagging never is destructive; it either is not effective or improves
the estimation in terms of variance [16, 15].

The more complex model usually has more variance and less bias. Therefore, the more
variance corresponds to overfitting. As bagging helps decrease the variance of estimation,
it helps prevent overfitting. Therefore, bagging is a meta algorithm useful to have less
variance and not to get overfitted [17].

Bagging can be seen as an ensemble learning method [18] which is useful because of
model averaging [19, 20].
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Dropout

One of the examples of using bagging in machine learning is random forest [21].

Another example of bagging is dropout in neural networks (2014) [22].

According to dropout, in every iteration of training phase, the neurons are randomly
removed with probability p = 0.5, i.e., we sample from a Bernoulli distribution.

This makes the training phase as training different neural networks as we have different
models in bagging.

In the test time, all the neurons are used but their output is multiplied by the p. This
imitates the model averaging of bagging in Eq. (15).

That is why dropout prevents neural network from overfitting.

Another intuition of why dropout works is making the neural network sparse which is very
effective because of principal of sparsity [23, 24] or Occam’s razor [25] introduced before.
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Some slides are based on our tutorial paper: ”The Theory Behind Overfitting, Cross
Validation, Regularization, Bagging, and Boosting: Tutorial” [26]

Some slides are inspired by the textbook: Trevor Hastie, Robert Tibshirani, Jerome
Friedman, ”The elements of statistical learning: Data Mining, Inference, and Prediction”,
Springer, 2009 [23].

Some slides are inspired by the textbook: Ian Goodfellow, Yoshua Bengio, Aaron
Courville. ”Deep learning”. MIT press, 2016 [1].

Another textbook suitable for sparsity in machine learning is: Robert Tibshirani, Martin
Wainwright, Trevor Hastie, ”Statistical learning with sparsity: the lasso and
generalizations”, Chapman and Hall/CRC, 2015 [24].

Some slides of this slide deck are inspired by teachings of Prof. Ali Ghodsi (at University
of Waterloo, Department of Statistics).
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