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Variational Inference

@ Consider a dataset {x;}7_,. Assume that every data point x; € R? is generated from a
latent variable z; € RP. This latent variable has a prior distribution P(z;). According to
Bayes' rule, we have:

P(x; | z;) P(z)

P(z; | x;) = . 1

(zi | xi) P(x;) (1)
@ Let P(z;) be an arbitrary distribution denoted by q(z;). Suppose the parameter of
conditional distribution of z; on x; is denoted by 6; hence, P(z; | x;) = P(z;| x;, 0).

Therefore, we can say:
P(x;i|z;,0)P(z; |6
P(Zi|xi,9): (XI|ZM ) (Zl| ) (2)

P(xi|6)
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Variational Inference

@ Consider the Kullback-Leibler (KL) divergence [1] between the prior probability of the
latent variable and the posterior of the latent variable:

KL(q(zi) | P(zi | x;,0)) @ /q(z,-) log (%)dn

= [ atz) (log(a(z) ~ log(P(z; | x1.6))) dz;

@ /q(z,-)( log(q(z;)) — log(P(x; | z;, 0)) — log(P(z; | 0)) + log(P(x; | 0))) dz;

© jog(P(x; | 0)) + / a(z:) (log(q(z:)) — log(B(x; | z:,8)) — log(P(z; | 0))) dz;

~108(2(x;10)) + [ a(z) o8k =

~t0g(P(x;|0)) + [ a(z) log( 2 225 d
= log(P(x; | 8)) + KL(q(z/) || P(x;, 2 | 9)),

where (a) is for definition of KL divergence and (b) is because log(P(x; | 0)) is
independent of z; and comes out of integral and f dz; = 1.
@ Hence:

log(P(x; | 0)) =KL(a(z/) | P(z; | xi, 0)) — KL(q(z)) | P(xi, z; | 0)). ®3)
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Variational Inference
@ We found:

log(P(x; | 0)) =KL(q(z;) || P(z; | x;,8)) — KL(q(2;) || P(x;, z; | 8)).
@ We define the Evidence Lower Bound (ELBO) as:
£L(q,0) = —KL(q(z)) | P(x;, i | 8)). (4)
So:
log(P(x; |8)) = KL(q(z/) || P(zi | x;, 8)) + L(q, ).
@ Therefore:

£L(q,0) = log(P(x; |0)) — KL(q(z;) || P(z; | x:,0)) . )

>0

@ As the second term is negative with its minus, the ELBO is a lower bound on the log
likelihood of data:

L(q,0) < log(P(x;|0)). (6)

The likelihood P(x; | 8) is also referred to as the evidence.
@ Note that this lower bound gets tight when:

£(q,0) ~ log(P(x; |8)) = 0 < KL(q(z:) || P(zi | x;,0)) =0
= q(z;) =P(z;]x;,0). ™
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Variational Inference

@ We found:

log(P(x; | 0)) = KL(a(zi) | P(zi | xi, 8)) + L(q, 6).

KL(q(zi) [| P(2i | 2:,0))

log(P(z; | 9))

Lod likelihood
A
ELBO
L(q,0)
A\ 4
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Expectation Maximization in Variational Inference

@ According to MLE, we want to maximize the log-likelihood of data. According to Eq. (6):
£L(q,0) < log(P(x;|0)),

maximizing the ELBO will also maximize the log-likelihood.

@ The Eq. (6) holds for any prior distribution g. We want to find the best distribution to
maximize the lower bound.

@ Hence, EM for variational inference is performed iteratively as:
E-step: ¢ :=argmax £(q,060 1), (8)
q

M-step: 0 .= arg max E(q(t),B), (9)

where t denotes the iteration index.
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Expectation Maximization in Variational Inference
@ E-step in EM for Variational Inference: The E-step is:

mgx L(q, o(ffl)) (i) mc?X log(P(x; | g(tfl))) + m‘?x (_ KL(q(z,-) | P(z; | x,,’e(t—l))))
= maxlog(P(x; |0~ 1))) + min KL (q(z)) | P(z; | x;, 0~ 1))).
q q

@ The second term is always non-negative; hence, its minimum is zero:

KL(q(z;) | P(z; | x;, 0“’1)))

which was already found in Eq. (7). Thus, the E-step assigns:
q(z;) « P(z; | x;,0¢1).

@ In other words, in the figure, it pushes the middle line toward the above line by

maximizing the ELBO.

KL(q(z:) | P(i | 2:,6))
LoAkehhood IOg(]P(mi | B))

set

=0 = q(z;)) =P(z;|x;,0

ELBO

L(q,0)

A

A
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Expectation Maximization in Variational Inference
@ M-step in EM for Variational Inference: The M-step is:
max £(q(%,6) @ max (— KL(q0(z;) | P(x;, 271 6)))
@ ol @z ion( 9@
max [~ [ a9z o8 1gy) 421

= max [ a9z og(P(x;. 2 |0)) dz; — max [ o(0(z:)log(al")(z) d,

where (a) is for definition of KL divergence.

@ The second term is constant w.r.t. 8. Hence:
max £(q®,0) = mgx/ g\ (z;) log(P(x;, z; | )) dz;
@ maxE [logP(x/,2; | 6)]
- ] Nq(t)(zi) g is%i )
where (a) is because of definition of expectation. Thus, the M-step assigns:

o) arg max ENq(f)(z;) [Iog P(x;, z; | 0)] (11)
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Expectation Maximization in Variational Inference
@ We found:

o) arg mgx ENq(t)(z,-) [Iog P(x;, z; | 0)] .

@ In other words, in the figure, it pushes the above line higher.

KL (g(2) || B(zi |, 6))
Log/;ikenhood log(P(z; | 0))

A

ELBO

L(q,0)

A

@ The E-step and M-step together somehow play a game where the E-step tries to reach
the middle line (or the ELBO) to the log-likelihood and the M-step tries to increase the
above line (or the log-likelihood). This procedure is done repeatedly so the two steps help
each other improve to higher values.

@ To summarize, the EM in variational inference is:

q\(z)) « P(zi | x;, 607 Y), (12)
0 « arg max E o0z [logP(x;,z; | 6)]. (13)
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Expectation Maximization in Variational Inference

@ It is noteworthy that, in variational inference, sometimes, the parameter 0 is absorbed into
the latent variable z;.

@ According to the chain rule, we have:
P(x;,z;,0) = P(x; | z;,0) P(z; | 0) P(0).
@ Considering the term P(z; | ) P(0) as one probability term, we have:
P(x;,z;) = P(x;| z;) P(z;),

where the parameter 0 disappears because of absorption.
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Variational Autoencoder

@ Variational Autoencoder (VAE) (2014) [2] applies variational inference, i.e., maximizes
the ELBO, but in an autoencoder setup and makes it differentiable for the
backpropagation training [3].

@ As this figure shows, VAE includes an encoder and a decoder, each of which can have
several network layers. A latent space is learned between the encoder and decoder. The
latent variable z; is sampled from the latent space. The input of encoder in VAE is the
data point x; and the output of decoder in VAE is its reconstruction x;.

reconstructed &;

Decoder
P(z; | z;,04)
Zi~P(zi|@;,0.)

Latent
Space

Parameter 1 Parameter 2
of distribution  of distribution

Encoder
q(z;) =P(zi |, 0.)

Z;
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Encoder of Variational Autoencoder

The encoder of VAE models the distribution q(z;) = P(z; | x;, 0e) where the parameters
of distribution @, are the weights of encoder layers in VAE.

The input and output of encoder are x; € R and z; € RP, respectively.

As the figure depicts, the output neurons of encoder are supposed to determine the
parameters of the conditional distribution P(z; | x;, 0¢). If this conditional distribution has
m number of parameters, we have m sets of output neurons from the encoder, denoted
by {e; jm:1' The dimensionality of these sets may differ depending on the size of the
parameters.

For example, let the latent space be p-dimensional, i.e., z; € RP. If the distribution

P(z; | x;,0¢) is a multivariate Gaussian distribution, we have two sets of output neurons
for encoder where one set has p neurons for the mean of this distribution p,|, = e1 € RP
and the other set has (p X p) neurons for the covariance of this distribution

X, |« = matrix form of ex € RP*P. If the covariance matrix is diagonal, the second set has
p neurons rather than (p X p) neurons. In this case, we have X, |, = diag(e2) € RP*P.
Any distribution with any number of parameters can be chosen for P(z; | x;, 0¢) but the
multivariate Gaussian with diagonal covariance is very well-used:

q(zi) = P(z; | xi, 0e) = N(zi | B> Z21x)- (14)

Let the network weights for the output sets of encoder, {e;}7;, be denoted by {6 ;}T,.
As the input of encoder is x;, the j-th output set of encoder can be written as ej(x;, 8¢ ;).
In the case of multivariate Gaussian distribution for the latent space, the parameters are

Hzx = €1(xi,0e,1) and X, |, = diag(e2(x;, Oe,2)).
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Sampling the Latent Variable

@ When the data point x; is fed as input to the encoder, the parameters of the conditional
distribution g(z;) are obtained; hence, the distribution of latent space, which is g(z;), is
determined corresponding to the data point x;.

@ Now, in the latent space, we sample the corresponding latent variable from the
distribution of latent space:

zj ~ q(z;) = P(z; | xi, Oe). (15)

@ This latent variable is fed as input to the decoder which is explained in the following.
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Decoder of Variational Autoencoder

@ As the figure shows, the decoder of VAE models the conditional distribution P(x; | z;,64)
where 84 are the weights of decoder layers in VAE.

@ The input and output of decoder are z; € R? and x; € RY, respectively. The output
neurons of decoder are supposed to either generate the reconstructed data point or
determine the parameters of the conditional distribution P(x; | z;, 04).

@ The former is more common.

@ In the latter case, if this conditional distribution has / number of parameters, we have /
sets of output neurons from the decoder, denoted by {d;}!_,. The dimensionality of these
sets may differ depending the size of every parameters. Tée example of multivariate
Gaussian distribution also can be mentioned for the decoder.

@ Let the network weights for the output sets of decoder, {dj}J’-:l, be denoted by {Gd,j}J’-:l.
As the input of decoder is z;, the j-th output set of decoder can be written as d;(z;,04 ;).
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Training Variational Autoencoder with Expectation
Maximization

@ We use EM for training the VAE. Recall Egs. (8) and (9) for EM in variational inference:
E-step: g := arg max L(q, G(tfl))7
q

M-step: B(t) = arg meax L’,(q(f)’a)

@ |Inspired by that, VAE uses EM for training where the ELBO is a function of encoder
weights 6., decoder weights 84, and data point x;:

E-step: 9(;) = arg max L(Ge,BEf_l), Xi), (16)
q

M-step: Off) ‘= arg max E(O(et), 04, x;). (17)
q

Variational Autoencoder 17 /36



Training Variational Autoencoder with Expectation
Maximization

@ We had:
E-step: 9(;) ‘=argmax  L(6e, Bff_l), x;),
q

M-step: Off) = arg max 1:(99), 04, x;).
q

@ We can simplify this iterative optimization algorithm by alternating optimization [4]
where we take a step of gradient ascent optimization in every iteration. We consider
mini-batch stochastic gradient ascent and take training data in batches where b denotes
the mini-batch size. Hence, the optimization is:

O £(0.,007Y x,
E-step: th) — O(et—1)+ne 21:1 ( e Uy 7X)7 (18)
00,
(1) (e-1) 050, £(6Y,04,x)
M-step: 0, =06, + g =1 20 el (19)
d

where ne and 7y are the learning rates for 8. and 64, respectively.
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Training Variational Autoencoder with Expectation
Maximization

@ Eqgs. (4) and (12) were:

L(q,0) := —KL(q(z,-) | P(x;, z; | 0)),
q'(z;) « P(z; | x;,0¢71).

@ The ELBO is simplified as:

b b
S 2(q,0) 2 — STKL(q(2:) || B(xi, 2i]64))
i=1 i=1

b

12

& _STKL(B(zi | xi, 0) | P(xi, 21 | 04)). (20)
i=1

@ Note that the parameter of P(x;,z;|6,) is 84 because z; is generated after the encoder

and before the decoder.
@ There are different ways for approximating the KL divergence in Eq. (20) [5, 6]. We can
simplify the ELBO in at least two different ways which are explained in the following.
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Simplification Type 1

@ We continue the simplification of ELBO:

b
> L(q,0
i=1

- Z KL(P(z; | xi,0¢) | P(xi, zi | 84))

—ZE ey 108 (o X0 0e))

]P)(X,'7 zZj ‘ Od)
_ P(z; | x;,0¢)
= —;Ew(z,-lx;,ee)['og(m)] (21)

@ This expectation can be approximated using Monte Carlo approximation [7] where we

draw £ samples {Zu}, 1» corresponding to the i-th data point, from the conditional
distribution distribution as:

z;j ~P(2i] x;,0e), Vje{l,..., 0} (22)

@ Monte Carlo approximation [7], in general, approximates expectation as:

4
1
Ep(z; | x;,00) [F(21)] ~ > f(zi)) (23)
J=1

where f(z;) is a function of z;.
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Simplification Type 1

@ We had:
b b
P(Zi |X,’,05)
EE,O:—EENZ.X. | —) .
i1 (@) =i ”96)[ Og(P(Xi,Ziled))]

@ Here, the approximation is:

b b
> L(a,0)~ ) L(q,0)
i=1 i=1

b 14
1 P(zij | xi, 0e)
= — - log (——2- 2"~
;Z; (]P’(x,-,z,-7j|0d))
- 1 -
==

i=1 j=1

Variational Autoencoder

[|Og (P(xi,zjj|04)) — log (P(zij | x;, Be))]‘

(24)
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Simplification Type 2

@ We can simplify the ELBO using another approach:

b b
.Z £(q,0) = = > KL(P(z; | x;, 0) [| P(x;, zi | 84))

i=1

:—Z/ (zi | xi,0¢) log ( E)z(/|x,,0))dzi

Zj ‘Gd)
_ ) ) IP(z,-|x,-,08) )
- _Z/P(Zl |x,,Ge)I0g (]P’(X,'\Zi,@d)P(Zi)) dZ,
=— z;i|x P(zi|xi, 6c) z
= Z/ l| I706)|0g( ( ) )d’
+Z/P(Zi|xhee)|0g (P(x;|z;,604)) dz;
i=1

b
= = Y _KL(B(zi] xi, 0e) | B(:)
i=1
b

+ 3 Eebia; x,.00| 108 (B(xi | 21, 69)) . (25)

i=1
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Simplification Type 2

@ We found:
b b b
> L(q,0) = =D KL(P(zi] xi,0¢) | P(2)) + > Epiz; | x;,60) ['0g (P(xi | zi, 9d))]~
i=1 i=1 i=1

@ The second term in the above equation can be estimated using Monte Carlo
approximation [7] where we draw ¢ samples {z,-,j}ff:l from P(z; | x;,0¢):

b b
> £(q,0) ~ Y L(q,6)
i=1 i=1
b £

b
= S OKL(B(zi | %1, 06) [ P(z0) + 52 S log (B(x; | 2ij,0a).  (26)
i=1 ¢

i=1 " j=1
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Simplification Type 2
@ We had:

b

b
S £(a.6) ~ ZKL (311 x1,00) 1 P(2)) + >0

i=1 i=1 Jj=

¢
IOg XI‘ZIJ»Hd))
1

@ The first term in the above equation can be converted to expectation and then computed
using Monte Monte Carlo approximation [7] again, where we draw ¢ samples {z,-,j}ff:l
from P(z; | xj,0¢):

b b
> L(a,0)~ Y L(q,0)
i=1 i=1
L

° Plzi| xi,0e) )7 | §= 1
= _Z]EN]P’(Z,"X,',BE)[IOg( P(Z ] +ZZZ|og ]P)(X,‘|Z,"j,0d))
i=1

i= j=1

0

o

4
1
log (IP’(z,-,j | xi, Be)) — log (IP’(z,-,_,) + Z 7 Z log (]P’(x,- |z j, Bd)).
1 i=1 j=1

o i 1
i=1 £ Jj=
(27)

@ In case we have some families of distributions, such as Gaussian distributions, for
P(z; ;| xj,0e) and P(z; ;), the first term in Eq. (26) can be computed analytically. In the
following, we simply Eq. (26) further for Gaussian distributions.
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Simplification Type 2 for Special Case of Gaussian

Distributions
@ We can compute the KL divergence in the first term of Eq. (26) analytically for
univariate or multivariate Gaussian distributions. For this, we need two following lemmas

(see our tutorial paper [8] for proof).

Lemma

The KL divergence between two univariate Gaussian distributions p1 ~ N (p1,0%) and
P2 ~ N2, 3) is:

2 2
02 o7 + (1 — p2 1
KL(prllp2) = log(22) + AU k) _ 1 (28)
o1 205 2
o
Lemma
The KL divergence between two multivariate Gaussian distributions py ~ N (pq,%1) and
p2 ~ N (p,, X2) with dimensionality p is:
1 3, _ _
KL(p1Ip2) = §<|°g(:):1: o (S ) 4 (- ) B (- ). (29)

v
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Simplification Type 2 for Special Case of Gaussian
Distributions

@ Consider the case in which we have:

P(z; | x;, 0e) NN(I"Z\szzb()’ (30)
IP)(zi) NN(I"zsz)7 (31)

where z; € RP. Note that the parameters p,|, and X, are trained in neural network
while the parameters P(z; ;) can be set to u, = 0 and X, =/ (inspired by the prior
distribution of z in factor analysis).

@ According to Lemma 2, the approximation of ELBO, i.e. Eq. (26), can be simplified to:

b b
> L(a,0)~ Y L(q,0)
i=1 i=1

b
=305 (s o B ) (e — ) TE s — )

Il
iR

Mm

¢
+ % Z log (]P’(x, |z j, Od)) (32)

i=1 j=1
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Training Variational Autoencoder with Approximations

@ We can train VAE with EM, where Monte Carlo approximations are applied to ELBO. The
Egs. (18) and (19):

O30, £(0e,65 . x)
Tle 96, s
n 82?:1 ‘C(Bgt)vodaxi)

d 80d )

E-step: Ogt) = 0(;71) +

M-step: Oi,t) = BS_I) +

are replaced by the following equations:

neazf’:l £(06,05 1, x;)

E- : o) .— gtV 33
step e & + 90 » (33)
() _ plt=1) O%r, (6,04, x)
M-step: 0, := 6, + ng =1 20 el (34)
d

where the approximated ELBO was introduced in previous sections.
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The Reparameterization Trick

@ Sampling the £ samples for the latent variables, i.e. Eq. (15):
Zj~ q(Z;) = IP(Z,‘ | Xi70€)7

blocks the gradient flow because computing the derivatives through P(z; | x;,0.) by
chain rule gives a high variance estimate of gradient.

@ In order to overcome this problem, we use the reparameterization technique (2014)
[2, 9, 10]. In this technique, instead of sampling z; ~ P(z; | x;, 0¢), we assume z; is a
random variable but is a deterministic function of another random variable €; as follows:

z; = g(ei, xi, 0e), (35)

where €; is a stochastic variable sampled from a distribution as:

€; ~ P(e€). (36)
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The Reparameterization Trick
@ The Egs. (21) and (25):

S £0:8) = — 5" B 1 xr0 [1og (E(zi171:02)
pat ) P ~. (Z:|Xu e) P(xivziled) k)
b

b b
D L(q,0) = — D KL(P(zi | x1,0¢) | P(21)) + Y Ep(z; | x,.60) [|0€ (P(x; |z, Hd))},
i=1

i=1 i=1

both contain an expectation of a function f(z;). Using this technique, this expectation is
replaced as:

Ep(z; | x;,00)[F(20)] = Expz; | x;,00)[f(g(€is X1, 0e))]- (37)

@ Using the reparameterization technique, the encoder, which implemented P(z; | x;, 0e), is
replaced by g(€;, x;, 8c) where in the latent space between encoder and decoder, we have
€; ~ P(e) and z; = g(e;, x;,0¢).

@ A simple example for the reparameterization technique is when z; and €; are univariate
Gaussian variables:

zi ~ N(, 0%),
ei ~ N(0,1),
z; = g(ei) = p+oe;.
@ For some more advanced reparameterization techniques, the reader can refer to [11].
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Training Variational Autoencoder with Backpropagation

@ In practice, VAE is trained by backpropagation [9] where the backpropagation algorithm
[3] is used for training the weights of network.

@ Recall that in training VAE with EM, the encoder and decoder are trained separately
using the E-step and the M-step of EM, respectively.

@ However, in training VAE with backpropagation, the whole network is trained together
and not in separate steps.

@ Suppose the whole weights of VAE are denoted by 0 := {6.,04}. Backpropagation trains
VAE using the mini-batch stochastic gradient descent with the negative ELBO,
Zf-’zl —L(0, x;), as the loss function:

a3t —L(0, x;
o) .= p(t=1) _ 217180 ( )7 (38)

where 7) is the learning rate. Note that we are minimizing here because neural networks
usually minimize the loss function.
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The Test Phase in Variational Autoencoder

@ In the test phase, we feed the test data point x; to the encoder to determine the
parameters of the conditional distribution of latent space, i.e., P(z; | x;, 6¢).

@ Then, from this distribution, we sample the latent variable z; from the latent space and
generate the corresponding reconstructed data point x; by the decoder.

@ As you see, VAE is a generative model which generates data points [12].
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Blurry Images Generated by VAE

@ One of the problems of VAE is generating blurry images when data points are images.
This blurry artifact may be because of several following reasons:
> sampling for the Monte Carlo approximations
> lower bound approximation by ELBO

> restrictions on the family of distributions where usually simple Gaussian
distributions are used.

@ Note that generative adversarial networks [13] usually generate clearer images; therefore,

some works have combined variational and adversarial inferences [14] for using the
advantages of both models.
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Simulation on MNIST Digit Dataset
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Credit of image: https://blog.keras.io/building
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https://blog.keras.io/building-autoencoders-in-keras.html

Acknowledgment

@ Some slides are based on our tutorial paper: “Factor analysis, probabilistic principal
component analysis, variational inference, and variational autoencoder: Tutorial and
survey” [8]

@ Some slides of this slide deck are inspired by teachings of deep learning course at the
Carnegie Mellon University (you can see their YouTube channel).

@ Variational autoencoder in Keras:

> https://blog.keras.io/building-autoencoders-in-keras.html
> https://keras.io/examples/generative/vae/
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