
Variational Autoencoder

Deep Learning (ENGG*6600*01)

School of Engineering,
University of Guelph, ON, Canada

Course Instructor: Benyamin Ghojogh
Summer 2023

Variational Autoencoder 1 / 36

Variational Inference

Variational Autoencoder 2 / 36

Variational Inference

Consider a dataset {x i}ni=1. Assume that every data point x i ∈ Rd is generated from a
latent variable z i ∈ Rp . This latent variable has a prior distribution P(z i). According to
Bayes’ rule, we have:

P(z i | x i) =
P(x i | z i)P(z i)

P(x i)
. (1)

Let P(z i) be an arbitrary distribution denoted by q(z i). Suppose the parameter of
conditional distribution of z i on x i is denoted by θ; hence, P(z i | x i) = P(z i | x i ,θ).
Therefore, we can say:

P(z i | x i ,θ) =
P(x i | z i ,θ)P(z i |θ)

P(x i |θ)
. (2)

Variational Autoencoder 3 / 36

Variational Inference
Consider the Kullback-Leibler (KL) divergence [1] between the prior probability of the
latent variable and the posterior of the latent variable:

KL
(
q(z i) ∥P(z i | x i ,θ)

) (a)
=

∫
q(z i) log

(q(z i)

P(z i | x i ,θ)

)
dz i

=

∫
q(z i)

(
log(q(z i))− log(P(z i | x i ,θ))

)
dz i

(2)
=

∫
q(z i)

(
log(q(z i))− log(P(x i | z i ,θ))− log(P(z i |θ)) + log(P(x i |θ))

)
dz i

(b)
= log(P(x i |θ)) +

∫
q(z i)

(
log(q(z i))− log(P(x i | z i ,θ))− log(P(z i |θ))

)
dz i

= log(P(x i |θ)) +
∫

q(z i) log(
q(z i)

P(x i | z i ,θ)P(z i |θ)
) dz i

= log(P(x i |θ)) +
∫

q(z i) log(
q(z i)

P(x i , z i |θ)
) dz i

= log(P(x i |θ)) + KL
(
q(z i) ∥P(x i , z i |θ)

)
,

where (a) is for definition of KL divergence and (b) is because log(P(x i |θ)) is
independent of z i and comes out of integral and

∫
dz i = 1.

Hence:

log(P(x i |θ)) =KL
(
q(z i) ∥P(z i | x i ,θ)

)
− KL

(
q(z i) ∥P(x i , z i |θ)

)
. (3)

Variational Autoencoder 4 / 36

Variational Inference
We found:

log(P(x i |θ)) =KL
(
q(z i) ∥P(z i | x i ,θ)

)
− KL

(
q(z i) ∥P(x i , z i |θ)

)
.

We define the Evidence Lower Bound (ELBO) as:

L(q,θ) := −KL
(
q(z i) ∥P(x i , z i |θ)

)
. (4)

So:

log(P(x i |θ)) = KL
(
q(z i) ∥P(z i | x i ,θ)

)
+ L(q,θ).

Therefore:

L(q,θ) = log(P(x i |θ))− KL
(
q(z i) ∥P(z i | x i ,θ)

)︸ ︷︷ ︸
≥0

. (5)

As the second term is negative with its minus, the ELBO is a lower bound on the log
likelihood of data:

L(q,θ) ≤ log(P(x i |θ)). (6)

The likelihood P(x i |θ) is also referred to as the evidence.
Note that this lower bound gets tight when:

L(q,θ) ≈ log(P(x i |θ)) =⇒ 0 ≤ KL
(
q(z i) ∥P(z i | x i ,θ)

) set
= 0

=⇒ q(z i) = P(z i | x i ,θ). (7)

Variational Autoencoder 5 / 36

Variational Inference

We found:

log(P(x i |θ)) = KL
(
q(z i) ∥P(z i | x i ,θ)

)
+ L(q,θ).

Variational Autoencoder 6 / 36

Expectation Maximization in Variational Inference

According to MLE, we want to maximize the log-likelihood of data. According to Eq. (6):

L(q,θ) ≤ log(P(x i |θ)),

maximizing the ELBO will also maximize the log-likelihood.

The Eq. (6) holds for any prior distribution q. We want to find the best distribution to
maximize the lower bound.

Hence, EM for variational inference is performed iteratively as:

E-step: q(t) := argmax
q

L(q,θ(t−1)), (8)

M-step: θ(t) := argmax
θ

L(q(t),θ), (9)

where t denotes the iteration index.

Variational Autoencoder 7 / 36

Expectation Maximization in Variational Inference
E-step in EM for Variational Inference: The E-step is:

max
q
L(q,θ(t−1))

(5)
= max

q
log(P(x i |θ(t−1))) + max

q

(
− KL

(
q(z i) ∥P(z i | x i ,θ

(t−1))
))

= max
q

log(P(x i |θ(t−1))) + min
q

KL
(
q(z i) ∥P(z i | x i ,θ

(t−1))
)
.

The second term is always non-negative; hence, its minimum is zero:

KL
(
q(z i) ∥P(z i | x i ,θ

(t−1))
) set
= 0 =⇒ q(z i) = P(z i | x i ,θ

(t−1)),

which was already found in Eq. (7). Thus, the E-step assigns:

q(t)(z i)← P(z i | x i ,θ
(t−1)). (10)

In other words, in the figure, it pushes the middle line toward the above line by
maximizing the ELBO.

Variational Autoencoder 8 / 36

Expectation Maximization in Variational Inference
M-step in EM for Variational Inference: The M-step is:

max
θ
L(q(t),θ) (4)

= max
θ

(
− KL

(
q(t)(z i) ∥P(x i , z i |θ)

))
(a)
= max

θ

[
−

∫
q(t)(z i) log(

q(t)(z i)

P(x i , z i |θ)
) dz i

]
= max

θ

∫
q(t)(z i) log(P(x i , z i |θ)) dz i −max

θ

∫
q(t)(z i) log(q

(t)(z i)) dz i ,

where (a) is for definition of KL divergence.

The second term is constant w.r.t. θ. Hence:

max
θ
L(q(t),θ) = max

θ

∫
q(t)(z i) log(P(x i , z i |θ)) dz i

(a)
= max

θ
E∼q(t)(z i)

[
log P(x i , z i |θ)

]
,

where (a) is because of definition of expectation. Thus, the M-step assigns:

θ(t) ← argmax
θ

E∼q(t)(z i)
[
log P(x i , z i |θ)

]
. (11)

Variational Autoencoder 9 / 36

Expectation Maximization in Variational Inference
We found:

θ(t) ← argmax
θ

E∼q(t)(z i)
[
log P(x i , z i |θ)

]
.

In other words, in the figure, it pushes the above line higher.

The E-step and M-step together somehow play a game where the E-step tries to reach
the middle line (or the ELBO) to the log-likelihood and the M-step tries to increase the
above line (or the log-likelihood). This procedure is done repeatedly so the two steps help
each other improve to higher values.

To summarize, the EM in variational inference is:

q(t)(z i)← P(z i | x i ,θ
(t−1)), (12)

θ(t) ← argmax
θ

E∼q(t)(z i)
[
log P(x i , z i |θ)

]
. (13)

Variational Autoencoder 10 / 36

Expectation Maximization in Variational Inference

It is noteworthy that, in variational inference, sometimes, the parameter θ is absorbed into
the latent variable z i .

According to the chain rule, we have:

P(x i , z i ,θ) = P(x i | z i ,θ)P(z i |θ)P(θ).

Considering the term P(z i |θ)P(θ) as one probability term, we have:

P(x i , z i) = P(x i | z i)P(z i),

where the parameter θ disappears because of absorption.

Variational Autoencoder 11 / 36

Variational
Autoencoder

Variational Autoencoder 12 / 36

Variational Autoencoder
Variational Autoencoder (VAE) (2014) [2] applies variational inference, i.e., maximizes
the ELBO, but in an autoencoder setup and makes it differentiable for the
backpropagation training [3].

As this figure shows, VAE includes an encoder and a decoder, each of which can have
several network layers. A latent space is learned between the encoder and decoder. The
latent variable z i is sampled from the latent space. The input of encoder in VAE is the
data point x i and the output of decoder in VAE is its reconstruction x i .

Variational Autoencoder 13 / 36

Encoder of Variational Autoencoder
The encoder of VAE models the distribution q(z i) = P(z i | x i ,θe) where the parameters
of distribution θe are the weights of encoder layers in VAE.

The input and output of encoder are x i ∈ Rd and z i ∈ Rp , respectively.

As the figure depicts, the output neurons of encoder are supposed to determine the
parameters of the conditional distribution P(z i | x i ,θe). If this conditional distribution has
m number of parameters, we have m sets of output neurons from the encoder, denoted
by {e j}mj=1. The dimensionality of these sets may differ depending on the size of the
parameters.

For example, let the latent space be p-dimensional, i.e., z i ∈ Rp . If the distribution
P(z i | x i ,θe) is a multivariate Gaussian distribution, we have two sets of output neurons
for encoder where one set has p neurons for the mean of this distribution µz|x = e1 ∈ Rp

and the other set has (p × p) neurons for the covariance of this distribution
Σz|x = matrix form of e2 ∈ Rp×p . If the covariance matrix is diagonal, the second set has

p neurons rather than (p × p) neurons. In this case, we have Σz|x = diag(e2) ∈ Rp×p .

Any distribution with any number of parameters can be chosen for P(z i | x i ,θe) but the
multivariate Gaussian with diagonal covariance is very well-used:

q(z i) = P(z i | x i ,θe) = N (z i |µz|x ,Σz|x). (14)

Let the network weights for the output sets of encoder, {e j}mj=1, be denoted by {θe,j}mj=1.

As the input of encoder is x i , the j-th output set of encoder can be written as e j (x i ,θe,j).
In the case of multivariate Gaussian distribution for the latent space, the parameters are
µz|x = e1(x i ,θe,1) and Σz|x = diag(e2(x i ,θe,2)).

Variational Autoencoder 14 / 36

Sampling the Latent Variable

When the data point x i is fed as input to the encoder, the parameters of the conditional
distribution q(z i) are obtained; hence, the distribution of latent space, which is q(z i), is
determined corresponding to the data point x i .

Now, in the latent space, we sample the corresponding latent variable from the
distribution of latent space:

z i ∼ q(z i) = P(z i | x i ,θe). (15)

This latent variable is fed as input to the decoder which is explained in the following.

Variational Autoencoder 15 / 36

Decoder of Variational Autoencoder

As the figure shows, the decoder of VAE models the conditional distribution P(x i | z i ,θd)
where θd are the weights of decoder layers in VAE.

The input and output of decoder are z i ∈ Rp and x i ∈ Rd , respectively. The output
neurons of decoder are supposed to either generate the reconstructed data point or
determine the parameters of the conditional distribution P(x i | z i ,θd).

The former is more common.

In the latter case, if this conditional distribution has l number of parameters, we have l
sets of output neurons from the decoder, denoted by {d j}lj=1. The dimensionality of these
sets may differ depending the size of every parameters. The example of multivariate
Gaussian distribution also can be mentioned for the decoder.

Let the network weights for the output sets of decoder, {d j}lj=1, be denoted by {θd,j}lj=1.

As the input of decoder is z i , the j-th output set of decoder can be written as d j (z i ,θd,j).

Variational Autoencoder 16 / 36

Training Variational Autoencoder with Expectation
Maximization

We use EM for training the VAE. Recall Eqs. (8) and (9) for EM in variational inference:

E-step: q(t) := argmax
q

L(q,θ(t−1)),

M-step: θ(t) := argmax
θ

L(q(t),θ).

Inspired by that, VAE uses EM for training where the ELBO is a function of encoder
weights θe , decoder weights θd , and data point x i :

E-step: θ
(t)
e := argmax

q
L(θe ,θ

(t−1)
d , x i), (16)

M-step: θ
(t)
d := argmax

q
L(θ(t)

e ,θd , x i). (17)

Variational Autoencoder 17 / 36

Training Variational Autoencoder with Expectation
Maximization

We had:

E-step: θ
(t)
e := argmax

q
L(θe ,θ

(t−1)
d , x i),

M-step: θ
(t)
d := argmax

q
L(θ(t)

e ,θd , x i).

We can simplify this iterative optimization algorithm by alternating optimization [4]
where we take a step of gradient ascent optimization in every iteration. We consider
mini-batch stochastic gradient ascent and take training data in batches where b denotes
the mini-batch size. Hence, the optimization is:

E-step: θ
(t)
e := θ

(t−1)
e + ηe

∂
∑b

i=1 L(θe ,θ
(t−1)
d , x i)

∂θe
, (18)

M-step: θ
(t)
d := θ

(t−1)
d + ηd

∂
∑b

i=1 L(θ
(t)
e ,θd , x i)

∂θd
, (19)

where ηe and ηd are the learning rates for θe and θd , respectively.

Variational Autoencoder 18 / 36

Training Variational Autoencoder with Expectation
Maximization

Eqs. (4) and (12) were:

L(q,θ) := −KL
(
q(z i) ∥P(x i , z i |θ)

)
,

q(t)(z i)← P(z i | x i ,θ
(t−1)).

The ELBO is simplified as:

b∑
i=1

L(q,θ) (4)
= −

b∑
i=1

KL
(
q(z i) ∥P(x i , z i |θd)

)
(12)
= −

b∑
i=1

KL
(
P(z i | x i ,θe) ∥P(x i , z i |θd)

)
. (20)

Note that the parameter of P(x i , z i |θd) is θd because z i is generated after the encoder
and before the decoder.

There are different ways for approximating the KL divergence in Eq. (20) [5, 6]. We can
simplify the ELBO in at least two different ways which are explained in the following.

Variational Autoencoder 19 / 36

Simplification Type 1
We continue the simplification of ELBO:

b∑
i=1

L(q,θ) = −
b∑

i=1

KL
(
P(z i | x i ,θe) ∥P(x i , z i |θd)

)
= −

b∑
i=1

E∼q(t−1)(z i)

[
log

(P(z i | x i ,θe)

P(x i , z i |θd)

)]

= −
b∑

i=1

E∼P(z i | x i ,θe)

[
log

(P(z i | x i ,θe)

P(x i , z i |θd)

)]
. (21)

This expectation can be approximated using Monte Carlo approximation [7] where we
draw ℓ samples {z i,j}ℓj=1, corresponding to the i-th data point, from the conditional
distribution distribution as:

z i,j ∼ P(z i | x i ,θe), ∀j ∈ {1, . . . , ℓ}. (22)

Monte Carlo approximation [7], in general, approximates expectation as:

E∼P(z i | x i ,θe)

[
f (z i)

]
≈

1

ℓ

ℓ∑
j=1

f (z i,j), (23)

where f (z i) is a function of z i .

Variational Autoencoder 20 / 36

Simplification Type 1

We had:

b∑
i=1

L(q,θ) = −
b∑

i=1

E∼P(z i | x i ,θe)

[
log

(P(z i | x i ,θe)

P(x i , z i |θd)

)]
.

Here, the approximation is:

b∑
i=1

L(q,θ) ≈
b∑

i=1

L̃(q,θ)

= −
b∑

i=1

1

ℓ

ℓ∑
j=1

log
(P(z i,j | x i ,θe)

P(x i , z i,j |θd)

)

=
b∑

i=1

1

ℓ

ℓ∑
j=1

[
log

(
P(x i , z i,j |θd)

)
− log

(
P(z i,j | x i ,θe)

)]
. (24)

Variational Autoencoder 21 / 36

Simplification Type 2
We can simplify the ELBO using another approach:

b∑
i=1

L(q,θ) = −
b∑

i=1

KL
(
P(z i | x i ,θe) ∥P(x i , z i |θd)

)
= −

b∑
i=1

∫
P(z i | x i ,θe) log

(P(z i | x i ,θe)

P(x i , z i |θd)

)
dz i

= −
b∑

i=1

∫
P(z i | x i ,θe) log

(P(z i | x i ,θe)

P(x i | z i ,θd)P(z i)

)
dz i

= −
b∑

i=1

∫
P(z i | x i ,θe) log

(P(z i | x i ,θe)

P(z i)

)
dz i

+
b∑

i=1

∫
P(z i | x i ,θe) log

(
P(x i | z i ,θd)

)
dz i

= −
b∑

i=1

KL
(
P(z i | x i ,θe) ∥P(z i)

)
+

b∑
i=1

E∼P(z i | x i ,θe)

[
log

(
P(x i | z i ,θd)

)]
. (25)

Variational Autoencoder 22 / 36

Simplification Type 2

We found:

b∑
i=1

L(q,θ) = −
b∑

i=1

KL
(
P(z i | x i ,θe) ∥P(z i)

)
+

b∑
i=1

E∼P(z i | x i ,θe)

[
log

(
P(x i | z i ,θd)

)]
.

The second term in the above equation can be estimated using Monte Carlo
approximation [7] where we draw ℓ samples {z i,j}ℓj=1 from P(z i | x i ,θe):

b∑
i=1

L(q,θ) ≈
b∑

i=1

L̃(q,θ)

= −
b∑

i=1

KL
(
P(z i | x i ,θe) ∥P(z i)

)
+

b∑
i=1

1

ℓ

ℓ∑
j=1

log
(
P(x i | z i,j ,θd)

)
. (26)

Variational Autoencoder 23 / 36

Simplification Type 2
We had:

b∑
i=1

L(q,θ) ≈ −
b∑

i=1

KL
(
P(z i | x i ,θe) ∥P(z i)

)
+

b∑
i=1

1

ℓ

ℓ∑
j=1

log
(
P(x i | z i,j ,θd)

)
.

The first term in the above equation can be converted to expectation and then computed
using Monte Monte Carlo approximation [7] again, where we draw ℓ samples {z i,j}ℓj=1

from P(z i | x i ,θe):

b∑
i=1

L(q,θ) ≈
b∑

i=1

L̃(q,θ)

= −
b∑

i=1

E∼P(z i | x i ,θe)

[
log

(P(z i | x i ,θe)

P(z i)

)]
+

b∑
i=1

1

ℓ

ℓ∑
j=1

log
(
P(x i | z i,j ,θd)

)

≈ −
b∑

i=1

1

ℓ

ℓ∑
j=1

log
(
P(z i,j | x i ,θe)

)
− log

(
P(z i,j)

)
+

b∑
i=1

1

ℓ

ℓ∑
j=1

log
(
P(x i | z i,j ,θd)

)
.

(27)

In case we have some families of distributions, such as Gaussian distributions, for
P(z i,j | x i ,θe) and P(z i,j), the first term in Eq. (26) can be computed analytically. In the
following, we simply Eq. (26) further for Gaussian distributions.

Variational Autoencoder 24 / 36

Simplification Type 2 for Special Case of Gaussian
Distributions

We can compute the KL divergence in the first term of Eq. (26) analytically for
univariate or multivariate Gaussian distributions. For this, we need two following lemmas
(see our tutorial paper [8] for proof).

Lemma

The KL divergence between two univariate Gaussian distributions p1 ∼ N (µ1, σ
2
1) and

p2 ∼ N (µ2, σ
2
2) is:

KL(p1∥p2) = log(
σ2

σ1
) +

σ2
1 + (µ1 − µ2)2

2σ2
2

−
1

2
. (28)

Lemma

The KL divergence between two multivariate Gaussian distributions p1 ∼ N (µ1,Σ1) and
p2 ∼ N (µ2,Σ2) with dimensionality p is:

KL(p1∥p2) =
1

2

(
log(
|Σ2|
|Σ1|

)− p + tr(Σ−1
2 Σ1) + (µ2 − µ1)

⊤Σ−1
2 (µ2 − µ1)

)
. (29)

Variational Autoencoder 25 / 36

Simplification Type 2 for Special Case of Gaussian
Distributions

Consider the case in which we have:

P(z i | x i ,θe) ∼ N (µz|x ,Σz|x), (30)

P(z i) ∼ N (µz ,Σz), (31)

where z i ∈ Rp . Note that the parameters µz|x and Σz|x are trained in neural network

while the parameters P(z i,j) can be set to µz = 0 and Σz = I (inspired by the prior
distribution of z in factor analysis).

According to Lemma 2, the approximation of ELBO, i.e. Eq. (26), can be simplified to:

b∑
i=1

L(q,θ) ≈
b∑

i=1

L̃(q,θ)

= −
b∑

i=1

1

2

(
log(

|Σz |
|Σz|x |

)− p + tr(Σ−1
z Σz|x) + (µz − µz|x)

⊤Σ−1
z (µz − µz|x)

)

+
b∑

i=1

1

ℓ

ℓ∑
j=1

log
(
P(x i | z i,j ,θd)

)
. (32)

Variational Autoencoder 26 / 36

Training Variational Autoencoder with Approximations

We can train VAE with EM, where Monte Carlo approximations are applied to ELBO. The
Eqs. (18) and (19):

E-step: θ
(t)
e := θ

(t−1)
e + ηe

∂
∑b

i=1 L(θe ,θ
(t−1)
d , x i)

∂θe
,

M-step: θ
(t)
d := θ

(t−1)
d + ηd

∂
∑b

i=1 L(θ
(t)
e ,θd , x i)

∂θd
,

are replaced by the following equations:

E-step: θ
(t)
e := θ

(t−1)
e + ηe

∂
∑b

i=1 L̃(θe ,θ
(t−1)
d , x i)

∂θe
, (33)

M-step: θ
(t)
d := θ

(t−1)
d + ηd

∂
∑b

i=1 L̃(θ
(t)
e ,θd , x i)

∂θd
, (34)

where the approximated ELBO was introduced in previous sections.

Variational Autoencoder 27 / 36

The Reparameterization Trick

Sampling the ℓ samples for the latent variables, i.e. Eq. (15):

z i ∼ q(z i) = P(z i | x i ,θe),

blocks the gradient flow because computing the derivatives through P(z i | x i ,θe) by
chain rule gives a high variance estimate of gradient.

In order to overcome this problem, we use the reparameterization technique (2014)
[2, 9, 10]. In this technique, instead of sampling z i ∼ P(z i | x i ,θe), we assume z i is a
random variable but is a deterministic function of another random variable ϵi as follows:

z i = g(ϵi , x i ,θe), (35)

where ϵi is a stochastic variable sampled from a distribution as:

ϵi ∼ P(ϵ). (36)

Variational Autoencoder 28 / 36

The Reparameterization Trick
The Eqs. (21) and (25):

b∑
i=1

L(q,θ) = −
b∑

i=1

E∼P(z i | x i ,θe)

[
log

(P(z i | x i ,θe)

P(x i , z i |θd)

)]
,

b∑
i=1

L(q,θ) = −
b∑

i=1

KL
(
P(z i | x i ,θe) ∥P(z i)

)
+

b∑
i=1

E∼P(z i | x i ,θe)

[
log

(
P(x i | z i ,θd)

)]
,

both contain an expectation of a function f (z i). Using this technique, this expectation is
replaced as:

E∼P(z i | x i ,θe)[f (z i)]→ E∼P(z i | x i ,θe)[f (g(ϵi , x i ,θe))]. (37)

Using the reparameterization technique, the encoder, which implemented P(z i | x i ,θe), is
replaced by g(ϵi , x i ,θe) where in the latent space between encoder and decoder, we have
ϵi ∼ P(ϵ) and z i = g(ϵi , x i ,θe).

A simple example for the reparameterization technique is when zi and ϵi are univariate
Gaussian variables:

zi ∼ N (µ, σ2),

ϵi ∼ N (0, 1),

zi = g(ϵi) = µ+ σϵi .

For some more advanced reparameterization techniques, the reader can refer to [11].

Variational Autoencoder 29 / 36

Training Variational Autoencoder with Backpropagation

In practice, VAE is trained by backpropagation [9] where the backpropagation algorithm
[3] is used for training the weights of network.

Recall that in training VAE with EM, the encoder and decoder are trained separately
using the E-step and the M-step of EM, respectively.

However, in training VAE with backpropagation, the whole network is trained together
and not in separate steps.

Suppose the whole weights of VAE are denoted by θ := {θe ,θd}. Backpropagation trains
VAE using the mini-batch stochastic gradient descent with the negative ELBO,∑b

i=1−L̃(θ, x i), as the loss function:

θ(t) := θ(t−1) − η
∂
∑b

i=1−L̃(θ, x i)

∂θ
, (38)

where η is the learning rate. Note that we are minimizing here because neural networks
usually minimize the loss function.

Variational Autoencoder 30 / 36

The Test Phase in Variational Autoencoder

In the test phase, we feed the test data point x i to the encoder to determine the
parameters of the conditional distribution of latent space, i.e., P(z i | x i ,θe).

Then, from this distribution, we sample the latent variable z i from the latent space and
generate the corresponding reconstructed data point x i by the decoder.

As you see, VAE is a generative model which generates data points [12].

Variational Autoencoder 31 / 36

Blurry Images Generated by VAE

One of the problems of VAE is generating blurry images when data points are images.
This blurry artifact may be because of several following reasons:

▶ sampling for the Monte Carlo approximations
▶ lower bound approximation by ELBO
▶ restrictions on the family of distributions where usually simple Gaussian

distributions are used.

Note that generative adversarial networks [13] usually generate clearer images; therefore,
some works have combined variational and adversarial inferences [14] for using the
advantages of both models.

Variational Autoencoder 32 / 36

Simulation on MNIST Digit Dataset

Credit of image: https://blog.keras.io/building-autoencoders-in-keras.html

Variational Autoencoder 33 / 36

https://blog.keras.io/building-autoencoders-in-keras.html

Acknowledgment

Some slides are based on our tutorial paper: “Factor analysis, probabilistic principal
component analysis, variational inference, and variational autoencoder: Tutorial and
survey” [8]

Some slides of this slide deck are inspired by teachings of deep learning course at the
Carnegie Mellon University (you can see their YouTube channel).

Variational autoencoder in Keras:
▶ https://blog.keras.io/building-autoencoders-in-keras.html
▶ https://keras.io/examples/generative/vae/

Variational Autoencoder 34 / 36

https://blog.keras.io/building-autoencoders-in-keras.html
https://keras.io/examples/generative/vae/

References

[1] S. Kullback and R. A. Leibler, “On information and sufficiency,” The annals of
mathematical statistics, vol. 22, no. 1, pp. 79–86, 1951.

[2] D. P. Kingma and M. Welling, “Auto-encoding variational Bayes,” in International
Conference on Learning Representations, 2014.

[3] D. E. Rumelhart, G. E. Hinton, and R. J. Williams, “Learning representations by
back-propagating errors,” Nature, vol. 323, no. 6088, pp. 533–536, 1986.

[4] P. Jain and P. Kar, “Non-convex optimization for machine learning,” Foundations and
Trends® in Machine Learning, vol. 10, no. 3-4, pp. 142–336, 2017.

[5] J. R. Hershey and P. A. Olsen, “Approximating the Kullback Leibler divergence between
Gaussian mixture models,” in 2007 IEEE International Conference on Acoustics, Speech
and Signal Processing, vol. 4, pp. IV–317, IEEE, 2007.

[6] J. Duchi, “Derivations for linear algebra and optimization,” tech. rep., Berkeley, California,
2007.

[7] B. Ghojogh, H. Nekoei, A. Ghojogh, F. Karray, and M. Crowley, “Sampling algorithms,
from survey sampling to Monte Carlo methods: Tutorial and literature review,” arXiv
preprint arXiv:2011.00901, 2020.

[8] B. Ghojogh, A. Ghodsi, F. Karray, and M. Crowley, “Factor analysis, probabilistic principal
component analysis, variational inference, and variational autoencoder: Tutorial and
survey,” arXiv preprint arXiv:2101.00734, 2021.

Variational Autoencoder 35 / 36

References (cont.)

[9] D. J. Rezende, S. Mohamed, and D. Wierstra, “Stochastic backpropagation and
approximate inference in deep generative models,” in International Conference on Machine
Learning, 2014.

[10] M. Titsias and M. Lázaro-Gredilla, “Doubly stochastic variational Bayes for non-conjugate
inference,” in International conference on machine learning, pp. 1971–1979, 2014.

[11] M. Figurnov, S. Mohamed, and A. Mnih, “Implicit reparameterization gradients,”
Advances in Neural Information Processing Systems, vol. 31, pp. 441–452, 2018.

[12] A. Y. Ng and M. I. Jordan, “On discriminative vs. generative classifiers: A comparison of
logistic regression and naive Bayes,” in Advances in neural information processing systems,
pp. 841–848, 2002.

[13] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A. Courville,
and Y. Bengio, “Generative adversarial nets,” in Advances in neural information processing
systems, pp. 2672–2680, 2014.

[14] L. Mescheder, S. Nowozin, and A. Geiger, “Adversarial variational bayes: Unifying
variational autoencoders and generative adversarial networks,” in International Conference
on Machine Learning, 2017.

Variational Autoencoder 36 / 36

