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Variational Inference (mlmnl'

o bletved|

@ Consider a dataset {x;}7_,. Assume that every data point x; € R? is generated from a
latent variable z; € RP. This latent variable has a prior distribution P(z;). According to
Bayes' rule, we have:

_ P(xi] Zi)P(zi).

P(z: | x;) = 1
(=i 1x) = =100 e

[ distribution denoted by q(z;). Suppose the parameter of

conditional distribution of z; on x; is denoted by 0; hence, P(z; | x;) = P(z; | x;, 0).

Therefore, we can say:
¥ ]P(Z,"X,‘,G): (XI|ZH ) (Z,| ) (2)
P(x;|0)
L N—— _J
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Variational Inference

@ Consider the Kullback-Leibler (KL) divergence [1] between the prior probability of the
latent variable and the posterior of the latent variable:

¥ Ligtz) 18 100} 2 [ ate o (522 e oy (1)t

- / a(z1) (log(q(2)  log(F(z | x1.8))) dz;
\__/__:h—l
@ / )(log(a(z1) ~ log((x; |z, 0)) ~ log(P(zi| 0)) + log(F(x;| J.

2 (1 0) + / og(a(2) — log(P(x, | £7.0)) — log(E(%, ) dz

=\log(P(x; | 0)) + KL(a(zi) | P(xi, z; | 0)), | =——
TN X

where (a) is for definition of KL divergence and (b) is because log(P(x; | 0)) is
independent of z; and comes out of integral and f dz; = 1.
@ Hence:

log(P(x; | 0)) =KL(a(z/) | P(z; | xi, 0)) — KL(q(z)) | P(xi, z; | 0)). ®3)
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Variational Inference é /\&

@ We found:
¥ log(B(x;|0)) =KL(a(2) | B(z: | x;,0)) — KL(q(z1) || B(x;, z; | 8)).

@ We define the Evidence Lower Bound (ELBO) as: j
£(q,8) := —KL(q(2)) || B(xi, 2| 0)). @)
L. — )
So: N
| 1o8(P(x; 16)) = KL(a(z1) | P(z; | xi,6)) + £(a. ). ) 2
@ Therefore:
Y Y
£(4,0) = log(P(x;6)) (KL (q(=1) | P(z; | x;,0)) ] ¥ 5)
-

>0

@ As the second term is negative with its minus, the ELBO is a lower bound pn the log

likelihood of data:
L(q, 6’) < |0g(]P’(X, [0)). (6)

The likelihood P(x; | @) is also referred to as the evudence
@ Note that this lower bound gets tight when:

£(q,0)®) @ L(q(z,-)HP(ZiIXf:G))
0y — -

= ™
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Variational Inference

@ We found:

& 108(E 0 10)) = KL(a(z1) | Plei %1, 0)) + £(3.0),

< 4 A

KL(q(zi) | P(2i | 2:,0))
LOJ;ikeIihood log(P(z; | 9))
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Expectation Maximization in Variational Inference

@ According to MLE, we want to maximize the log-likelihood of data. According to Eq. (6):

—
T(a,6) < Tog(P(x: | 8),

maximizing the ELBO will also maximize the log-likelihood.

@ The Eq. (6) holds for any prior distribution q. We want to find the best distribution to
maximize the lower bound.

@ Hence, EM for variational inference is performed iteratively as:

(®)
(9)

where t denotes the iteration index.

Variational Autoencoder 7/36



Expectation Maximization in Variational Inference
@ E-step in EM for Varlatlonal Inference: The E-step is:

x‘— maxiog(P(x 60D 'éz (a2 | Bz | 1,0 D))
= maxlog(B(x; | 0" ~1)) )+‘KL (2) | 2(zi | x;, 617 ).

@ The second term is always non-negative; hence, its minimum is zero:
—_— _

h set
KL(a(z) I B(z: 1 x;,0¢D)) 20 — {a(z)) = B(z | x,,66),
S 3

which was already found in Eq. (7). Thus, the E-step assigns:

S q\9(z;) « P(z; | x;,001). ]

@ In other words, in the figure, it w}ww toward the above line by
S owar e JPovE 6

maximizing the ELBO.
e e

KL(q(z:) || P(=i | @:,0))
LoAkehhood IOg(P(mi | B))

1

L(q,0)

A

A

Variational Autoencoder

(10)

8/36



Expectation Maximization in Variational Inference

@ M-step in EM for Variational Inference: The M-step is

mg)x[l(q(t), 0) @ max (- KL(q(t)(Zi) | P(xi,2i16)))
) (t)(z:
= [ /q(t (zi) |0g(%.’|)0))d2i] QMS)

0g(q\")(2:)) dz;,
Y

— max / (20 og(P(x, z:|0)) dz; — max [ a0z
/

where (a) is for deflnltlon of KL divergence

@ The second term is constant w.r.t. 8. Hence
A —
max £(q1),6) = max [ G(0(z,) log(B(xi, 21 0)) dz;

[?]
@ max ‘ log P(x;, z; | 6)],

where (a) is because of definition of expectation. Thus, the M-step assigns

[@(— arg max E o0z [logP(x;,z; | 6)]. g

(11)
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Expectation Maximization in Variational Inference

@ We found: 1\
0 « arg max E. 0z QogP(x;,z;|0)).

@ In other words, in the figure, it pushes the above line higher.

KL (q(z:) || P(zi |, 0))

T Log/;ikenhood log(P(ai | 9))7\
4\ ELBO

L(q,0)

A

@ The E-step and M-step together somehow play a game where the E-step tries to reach
the middle line (or the ELBO) to the log-likelihood and the M-step tries to increase the
above line (or the log-likelihood). This procedure is done repeatedly so the two steps help
each other improve to higher values.

@ To summarize, the EM in variational inference is:

q\(z)) « P(zi | x;, 607 Y), (12)
0 « arg max E o0z [logP(x;,z; | 6)]. (13)
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Expectation Maximization in Variational Inference

@ It is noteworthy that, in variational inference, sometimes, the parameter 0 is absorbed into
the latent variable z;.
———

@ According to the chain rule, we have: (f(% \'7 6/
T~
PX,’,Z,’,B :]PX,' Z,',B ]P)Z,' 0)P(0).
1 ) =P(xi|zi,0)P(z; | ) (L

@ Considering the term P(z; | ) P(0) as one probability term, we have:
< Y
“Blxiz) = Flx | 2) Bl

where the parameter 0 disappears because of absorption.
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Variational Autoencoder

@ Variational Autoencoder (VAE) (2014) [2] applies variational inference, i.e., maximizes
the ELBO, but in an autoencoder setup and makes it differentiable for the

backpropagation training [3].

@ As this figure shows, VAE includes an_encoder and a decoder, each of which can have

several network layers. A latent space is learned between the encoder and decoder. The

atent variable z; is sampled from the latent space. The input of encoder in VAE is the
T . - - 0 . .
data point x; and the output of decoder in VAE is its reconstruction x;.

reconstructed &;

Decoder
P(x;|z;,04)

G)-reiwn00
{ Latent i
'!r'v-wzig

Encoder
P(Zi |wi106)

@
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Encoder of Variational Autoencoder

The encoder of VAE models the distribution q(z;) = P(z; | x;, 0e) where the parameters
of distribution @, are the weights of encoder Tayers in VAE.

The input and output of encoder are x; € R and z; € RP, respectively.

As the figure depicts, the output neurons of encoder are supposed to determine the
parameters of the conditional distribution P(z; | x;, 0¢). If this conditional distribution has
m number of parameters, we have m sets of output neurons from the encoder, denoted
by {e; jm:1' The dimensionality of these sets may differ depending on the size of the
parameters.

For example, let the latent space be p-dimensional, i.e., z; € RP. If the distribution

P(z; | x;,0¢) is a multivaria ssian distribution, we have two sets of output neurons
for encoder where one set has p neurons for the mean of this distribution u,|, = e; € RP
and the other set has (p X p) neurons for the covariance of this distribution

X, |« = matrix form of e> € RP*P. If the covariance matrix is diagonal, the second set has

p neurons rather than (p X p) neurons. In this case, we have X, = diag(e2) € RP*P.

Any distribution with any number of parameters can be chosen for P(z; | x;, 0¢) but the
multivariate Gaussian with diagonal covariance is very well-used:

a(z:) = B(zi | x1,02) (14)
L/—._)

Let the network weights for the output sets of encoder, {e;}7;, be denoted by {6 ;}T,.
As the input of encoder is x;, the j-th output set of encoder can be written as ej(x;, 8¢ ;).
In the case of multivariate Gaussian distribution for the latent space, the parameters are

Hzx = €1(xi,0e,1) and X, |, = diag(e2(x;, Oe,2)).
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Sampling the Latent Variable

@ When the data point x; is fed as input to the encoder, the parameters of the conditional
distribution q(z;) are obtained; hence, the distribution of latent space, which is g(z;), is
determined corresponding to the data point x;.

- —_—

@ Now, in the latent space, we sample the corresponding latent variable from the
distribution of latent space:

20~ e 1x.00) "

@ This latent variable is fed as input to the decoder which is explained in the following.
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Decoder of Variational Autoencoder

@ As the figure shows, the decoder of VAE models the conditional distribution P(x; | z,-,.
Y

where 84 are the weights of decoder layers in VAE.

@ The input and output of decoder are z; € RP and x; € RY, respectively. The output
neurons of decoder are supposed to either genera onstructed data point or
determine the parameters of the conditional distribution P(x;|z;,0q).

@ The former is more common.

@ In the latter case, if this conditional distribution has / number of parameters, we have /
sets of output neurons from the decoder, denoted by {d;}!_,. The dimensionality of these
sets may differ depending the size of every parametefs.—l'ﬁ_ﬁxample of multivariate
Gaussian distribution also can be mentioned for the decoder.

@ Let the network weights for the output sets of decoder, {dj}J’-:l, be denoted by {Gd,j}J’-:l.
As the input of decoder is z;, the j-th output set of decoder can be written as d;(z;,04 ;).
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Training Variational Autoencoder with Expectation
Maximization

@ We use EM for training the VAE. Recall Egs. (8) and (9) for EM in variational inference:

g := arg max L(q, 9“’1))7
q
0 = arg max £(¢",0).

@ |Inspired by that, VAE uses EM for training where the ELBO is a function of encoder
weights 6., decoder weights 84, and data point x;:

%MWH E-step: :: argm(?x C(Ge,BE;_l),x,-), (16)
'2: J_oj/‘ —> M-step: :: argm?x E(Ogt),ﬂd,x,-), (17)
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Training Variational Autoencoder with Expectation
Maximization

@ We had:

E-step: 9(;) = arg@ L(Oe, Bff_l), x;),
M-step: Off) = arg@ E(Ogt), 04, x;).
q

@ We can simplify this iterative optimization algorithm by alternating optimization [4]
where we take a step of gradient ascent optimization in every iteration. We consider
mini-batch stochastic gradient ascent and take training data in batches where b denotes
the mini-batch size. Hence, the optimization is:

O . £(0.,017Y x;
Estep: 00 — O(e:_n(@ne 2im1 (a;’ g X )7 (18)
b (et)
_ ‘ 6.’,0 i
M-step: 99) — eff 1)9’7‘132,:1 L(0e7, d,X:)’ (19)
l 004 )

where ne and 7y are the learning rates for 8. and 64, respectively.
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Training Variational Autoencoder with Expectation
Maximization

@ Eqgs. (4) and (12) were:
n /\
{ £(9,0) = —KL(4(z) | P(xi, 21 0)), €
(®) Z; P 4 x,-,B(t_l) . P
Az Pla == eeshy
@ The ELBO is simplified as:
b p I—m"
Zf(\c%; OO KL(a(2) I B(xi. 2] 64)
L 5 TR\~ Yoy

b
= KLt B e ) 0
i=1
_ Y.

@ Note that the parameter of P(x;,z;|6,) is 84 because z; is generated after the encoder
and before the decoder. -

@ There are different ways for approximating the KL divergence in Eq. (20) [5, 6]. We can
simplify the ELBO in at least two different ways which are explained in the following.
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Simplification Type 1

@ We continue the simplification of ELBO:

b
> L(q,0
i=1

(

- Z KL(P(z; | xi,0¢) | P(xi, zi | 04))

P(z; | x;, 0

B ) los (£l L 0e)

pay IP’(XhZi\@d)J

(zi| xi,0e) ]

- 21

Z RAD L P(x,,z,md)) )
@ This expectation can be approximated using Monte Carlo approximation [7] where we

draw £ samples {z,J}J 1» corresponding to the j-th data point, from the conditional

distribution distribution as:

[ ——— ]

Z; j ~P(z;|x;,0e), Vje{l,...,¢}. (22)
| k_\J
@ Monte Carlo approximation [7], in general, approximates expectation as:
1
Ep(z; | x,00) [F(20)] = 7 f(zi ) (23)
j=1
A —

where f(z;) is a function of z;.
—_—
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Simplification@

@ We had:

b b P zZi|Xj, Ge
¥ 300 = S Ert o [lo8 (0]
i=1 v

i=1
(- Y
@ Here, the approximation is:
b b _
> L(a,0)~ ) L(q,0)
i=1 i=1
—
_ 72": 1 f;.og (Bl xi.00)
-1 V4 =1 ]P’(X,‘7 Z; j | Od)
£
1 y
=33 [1og (P(xi, 21,11 64)) — log (P21 x1,0¢))| S (24)

i=1 j=1
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Simplificatio

@ We can simplify the ELBO using another approach:

b b/ —\
> > £(q,0) = = > KL(P(zi | x;,8e) | P(x;, 2 | 04))

i—1 i—1
b
P(z; | x;,0e)
I.)

=-> me) log
i=1

b

:@Z/P(Z;|xi,08)log ;
i=1

P(z,—,@e) _ ﬁﬂ(%;)f
T T )

— 1\
dZ,’

b

= — Z/IP(Z, | x,-,Oe) Iog (
i:1bt,_k ]
Q@Y [ Bai1xi,0) l0g (B(xi |21, 64) o
R
== KL(P(z| xi,0¢) || P(2/))
.

i=1

b

+ D Er(z x1,600) [|0g (P(xi ] Zi79d))]~ (25)
i=1 L—— — 1
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Simplification Type 2

@ We found:
b b b /_/\\
X D L(q,0) == KL(P(zi|xi,0¢) [ P(2:)) + D Epz, | x;,60) ['0g (P(xi | Zi79d))]~
i—1 i—1 i=1

@ The second term in the above equation can be estimated using Mante Carlo
approximation [7] where we draw ¢ samples {z,-,j}ff:l from P(z; | x;,0¢):

b b
> 0.0~ 3f00)
i=1 i=1

b b ¥4
= = > KL(R( 1, 00) [ P(20) + % > log (B(x; | 2:4.64).  (26)
i=1 L———~~—r7 ——— =1 u:l .
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Simplification Type 2

@ We had: ‘Z
: o z
¥ D L0~ ZKL (21 xi,0e) [ P(20) [+ 3 5 D log (P(xi ] 2i.j, 6a).
i=1 1 1

= Jj=

@ The first term in the above equation can be converted to expectation and then computed

using Monte arlo approximation [7] again, where we draw ¢ samples {z,—d-}j?:1
— =

from P(z; | xj,0¢):

b b
> L(q,0)~ > L(q,0)
i=1 i=1

IP(Z,' | Xi, Oe)

]EN]P(Zi | xi,0e) [|0g ( P(Z,’)

(27)

@ In case we have some families of distributions, such as Gaussian distributions, for
P(z; ;| xj,0e) and IP(z, , the first term in Eq. (26) can be computed analytically. In the
Tottowing, we simply Eq. (26 ) further Tor Gaussian distributions.
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Simplification Type 2 for Special Case of Gaussian
Distributions

@ We can compute the KL divergence in the first term of Eq. (26) analytically for
univariate or multivariate Gaussian distributions. For this, we need two following lemmas
— 'f——\ P—
(see our tutorial paper [8] for proof).

———

Lemma e

The KL divergence between two univariate Gaussian distributions p1 ~ N (p1,0%) and
P2 ~ N(piz, 02) is: = ===

2 2

o2 o7 + (p1 — p2

KL(pr1p2) = log(22) + L1 k2"
o1 20

1
5 (28)
\ 2 )

Lemma e

The KL divergence between two multivariate Gaussian distributions py ~ N(pq,%1) and
p2 ~ N (p,, X2) with dimensionality p is:
_ T

Kial) = 5 (1oB( 220 = P (7 B + (ot — 1) Xy g = ). (29)
t/_J !

b 1 y
—
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Simplification Type 2 for Special Case of Gaussian
Distributions

@ Consider the case in which we have:

P(z; | xj,0e) ~ N(u'z\x: zz|>()’ (30)
P(z;) ~ N(p,, X2), 31
F(zi) O(\M/ \/.), (31)

where z; € RP. Note that the parameters Hz|x and X, are trained in neural network
while the parameters P(z; ;) can be set to py=0and 2, = 0 and 3>, = I (inspired by the prior
distribution of z in factor analysis).

@ According to Lemma 2, the approximation of ELBQ%), can be simplified to:

b b
Z £(q,0) ~ Z £(q,0)

b
Z L (IOg( |Z | || ) —pP+ tr(z_lzz\x) + (l"‘z H’Z\X)Tzz_l(ﬂ'z - y’z|x)>
i1 z|x
b 1 4
+Z ZIOg (]P(xl |Zl,_/70d)) (32)
i=1 j:l

Variational Autoencoder 26 /36



Training Variational Autoencoder with Approximations

@ We can train VAE with EM, where Monte Carlo approximations are applied to ELBO. The
Egs. (18) and (19):

0 0 (t— 1
E-step: 6L := (™Y @( =
S ep e e aee
t t—1 é\e od,X:
M-step: BE,) = 051 ) + 7, ggd
are replaced by the following equations:
0.0 x;
Estep: 0% .= @l~Y 4 a; X ), (33)
e
_ 00 ,04,
M-step: Off) = 95; R 62' =1 89: > Xi) (34)

where the approximated ELBO was introduced in previous sections.
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The Reparameterization Trick

@ Sampling the £ samples for the latent variables, i.e. Eq. (15):

\/sz(z,-) — P(z/] x:.00).
blocks the gradient flow because computing the derivatives through P(z; | x;,0.) by
i n . . -—_— e
chain rule gives a high variance estimate of gradient.
@ In order to overcome this problem, we use the reparameterization technique (2014)

[2, 9, 10]. In this technique, instead of sampling z; ~ P(z; | x;, 0¢), we assume z; is a
random variable but is a deterministic function of another random variable ¢; as follows:
—_—

1 Zi:g(eivxiﬂoe)v (35)

where €; is a stochastic variable sampled from a distribution as:

€; ~ P(e€). (36)
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The Reparameterization Trick
@ The Egs. (21) and (25):

> > P(z; | x;,0e)
Z ‘C(q’ 0) == ZENP(Z:' | x;,0¢) |:|°g (]P(X' z: | ed))]7
i=1 i=1 ir4i

b b b I~
> L(q,0) = =D KL(P(zi] xi,0¢) | P(2)) + > Epiz; | x;,60) [|Og (P(xi | zi, 0‘,))},
i—1

i=1 i=1

both contain an expectation of a function f(z;). Using this technique, this expectation is
SXpectation of 4 Tinction i</
replaced as:

']ENIP’(Z,- |x1,00)[F(2i)] — E p(z; | x;,00)[f(g(€is xi, 0e))]- (37)
—

@ Using the reparameterization technique, the encoder, which implemented P(z; | x;, 0e), is
replaced by g(€;, x;, 0e) where in the latent space between encoder and decoder, we have
€; ~ P(e) and z; = g(€;, x;, 0¢).

@ A simple example for the reparameterization technique is Whenw
Gaussian variables:

zj ~ N(Mv 02)7

!Zi =g(ei) = p+oe;.

@ For some more advanced reparameterization techniques, the reader can refer to [11].

—
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Training Variational Autoencoder with Backpropagation

@ In practice, VAE is trained by backpropagation [9] where the backpropagation algorithm
[3] is used for training the weights of network.

@ Recall that in training VAE with EM, the encoder and decoder are trained separately
using the E-step and the M-step of EM, respectively.

@ However, in training VAE with backpropagation, the whole network is trained together

and not in separate steps.
@ Suppose the whole weights of VAE are denoted by\ 0 := {6., 04}/ Backpropagation trains

VAE using the mini-batch stochastic gradient descent with the negative ELBO,

St | —£(8, x;) a5 the loss function:
L —

—
¢ | g = gt _"W’ ( (38)

where 7) is the learning rate. Note that we are minimizing here because neural networks
usually minimize the loss function.
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The Test Phase in Variational Autoencoder

@ In the test phase, we feed the test data point x; to the encoder to determine the
parameters of the conditional distribution of latent space, i.e., P(z; | x;, 6¢).

. . . . —_— .
@ Then, from this distribution, we sampl z; from the latent space and
generate the corresponding reconstructed data point x; by the decoder.
—_—

@ As you see, VAE is a generative model which generates data points [12].

G A

A Dl— 2f
| B.G re D

%l. 9((
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Blurry Images Generated by VAE

@ One of the problems of VAE is generating blurry images when data points are images.
This blurry artifact may be because of several following reasons:
> sampling for the Monte Carlo approximations
> lower bound approximation by ELBO

> restrictions on the family of distributions where usually simple Gaussian
distributions are used.

@ Note that generative adversarial networks [13] usually generate clearer images; therefore,

some works have co ed variational _and adversarial inferences [14] for using the

advantages of both models.
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Simulation on MNIST Digit Dataset
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Credit of image: https://blog.keras.io/building
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https://blog.keras.io/building-autoencoders-in-keras.html

Acknowledgment

@ Some slides are based on our tutorial paper: “Factor analysis, probabilistic principal
component analysis, variational inference, and variational autoencoder: Tutorial and
survey” [8]

@ Some slides of this slide deck are inspired by teachings of deep learning course at the
Carnegie Mellon University (you can see their YouTube channel).

@ Variational autoencoder in Keras:

> https://blog.keras.io/building-autoencoders-in-keras.html
> https://keras.io/examples/generative/vae/
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