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Probabilistic Graphical
Models
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Markov and Bayesian Networks

A Probabilistic Graphical Model (PGM) is a grpah-based representation of a complex
distribution in the possibly high dimensional space [1].

In other words, PGM is a combination of graph theory and probability theory.

In a PGM, the random variables are represented by nodes or vertices. There exist edges
between two variables which have interaction with one another in terms of probability.
Different conditional probabilities can be represented by a PGM.

There exist two types of PGM which are Markov network (also called Markov random
field) and Bayesian network [1]. In the Markov network and Bayesian network, the edges
of graph are undirected and directed, respectively.
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The Markov Property

Consider a times series of random variables X1,X2, . . . ,Xn. In general, the joint
probability of these random variables can be written as:

P(X1,X2, . . . ,Xn) = P(X1)P(X2 |X1)P(X3 |X2,X1) . . .P(Xn |Xn−1, . . . ,X2,X1), (1)

according to chain (or multiplication) rule in probability.

(The first order) Markov property is an assumption which states that in a time series of
random variables X1,X2, . . . ,Xn, every random variable is merely dependent on the latest
previous random variable and not the others. In other words:

P(Xi |Xi−1,Xi−2, . . . ,X2,X1) = P(Xi |Xi−1). (2)

Hence, with Markov property, the chain rule is simplied to:

P(X1,X2, . . . ,Xn) = P(X1)P(X2 |X1)P(X3 |X2) . . .P(Xn |Xn−1). (3)

The Markov property can be of any order. For example, in a second order Markov
property, a random variable is dependent on the latest and one-to-latest variables.
Usually, the default Markov property is of order one.

A stochastic process which has the Markov process is called a Markovian process (or
Markov process).
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Discrete Time Markov Chain

A Markov chain is a PGM which has Markov property.

The Markov chain can be either directed or undirected.

Usually, Markov chain is a Bayesian network where the edges are directed.

It is important not to confuse Markov chain with Markov network.

There are two types of Markov Chain which are Discrete Time Markov Chain (DTMC)
[2] and Continuous Time Markov Chain (CTMC) [3]. As it is obvious from their names,
in DTMC and CTMC, the time of transitions from a random variable to another one is
and is not partitioned into discrete slots, respectively.

If the variables in a DTMC are considered as states, the DTMC can be viewed as a
Finite-State Machine (FSM) or a Finite-State Automaton (FSA) [4].
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Hidden Markov Model
(HMM)
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Hidden Markov Model (HMM)

HMM is a DTMC which contains a sequence of hidden variables (named states) in
addition to a sequence of emitted observation symbols (outputs).

We have an observation sequence of length τ which is the number of clock times,
t ∈ {1, . . . , τ}. Let n and m denote the number of states and observation symbols,
respectively.
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Hidden Markov Model (HMM)
We show the sets of states and possible observation symbols by S = {s1, . . . , sn} and
O = {o1, . . . , om}, respectively.
We show being in state si and in observation symbol oi at time t by si (t) and oi (t),
respectively.

Let Rn×n ∋ A = [ai,j ] be the state Transition Probability Matrix (TPM), where:

ai,j := P
(
sj (t + 1) | si (t)

)
. (4)

We have:

n∑
j=1

ai,j = 1. (5)

The Emission Probability Matrix (EPM) is denoted by as Rn×m ∋ B = [bi,j ] where:

bi,j := P
(
oj (t) | si (t)

)
, (6)

which is the probability of emission of the observation symbols from the states.

We have:

n∑
j=1

bi,j = 1. (7)
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Hidden Markov Model (HMM)

Let the initial state distribution be denoted by the vector Rn ∋ π = [π1, . . . , πn] where:

πi := P
(
si (1)

)
, (8)

and:

n∑
i=1

πi = 1, (9)

to satisfy the probability properties.

An HMM model is denoted by the tuple λ = (π,A,B).

Assume that a sequence of states is generated by the HMM according to the TPM. We
denote this generated sequence of states by Sg := sg (1), . . . , sg (τ) where sg (t) ∈ S, ∀t.
Likewise, a sequence of outputs (observations) is generated by the HMM according to
EPM. We denote this generated sequence of output symbols by Og := og (1), . . . , og (τ)
where og (t) ∈ O, ∀t.
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Hidden Markov Model (HMM)
We denote the probability of transition from state sg (t) to sg (t + 1) by asg (t),sg (t+1). So:

asg (t),sg (t+1) := P(sg (t + 1) | sg (t)). (10)

Note that sg (t) ∈ S and sg (t + 1) ∈ S.
We also denote:

πsg (i) := P(sg (i)). (11)

Likewise, we denote the probability of state sg (t) emitting the observation og (t) by
bsg (t),og (t). So:

bsg (t),og (t) := P(og (t) | sg (t)). (12)

Note that sg (t) ∈ S and og (t) ∈ O.
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Likelihood and
Expectation
Maximization in HMM
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Likelihood

According to the figure, the likelihood of occurrence of the state sequence Sg and the
observation sequence Og is [5]:

L = P(Sg ,Og ) = P
(
sg (1)

)
P(next states | previous states)P(Og | Sg )

= P
(
sg (1)

) τ−1∏
t=1

P(sg (t + 1) | sg (t))
τ∏

t=1

P(og (t) | sg (t))

= πsg (1)

τ−1∏
t=1

asg (t),sg (t+1)

τ∏
t=1

bsg (t),og (t). (13)
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Likelihood
We found:

L = πsg (1)

τ−1∏
t=1

asg (t),sg (t+1)

τ∏
t=1

bsg (t),og (t).

The log-likelihood is:

ℓ = log(L) = log πsg (1) +

τ−1∑
t=1

log(asg (t),sg (t+1)) +
τ∑

t=1

log(bsg (t),og (t)). (14)

Let 1i be a vector with entry one at index i , i.e., 1i := [0, 0, . . . , 0, 1, 0 . . . , 0]⊤. Also,
1sg (1) means the vector with entry one at the index of the first state in the sequence Sg .
For example, if there are three possible states and a sequence of length three,
sg (1) = 2, sg (2) = 1, sg (3) = 3, we have 1sg (1) = [0, 1, 0]⊤.
The terms in this log-likelihood are:

log πsg (1) = 1⊤sg (1) logπ, (15)

asg (t−1),sg (t) =
n∏

i=1

n∏
j=1

(ai,j )
1i [i ] 1j [j],

=⇒ log(asg (t−1),sg (t)) =
n∑

i=1

n∑
j=1

1i [i ] 1j [j] log(ai,j ) = 1⊤sg (t−1)(logA)1sg (t), (16)
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Likelihood

Also:

bsg (t),og (t) =
n∏

i=1

n∏
j=1

(bi,j )
1i [i ] 1j [j],

=⇒ log(bsg (t),og (t)) =
n∑

i=1

n∑
j=1

1i [i ] 1j [j] log(bi,j ) = 1⊤sg (t)(logB)1og (t), (17)

where 1i [i ] = 1j [j] = 1.

Hence, we can write the log-likelihood:

ℓ = log πsg (1) +

τ−1∑
t=1

log(asg (t),sg (t+1)) +
τ∑

t=1

log(bsg (t),og (t)),

as:

ℓ = 1⊤sg (1) logπ +

τ−1∑
t=1

1⊤sg (t−1)(logA)1sg (t) +
τ∑

t=1

1⊤sg (t)(logB)1og (t). (18)
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E-step in EM

We found:

ℓ = 1⊤sg (1) logπ +

τ−1∑
t=1

1⊤sg (t−1)(logA)1sg (t) +
τ∑

t=1

1⊤sg (t)(logB)1og (t).

The missing variables in the log-likelihood are 1sg (1), 1sg (t−1), 1sg (t), and 1og (t). The
expectation of the log-likelihood with respect to the missing variables is:

Q(π,A,B) = E(ℓ)

= E(1⊤sg (1) logπ) +

τ−1∑
t=1

E
(
1⊤sg (t)(logA)1sg (t+1)

)
+

τ∑
t=1

E
(
1⊤sg (t)(logB)1og (t)

)
. (19)
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M-step in EM
We maximize the Q(π,A,B) with respect to the parameters πi , ai,j , and bi,j :

maximize
x

Q(π,A,B)

subject to
n∑

i=1

πi = 1,

n∑
j=1

ai,j = 1, ∀i ∈ {1, . . . , n},

n∑
j=1

bi,j = 1, ∀i ∈ {1, . . . , n},

(20)

where the constraints ensure that the probabilities in the initial states, the transition
matrix, and the emission matrix add to one.

The Lagrangian [6] for this optimization problem is:

L = E(1⊤sg (1) logπ) +

τ−1∑
t=1

E
(
1⊤sg (t)(logA)1sg (t+1)

)
+

τ∑
t=1

E
(
1⊤sg (t)(logB)1og (t)

)
− η1(

n∑
i=1

πi − 1)− η2(
n∑

j=1

ai,j − 1)− η3(
n∑

j=1

bi,j − 1), (21)

where η1, η2, and η3 are the Lagrange multipliers.
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M-step in EM
We had:

L = E(1⊤sg (1) logπ) +

τ−1∑
t=1

E
(
1⊤sg (t)(logA)1sg (t+1)

)
+

τ∑
t=1

E
(
1⊤sg (t)(logB)1og (t)

)
− η1(

n∑
i=1

πi − 1)− η2(
n∑

j=1

ai,j − 1)− η3(
n∑

j=1

bi,j − 1).

The first term in the Lagrangian is simplified to
E(1sg (1)[1] log π1 + · · ·+ 1sg (1)[τ ] log πτ ) = E(1sg (1)[1] log π1) + · · ·+ E(1sg (1)[τ ] log πτ );
therefore, we have:

∂L
∂πi

= E(1sg (1)[i ])− η1πi
set
= 0 =⇒ πi =

1

η1
E(1sg (1)[i ]). (22)

n∑
i=1

πi = 1
(22)
=⇒

1

η1

(
E(1sg (1)[1]) + · · ·+ E(1sg (1)[i ]) + · · ·+ E(1sg (1)[n])

)
=

1

η1
(0 + · · ·+ 1 + · · ·+ 0)

set
= 1 =⇒ η1 = 1. (23)

∴ πi = E(1sg (1)[i ]). (24)
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M-step in EM
We had: L = E(1⊤sg (1) logπ) +

∑τ−1
t=1 E

(
1⊤sg (t)(logA)1sg (t+1)

)
+∑τ

t=1 E
(
1⊤sg (t)(logB)1og (t)

)
− η1(

∑n
i=1 πi − 1)− η2(

∑n
j=1 ai,j − 1)− η3(

∑n
j=1 bi,j − 1).

Similarly, we have:

∂L
∂ai,j

=

τ−1∑
t=1

E(1sg (t)[i ] 1sg (t+1)[j])− η2 ai,j
set
= 0 =⇒ ai,j =

1

η2

τ−1∑
t=1

E(1sg (t)[i ] 1sg (t+1)[j]).

(25)

n∑
j=1

ai,j = 1
(25)
=⇒

1

η2

n∑
j=1

τ−1∑
t=1

E(1sg (t)[i ] 1sg (t+1)[j]) =

=
1

η2

τ−1∑
t=1

(
E(1sg (t)[i ]× 0) + · · ·+ E(1sg (t)[i ]× 1)︸ ︷︷ ︸

j-th element

+ · · ·+ E(1sg (t)[i ]× 0)
)

=
1

η2

τ−1∑
t=1

E(1sg (t)[i ])
set
= 1 =⇒ η2 =

τ−1∑
t=1

E(1sg (t)[i ]). (26)

∴ ai,j =

∑τ−1
t=1 E(1sg (t)[i ] 1sg (t+1)[j])∑τ−1

t=1 E(1sg (t)[i ])
. (27)
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M-step in EM
We had: L = E(1⊤sg (1) logπ) +

∑τ−1
t=1 E

(
1⊤sg (t)(logA)1sg (t+1)

)
+∑τ

t=1 E
(
1⊤sg (t)(logB)1og (t)

)
− η1(

∑n
i=1 πi − 1)− η2(

∑n
j=1 ai,j − 1)− η3(

∑n
j=1 bi,j − 1).

Likewise, we have:

∂L
∂bi,j

=
τ∑

t=1

E(1sg (t)[i ] 1og (t)[j])− η3 bi,j
set
= 0 =⇒ bi,j =

1

η3

τ∑
t=1

E(1sg (t)[i ] 1og (t)[j]).

(28)

n∑
j=1

bi,j = 1
(28)
=⇒

1

η3

n∑
j=1

τ∑
t=1

E(1sg (t)[i ] 1og (t)[j]) =

=
1

η3

τ∑
t=1

(
E(1sg (t)[i ]× 0) + · · ·+ E(1sg (t)[i ]× 1)︸ ︷︷ ︸

j-th element

+ · · ·+ E(1sg (t)[i ]× 0)
)

=
1

η3

τ∑
t=1

E(1sg (t)[i ])
set
= 1

=⇒ η3 =
τ∑

t=1

E(1sg (t)[i ]). (29)

∴ bi,j =

∑τ
t=1 E(1sg (t)[i ] 1og (t)[j])∑τ

t=1 E(1sg (t)[i ])
. (30)
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Evaluation in HMM
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Evaluation in HMM

Evaluation in HMM means the following [7, 8]: Given the observation sequence
Og = og (1), . . . , og (τ) and the HMM model λ = (π,A,B), we want to compute
P(Og |λ), i.e., the probability of the generated observation sequence.

In summary:

Og , given: λ =⇒ P(Og |λ) = ? (31)

Note that P(Og |λ) can also be denoted by P(Og ; λ). The P(Og |λ) is sometimes
referred to as the likelihood.

Hidden Markov Model 21 / 56



Direct Calculation
Assume that the state sequence Sg = sg (1), . . . , sg (τ) has caused the observation
sequence Og = og (1), . . . , og (τ). Hence, we have:

P(Og | Sg , λ) = bsg (1),og (1) bsg (2),og (2) . . . bsg (τ),og (τ). (32)

On the other hand, the probability of the state sequence Sg = sg (1), . . . , sg (τ) is:

P(Sg |λ) = πsg (1) asg (2),og (2) . . . asg (τ),og (τ). (33)

According to chain rule, we have:

P(Og ,Sg |λ) = P(Og | Sg , λ)P(Sg |λ) = (34)

πsg (1) bsg (1),og (1) asg (2),og (2) . . . bsg (τ),og (τ) asg (τ),og (τ), (35)

which is the probability of occurrence of both the observation sequence Og and state
sequence Sg .
Any state sequence may have caused the observation sequence Og . Therefore, according
to the law of total probability, we have:

P(Og |λ) =
∑
∀Sg

P(Og ,Sg |λ) (34)
=

∑
∀Sg

P(Og | Sg , λ)P(Sg |λ)

(35)
=

∑
∀sg (1)

∑
∀sg (2)

· · ·
∑

∀sg (τ)
πsg (1) bsg (1),og (1) asg (2),og (2) bsg (τ),og (τ) asg (τ),og (τ), (36)

which means that we start with the first state, then output the first observation, and then
go to the next state. This procedure is repeated until the last state. The summations are
over all possible states in the state sequence.
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Direct Calculation

We found:

P(Og |λ) =
∑

∀sg (1)

∑
∀sg (2)

· · ·
∑

∀sg (τ)
πsg (1) bsg (1),og (1) asg (2),og (2) bsg (τ),og (τ) asg (τ),og (τ).

The time complexity of this direct calculation of P(Og |λ) is in the order of O(2τnτ )
because at every time clock t ∈ {1, . . . , τ}, there are n possible states to go through [7].

Because of nτ , this is very inefficient especially for long sequences (large τ).
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The Forward-Backward Procedure
A more efficient algorithm for evaluation in HMM is forward-backward procedure [7].

The forward-backward procedure includes two stages, i.e., forward and backward belief
propagation stages.

The Forward Belief Propagation:

Similar to the belief propagation procedure, we define the forward message until time t as:

αi (t) := P
(
og (1), og (2), . . . , og (t), sg (t) = si |λ

)
, (37)

which is the probability of partial observation sequence until time t and being in state si
at time t.

Algorithm 2 shows the forward belief propagation from state one to the state τ .
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The Forward-Backward Procedure

In this algorithm, αi (t) is solved inductively. The initial forward message is:

αi (1) = πi bi,og (1), ∀i ∈ {1, . . . , n}, (38)

which is the probability of occurrence of the initial state si and the observation symbol
og (1).

The next forward messages are calculated as:

αj (t + 1) =
[ n∑

i=1

αi (t) ai,j

]
bj,og (t+1), (39)

which is the probability of occurrence of observation sequence og (1), . . . , og (t), being in
state si at time t, going to state j at time t + 1, and the observation symbol og (t + 1).

The summation is because, at time t, the state sg (t) can be any state so we should use
the law of total probability.
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The Forward-Backward Procedure

Finally, using the law of total probability, we have:

P(Og |λ) =
n∑

i=1

P
(
Og , sg (τ) = si |λ

)
=

n∑
i=1

αi (τ), (40)

which is the desired probability in the evaluation for HMM. Hence, the forward belief
propagation suffices for evaluation.
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The Forward-Backward Procedure

The Backward Belief Propagation:

Again similar to the belief propagation procedure, we define the backward message since
time τ to t + 1 as:

βi (t) := P
(
og (t + 1), og (t + 2), . . . , og (τ) | sg (t) = si , λ

)
, (41)

which is the probability of partial observation sequence from t + 1 until the end time τ
given being in state si at time t.

Algorithm 3 shows the backward belief propagation.
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The Forward-Backward Procedure

In this algorithm, the initial backward message is:

βi (τ) = 1, ∀i ∈ {1, . . . , n}. (42)

The next backward messages are calculated as:

βi (t) =
n∑

j=1

ai,j bj,og (t+1), (43)

which is the probability of being in state si at time t, going to state j at time t + 1, and
the observation symbol og (t + 1).

The summation is because, at time t + 1, the state sg (t + 1) can be any state so we
should use the law of total probability.
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The Forward-Backward Procedure

It is noteworthy that for very long sequences, the αi (t) and β(t) become extremely small,
recursively (see Algorithms 2 and 3). Hence, some people normalize them at every
iteration of algorithm [5]:

αi (t)←
αi (t)∑τ
j=1 αj (t)

, (44)

βi (t)←
βi (t)∑τ
j=1 βj (t)

, (45)

in order to sum to one. However, note that if this normalization is done, we will have
P(Og |λ) = 1.
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Estimation in HMM
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Estimation in HMM

Estimation in HMM means the following [7, 8]: Given the observation sequence
Og = og

1 , . . . , o
g
τ and the HMM model λ = (π,A,B), we want to compute or estimate

P(Sg | Og , λ), i.e., the probability of a state sequence given an observation sequence.

In summary:

Sg , given: Og , λ =⇒ P(Sg | Og , λ) = ? (46)
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Greedy Approach
Let the probability of being in state si at time t given the observation sequence Og and
the HMM model λ be denoted by:

γi (t) := P
(
sg (t) = si | Og , λ

)
. (47)

We can say:

γi (t)P(Og |λ) = P
(
sg (t) = si | Og , λ

)
P(Og |λ)

(a)
= P

(
sg (t) = si ,Og , λ

) (b)
= αi (t)βi (t)

=⇒ γi (t) =
αi (t)βi (t)

P(Og |λ)
(48)

=
αi (t)βi (t)∑n
j=1 αj (t)βj (t)

, (49)

where (a) is because of chain rule in probability and (b) is because:

αi (t)βi (t)
(37),(41)

= P
(
og (1), og (2), . . . , og (t), sg (t) = si |λ

)
× P

(
og (t + 1), og (t + 2), . . . , og (τ) | sg (t) = si , λ

)
= P

(
og (1), og (2), . . . , og (τ), sg (t) = si , λ

)
= P

(
Og , sg (t) = si , λ

)
.

The reason of (b) can also be interpreted in this way: it is because of the
forward-backward procedure which states the belief over a variable as product of the
forward and backward messages.
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Greedy Approach

In the greedy approach, at every time t, we select a state with maximum probability of
occurrence without considering the other states in the sequence. Therefore, we have:

sg (t) = arg max
1≤i≤n

γi (t), ∀t ∈ {1, . . . , τ}, (50)
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The Viterbi Algorithm
The greedy approach does not optimize over the whole path but greedily chooses the
best state at every time step.
Another approach is to find the best state sequence which has the highest probability of
occurrence, i.e., maximizing P(Og ,Sg |λ) [7]. The Viterbi algorithm (1967) [9, 10] can
be used to find this path of states [11].

Different works, such as [12], have worked on using Viterbi algorithm for HMM.

Algorithm 4 shows the Viterbi algorithm for estimation in HMM [7].
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The Viterbi Algorithm

In this algorithm, we have variable δj (t):

δj (t) = max
1≤i≤n

[
δi (t − 1) ai,j

]
bj,og (t), (51)

which is similar to αj (t) defined in Eq. (39):

αj (t + 1) =
[ n∑

i=1

αi (t) ai,j

]
bj,og (t+1),

except that αj (t) in the forward belief propagation uses sum-product algorithm [13] while
δj (t) in the Viterbi algorithm uses max-product algorithm [14, 15].
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The Viterbi Algorithm
Similar to Eq. (38):

αi (1) = πi bi,og (1), ∀i ∈ {1, . . . , n},

the initial δj (t) is:

δi (1) = πi bi,og (1), ∀i ∈ {1, . . . , n}. (52)

We define the index maximizing in Eq. (51):

δj (t) = max
1≤i≤n

[
δi (t − 1) ai,j

]
bj,og (t),

as:

ψj (t) = arg max
1≤i≤n

(
δi (t − 1) ai,j

)
. (53)

Then, a backward analysis is done starting from the end of state sequence:

p∗ = max
1≤i≤n

δi (τ), (54)

s∗(τ) = arg max
1≤i≤n

δi (τ), (55)

and the other states in the sequence are backtracked as:

s∗(t) = ψs∗(t+1)(t + 1). (56)

The states Sg = s∗(1), s∗(2), . . . , s∗(τ) are the desired state sequence in the estimation.
Therefore, the states in the state sequence are maximizing the forward belief propagation
in a max-product setting.
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The Viterbi Algorithm

The probability of this path of states with maximum probability of occurrence is:

P(Og ,Sg |λ) = p∗. (57)

Note that the Viterbi algorithm can be visualized using a trellis structure (see Appendix A
in [16]).
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Training the HMM
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Training the HMM

Training HMM means the following [7, 8]: Given the observation sequence
Og = og

1 , . . . , o
g
τ , we want to adjust the HMM model parameters λ = (π,A,B) in order

to maximize P(Og |λ).
In summary:

given: Og ,O,S =⇒ λ = argmax
λ

P(Og |λ). (58)
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The Baum-Welch Algorithm
We can solve for Eq. (58):

given: Og ,O,S =⇒ λ = argmax
λ

P(Og |λ),

using maximum likelihood estimation using Expectation Maximization (EM).

The Baum-Welch algorithm (1970) [17] is the most well-known method for training
HMM. It makes use of the EM results.

We define the probability of occurrence of a path being in states si and sj , respectively, at
times t and t + 1 by:

ξi,j (t) := P
(
sg (t) = si , s

g (t + 1) = sj | Og , λ
)
. (59)

We can say:

ξi,j (t)P(Og |λ) = P
(
sg (t) = si , s

g (t + 1) = sj | Og , λ
)
P(Og |λ)

(a)
= P

(
sg (t) = si , s

g (t + 1) = sj ,Og , λ
) (b)
= αi (t) ai,j bj,og (t+1) βj (t + 1)

=⇒ ξi,j (t) =
αi (t) ai,j bj,og (t+1) βj (t + 1)

P(Og |λ)
(60)

=
αi (t) ai,j bj,og (t+1) βj (t + 1)∑n

r=1

∑n
ℓ=1 αr (t) ar,ℓ bℓ,og (t+1) βℓ(t + 1)

, (61)

where (a) is because of chain rule in probability and the reason of (b) is in the next slide.
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The Baum-Welch Algorithm
We found:

ξi,j (t)P(Og |λ) = P
(
sg (t) = si , s

g (t + 1) = sj | Og , λ
)
P(Og |λ)

(a)
= P

(
sg (t) = si , s

g (t + 1) = sj ,Og , λ
) (b)
= αi (t) ai,j bj,og (t+1) βj (t + 1)

(b) is because of the following: According to Eqs. (37), (4), (6), and (41), we have:

αi (t) = P(og (1), . . . , og (t), sg (t) = si |λ),
ai,j = P(sj (t + 1) | si (t)),
bj,og (t+1) = P(og (t + 1) | sj (t + 1)),

βj (t + 1) = P(og (t + 2), . . . , og (τ) | sg (t + 1) = sj , λ).

Therefore, we have:

αi (t) ai,j (t) bj,og (t+1) βj (t + 1) = P
(
sg (t) = si , s

g (t + 1) = sj ,Og , λ
)
.

Note that we have
∑n

i=1

∑n
j=1 ξi,j (t) = 1. Also, note that P(Og |λ) in Eq. (60) can be

obtained from either the denominator of Eq. (61) or line 6 in Algorithm 2 (i.e., Eq. (40)):

P(Og |λ) =
n∑

i=1

P
(
Og , sg (τ) = si |λ

)
=

n∑
i=1

αi (τ).
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The Baum-Welch Algorithm

In Eq. (60):

ξi,j (t) =
αi (t) ai,j bj,og (t+1) βj (t + 1)

P(Og |λ)
,

the terms αi (t), ai,j (t), bj,og (t+1), and βj (t + 1) stand for the probability of the first t
observations ending in state si at time t, the probability of transitioning from state si (at
time t) to state sj (at time t + 1), the probability of observing og (t + 1) from state sj at
time t + 1, and the probability of the remainder of the observation sequence, respectively.
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The Baum-Welch Algorithm
Now, recall the Eqs. (24), (27), and (30) from EM algorithm for HMM:

πi = E(1sg (1)[i ]), ai,j =

∑τ−1
t=1 E(1sg (t)[i ] 1sg (t+1)[j])∑τ−1

t=1 E(1sg (t)[i ])
, bi,j =

∑τ
t=1 E(1sg (t)[i ] 1og (t)[j])∑τ

t=1 E(1sg (t)[i ])
.

On the other hand, recall Eqs. (47) and (59):

γi (t) = P
(
sg (t) = si | Og , λ

)
, ξi,j (t) = P

(
sg (t) = si , s

g (t + 1) = sj | Og , λ
)
.

Therefore, we can say:

E(1sg (1)[i ]) = γi (1), (62)

E(1sg (t)[i ]) = γi (t), (63)

E(1sg (t)[i ] 1sg (t+1)[j]) = ξi,j (t), (64)

E(1sg (t)[i ] 1og (t)[j]) = γi (t), where og (t) = j in γi (t). (65)

Hence:

πi = γi (1)
(47)
= P

(
sg (1) = si | Og , λ

)
, ∀i ∈ {1, . . . , n}, (66)

ai,j =

∑τ−1
t=1 ξi,j (t)∑τ−1
t=1 γi (t)

, ∀i , j ∈ {1, . . . , n}, (67)

bi,j =

∑τ
t=1, og (t)=j γi (t)∑τ

t=1 γi (t)
, ∀i ∈ {1, . . . , n}, ∀j ∈ {1, . . . ,m}.
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The Baum-Welch Algorithm

We found:

bi,j =

∑τ
t=1, og (t)=j γi (t)∑τ

t=1 γi (t)
, ∀i ∈ {1, . . . , n}, ∀j ∈ {1, . . . ,m}.

With change of variable, we have:

bj,k =

∑τ
t=1, og (t)=k γj (t)∑τ

t=1 γj (t)
, ∀j ∈ {1, . . . , n}, ∀k ∈ {1, . . . ,m}. (68)
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The Baum-Welch Algorithm
The algorithm is shown in Algorithm 5 [7]. In this algorithm the initial probabilities of
being in state si at time t = 1 is according to Eq. (66). Then the ai,j is then calculated
using Eq. (67). According to counting in probability, it can also be interpreted as the
ratio of the expected number of transitions from state si to sj over the expected number
of transitions out of state si . Finally, the bj,k is calculated using Eq. (68). Likewise, using
counting in probability, the bj,k can be interpreted as the ratio of the expected number of
times being in state sj and seeing observation ok over the expected number of times being
in state sj .
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The Baum-Welch Algorithm

For calculating Eq. (68):

bj,k =

∑τ
t=1, og (t)=k γj (t)∑τ

t=1 γj (t)
, ∀j ∈ {1, . . . , n}, ∀k ∈ {1, . . . ,m},

we use Eq. (49):

γi (t) =
αi (t)βi (t)∑n
j=1 αj (t)βj (t)

,

where:

αj (t + 1) =
[ n∑

i=1

αi (t) ai,j

]
bj,k , (69)

βi (t) =
n∑

j=1

ai,j bj,k , (70)

in line 5 in Algorithm 2 and in line 5 in Algorithm 3, respectively. We use the obtained
αi , ∀i , ∀t and βi (t), ∀i , ∀t for calculating Eq. (49).
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Applications of HMM
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Application in Speech Recognition

Assume we have a dictionary of words consisting of |W| words.
For every word indexed by w ∈ {1, . . . , |W|}, we have |Qw | training instances spoken by
one or several people. The training instances for a word are indexed by q where
q ∈ {1, . . . , |Qw |}.
Every training instance is a sequence of observation symbols obtained from formants [18].

We consider an HMM model for every word in the dictionary.

Training the HMMs are as [7, 8]:

1 For every word wi , consider the training sequences, Og
w , indexed by q, i.e.,

og
1 , . . . , o

g
|Qw |.

2 Train the HMM for the w -th word using Algorithm 6 to obtain λw .

For an unknown test word with sequence Og
t = og

1 , . . . , o
g
|Qt |

, we recognize the word as

[7, 8]:

1 Calculate P(Og
t |λw ) for all w ∈ {1, . . . , |W|} using the forward belief propagation,

i.e., Algorithm 2 (see Eq. (40)).
2 The test word is recognized as:

w∗ = argmax
w

P(Og
t |λw ). (71)

So, the test word is recognized as the w -th word in the dictionary.
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Application in Speech Recognition

In test phase for speech recognition, usually, the Viterbi algorithm is used [8]. Hence,
another approach for recognition of the test word Og

t is:

1 Calculate P(Og
t ,S

g
t |λw ) for all w ∈ {1, . . . , |W|} using the Viterbi algorithm, i.e.,

Algorithm 4 (see Eq. (57)).
2 The test word is recognized as:

w∗ = argmax
w

P(Og
t ,S

g
t |λw ). (72)

So, the test word is recognized as the w -th word in the dictionary.

Note that the words are pronounced with different lengths (fast or slowly) by different
people. As HMM is robust to different repetitions of states, the recognition of words
with different pacing is possible.
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Application in Action Recognition

In action recognition, every action can be seen as a sequence of poses where every pose
may be repeated for several frames [19]. Hence, HMM can be used for action recognition
[20].

Assume we have a set of actions denoted by W where the actions are indexed by
w ∈ {1, . . . , |W|}.
We have |Qw | training instances for every action where the training instances are indexed
by q ∈ {1, . . . , |Qw |}.
Every training instance is a sequence of observation symbols where the symbols are the
poses, e.g., sitting, standing, etc.

An HMM is trained for every action [19, 21].

Training and testing HMMs for action recognition is the same as training and test phases
explained for speech recognition.

The actions are performed with different sequence lengths (fast or slowly) by different
people. As HMM is robust to different repetitions of states, the recognition of actions
with different pacing is possible.
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Application in Action Recognition

In action recognition, we have a dataset of actions consisting of several defined poses
[19, 21]. For example, if the dataset includes three actions sit, stand, and turn, the
format of actions is as follows:

▶ Action sit: stand, stand . . . , stand︸ ︷︷ ︸
stand

, sit, sit . . . , sit︸ ︷︷ ︸
sit

▶ Action stand: sit, sit . . . , sit︸ ︷︷ ︸
sit

, stand, stand . . . , stand︸ ︷︷ ︸
stand

▶ Action turn: stand, stand . . . , stand︸ ︷︷ ︸
stand

, tilt, tilt . . . , tilt︸ ︷︷ ︸
tilt

where the actions are modeled as sequences of some poses, i.e., stand, sit, and tilt.

The actions can have different lengths or pacing.

An example training dataset with its instances is shown in Table 1. In some sequences of
dataset, there are some noisy poses in the middle of sequences of correct poses for
making a difficult instance.

An example test dataset is also shown in Table 2. The three test sequences are different
from the training sequences to check the generalizability of the HMM models.

Three HMM models can be trained for the three actions in this dataset and then, the test
action sequences can be fed to the HMM models to be recognized.

See our paper “Fisherposes for human action recognition using Kinect sensor data”
(2017) [19].
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Application in Action Recognition
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HMM in sklearn: https://scikit-learn.sourceforge.net/stable/modules/hmm.html
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