
K-Nearest Neighbors

Statistical Machine Learning (ENGG*6600*02)

School of Engineering,
University of Guelph, ON, Canada

Course Instructor: Benyamin Ghojogh
Summer 2023

K-Nearest Neighbors 1 / 16



k-Nearest Neighbors

K-Nearest Neighbors 2 / 16



k-Nearest Neighbors

Consider the dataset {x i ∈ Rd}ni=1.

Some data points are close to each other and some are far from each other, in the
d-dimensional Euclidean space. We can calculate the Euclidean distance between every
pair of points in the space.

Consider a point x i . We can calculate the Euclidean distance of all points of dataset,
except itself, from this point:

∥x1 − x i∥2, ∥x2 − x i∥2, . . . , ∥xn − x i∥2.

We sort these distances in ascending order and keep the k smallest distances. The
corresponding k points with the smallest distances from x i are the k-Nearest Neighbors
(k-NN) of x i . Note that k is a hyper-parameter positive integer for the number of
neighbors.

We do this procedure for all n points of dataset to have k-NN for all points.

Consider a graph whose vertices are the indices of the points {1, 2, . . . , n} and an edge
from vertex j to vertex i exists if x j is one of the k nearest neighbors of x i . Such a graph
is called the k-NN graph of the dataset.

K-Nearest Neighbors 3 / 16



Adjacency Matrix

Consider a matrix A ∈ Rn×n whose (i , j)-th element is:

A(i , j) :=

{
1 if j ∈ k-NN(x i )
0 Otherwise.

(1)

This matrix shows the indices of k-NN for all points. It is called the adjacency matrix or
the k-NN matrix.

Usually, the main diagonal of the adjacency matrix is zero or is ignored because we do not
consider every point to be its own neighbor.

If k ≪ n, then the adjacency matrix is very sparse having lots of zeros.

We can have the adjacency matrix between two datasets with size n1 and n2. In this case,
the size of matrix is n1 × n2.

Note that one may define the adjacency matrix to be A ∈ Rn×k where every row lists the
indices of the k-NN of x i in the dataset.

K-Nearest Neighbors 4 / 16



k-NN for Machine
Learning

K-Nearest Neighbors 5 / 16



k-NN for Machine Learning

k-NN can be used for machine learning tasks.

k-NN for regression:
▶ For every input point x , we find the k-NN of x among the training data points.
▶ The average or some statistics of the labels of the k-NN is used as the estimated

label of the point x .
k-NN for classification:

▶ For every input point x , we find the k-NN of x among the training data points.
▶ The majority of the class labels of the k-NN is used as the estimated class label of

the point x .
As explained above, k-NN for regression or classification does not have any training phase
but it only has the test phase. The training phase of k-NN in libraries just takes the
training data to be used later for k-NN calculation in the test phase.

The k-NN classifier partitions the space into classes. The smaller the k, the more variance
the decision boundary of classes has. Therefore, the small k leads to overfitting.

In general, larger k in k-NN classifier or regressor results in less overfitting and better
generalization. However, larger k has more computation. So, there is a trade-off between
generalization and computation.

K-Nearest Neighbors 6 / 16



Kernel k-NN for
Machine Learning

K-Nearest Neighbors 7 / 16



Distance in the Feature Space

Let ϕ(.) be the pulling function from the input space to the feature space (reproducing
kernel Hilbert space). Recall the kernel trick:

x⊤x 7→ ϕ(x)⊤ϕ(x). (2)

The squared Euclidean distance between points in the feature space (reproducing kernel
Hilbert space) is [1]:

∥ϕ(x i )− ϕ(x j )∥2k = k(x i , x i ) + k(x j , x j )− 2k(x i , x j ). (3)

Proof:

∥ϕ(x i )− ϕ(x j )∥2k =
(
ϕ(x i )− ϕ(x j )

)⊤(
ϕ(x i )− ϕ(x j )

)
= ϕ(x i )

⊤ϕ(x i ) + ϕ(x j )
⊤ϕ(x j )− ϕ(x i )

⊤ϕ(x j )− ϕ(x j )
⊤ϕ(x i )

(a)
= ϕ(x i )

⊤ϕ(x i ) + ϕ(x j )
⊤ϕ(x j )− 2ϕ(x i )

⊤ϕ(x j )

(b)
= k(x i , x i ) + k(x j , x j )− 2k(x i , x j ),

where (a) is because we can change the order of terms in inner product and (b) is because
of the kernel trick.

K-Nearest Neighbors 8 / 16



Kernel k-NN for Machine Learning

For calculation of the distance of points, we can pull the points to the feature space and
then calculate their distances in that feature space. Then, k-NN can be calculated using
the distances in the feature space. This algorithm is called kernel k-NN.

Kernel k-NN can be used for machine learning tasks similar to how we use k-NN for
machine learning.

K-Nearest Neighbors 9 / 16



Distance Metric
Learning for Large
Margin Nearest
Neighbor Classification

K-Nearest Neighbors 10 / 16



Generalized Mahalanobis Distance
k-Nearest Neighbor (k-NN) classification is highly impacted by the distance metric
utilized for measuring the differences between data points.

Euclidean distance does not weight the points and it values them equally.

A general distance metric can be viewed as the Euclidean distance after projection of
points onto a discriminative subspace [2]. This projection can be viewed as a linear
transformation with a projection matrix denoted by L. We call this general metric the
generalized Mahalanobis distance [2, 3, 4]:

D := ∥x i − x j∥2M := ∥L⊤(x i − x j )∥22 = (L⊤(x i − x j ))
⊤(L⊤(x i − x j ))

= (x i − x j )
⊤LL⊤(x i − x j ) = (x i − x j )

⊤M(x i − x j ),
(4)

where M := LL⊤. The matrix M must be positive semi-definite, i.e. M ⪰ 0, for the
metric to satisfy convexity and the triangle inequality [5].

K-Nearest Neighbors 11 / 16



Large Margin Nearest Neighbor Classification
In order to improve the k-NN classification performance, we should decrease and increase
the intra- and inter-class variances of data, respectively [6]. As can be seen in this figure,
one way to achieve this goal is to pull the data points of the same class toward one
another while pushing the points of different classes away.

Let yil be one (zero) if the data points x i and x l are (are not) from the same class.
Moreover, let ηij be one if x j is amongst the k-nearest neighbors of x i with the same class
label; otherwise, it is zero.

For tackling the goal of pushing together the points of a class and pulling different classes
away, the following cost function can be minimized [7]:∑

i,j

ηij∥L⊤(x i − x j )∥22 + c
∑
i,j,l

ηij (1− yil )
[
1 + ∥L⊤(x i − x j )∥22 − ∥L⊤(x i − x l )∥22

]
+
,

(5)
where [.]+ := max(., 0) is the standard Hinge loss. The first term in Eq. (5) pushes the
same-class points towards each other. The second term, on the other hand, is a triplet
loss [8] which increases and decreases the inter- and intra-class variances, respectively.

K-Nearest Neighbors 12 / 16



Large Margin Nearest Neighbor Classification

Eq. (5) was:

∑
i,j

ηij∥L⊤(x i − x j )∥22 + c
∑
i,j,l

ηij (1− yil )
[
1 + ∥L⊤(x i − x j )∥22 − ∥L⊤(x i − x l )∥22

]
+
,

Inspired by support vector machines, the cost function (5) can be restated using slack
variables:

minimize
M, ξijl

L :=
∑
i,j

ηij ∥x i − x j∥2M + c
∑
i,j

ηij (1− yil ) ξijl , ∀l

subject to ∥x i − x l∥2M − ∥x i − x j∥2M ≥ 1− ξijl ,

ξijl ≥ 0,

M ⪰ 0,

(6)

which is a SDP problem [9].

The first term in the objective functions of Eqs. (5) and (6) are equivalent because of Eq.
(4). The Hinge loss in Eq. (5) can be approximated using non-negative slack variables,
denoted by ξijl . The second term of objective function in Eq. (6), in addition to the first
and second constraints, play the role of Hinge loss.

K-Nearest Neighbors 13 / 16



Large Margin Nearest Neighbor Classification

We should solve this SDP problem using optimization toolboxes which use optimization
algorithms such as the interior-point method.

It is solved iteratively and usually slow to be solved. So, it is not used much in practice
although its theory is solid.

This method is called large margin metric learning for nearest neighbor classification
[7, 10].

I and my coauthors have a paper proposing triplet mining for this algorithm. See our
paper “Acceleration of large margin metric learning for nearest neighbor classification
using triplet mining and stratified sampling” [11].

K-Nearest Neighbors 14 / 16



References

[1] B. Schölkopf, “The kernel trick for distances,” Advances in neural information processing
systems, pp. 301–307, 2001.

[2] B. Ghojogh, A. Ghodsi, F. Karray, and M. Crowley, “Spectral, probabilistic, and deep
metric learning: Tutorial and survey,” arXiv preprint arXiv:2201.09267, 2022.

[3] B. Kulis et al., “Metric learning: A survey,” Foundations and Trends® in Machine
Learning, vol. 5, no. 4, pp. 287–364, 2013.

[4] A. Globerson and S. T. Roweis, “Metric learning by collapsing classes,” in Advances in
Neural Information Processing Systems, pp. 451–458, 2006.

[5] S. Boyd, S. P. Boyd, and L. Vandenberghe, Convex optimization.
Cambridge University Press, 2004.

[6] B. Ghojogh, M. Sikaroudi, S. Shafiei, H. R. Tizhoosh, F. Karray, and M. Crowley, “Fisher
discriminant triplet and contrastive losses for training siamese networks,” in IEEE
International Joint Conference on Neural Networks (IJCNN), 2020.

[7] K. Q. Weinberger, J. Blitzer, and L. K. Saul, “Distance metric learning for large margin
nearest neighbor classification,” in Advances in Neural Information Processing Systems,
pp. 1473–1480, 2006.

K-Nearest Neighbors 15 / 16



References (cont.)

[8] F. Schroff, D. Kalenichenko, and J. Philbin, “Facenet: A unified embedding for face
recognition and clustering,” in Proceedings of the IEEE conference on computer vision and
pattern recognition, pp. 815–823, 2015.

[9] L. Vandenberghe and S. Boyd, “Semidefinite programming,” SIAM Review, vol. 38, no. 1,
pp. 49–95, 1996.

[10] K. Q. Weinberger and L. K. Saul, “Distance metric learning for large margin nearest
neighbor classification,” Journal of Machine Learning Research, vol. 10, no. Feb,
pp. 207–244, 2009.

[11] P. A. Poorheravi, B. Ghojogh, V. Gaudet, F. Karray, and M. Crowley, “Acceleration of
large margin metric learning for nearest neighbor classification using triplet mining and
stratified sampling,” arXiv preprint arXiv:2009.14244, 2020.

K-Nearest Neighbors 16 / 16


