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Dataset

@ Assume we have a dataset of instances {(x;, y;)}}_; with sample size n and dimensionality
x; € RY and y; € R. The y;’s are the class labels.

@ We would like to classify the space of data using these instances.

@ Linear Discriminant Analysis (LDA) and Quadratic discriminant Analysis (QDA) [1] are
two well-known supervised classification methods in statistical and probabilistic learning.
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Optimization for the Boundary of Classes

@ First suppose the data is one dimensional, x € R. Assume we have two classes with the
Cumulative Distribution Functions (CDF) Fi(x) and Fz(x), respectively. Let the
Probability Density Functions (PDF) of these CDFs be:

() = 200, 1)
) = 2200, @)

respectively.

@ We assume that the two classes have normal (Gaussian) distribution which is the most
common and default distribution in the real-world applications. The mean of one of the
two classes is greater than the other one; we assume p3 < p2. An instance x € R belongs
to one of these two classes:

N(u1,02), if x €Ci,
x {N(u2,02), if x € Co, ®)

where C; and C, denote the first and second class, respectively.
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Optimization for the Boundary of Classes

@ For an instance x, we may have an error in estimation of the class it belongs to. At a

point, which we denote by x*, the probability of the two classes are equal; therefore, the
point x* is on the boundary of the two classes.

As we have p1 < p2, we can say 1 < x* < po as shown in below figure. Therefore, if
x < x*™ or x > x* the instance x belongs to the first and second class, respectively.
Hence, estimating x < x* or x > x* for belonging to the second and first class,
respectively, is an error in estimation of the class.

T o fecnennnaee

Linear and Quadratic Discriminant Analysis 5/33



Optimization for the Boundary of Classes

@ This probability of the error can be stated as:

P(error) = P(x > x™,x € C1) + P(x < x*,x € C2). (4)

@ As we have P(A, B) = P(A|B)P(B), we can say:

P(error) =P(x > x™ | x € C1) P(x € C1) + P(x < x™ | x € C2) P(x € (o), (5)

which we want to minimize:
minimize P(error), (6)
ek
by finding the best boundary of classes, i.e., x*.

N(p1,07) N(p2,03)

[ J P,

iz
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Optimization for the Boundary of Classes
@ We found:

P(error) =P(x > x™ | x € C1) P(x € C1) + P(x < x™ | x € C2) P(x € C2).
@ According to the definition of CDF, we have:

P(x < ¢c,x € C1) = Fi(c) = P(x > x",x € C1) =1— F(x"), (7)
P(x < x*,x € Cp) = Fo(x™). (8)

@ According to the definition of PDF, we have:

P(x € C1) = fi(x) = =1, (9
P(x € C2) = fo(x) = m2, (10)

where we denote the priors fi(x) and f(x) by w1 and mp, respectively.
@ Hence, Egs. (5) and (6) become:

minimize (1 — Fy(x*)) m1 + Fa(x*) m2. (11)
o
@ We take derivative for the sake of minimization:

P
T — ) m ) 20 = AT = () (12)
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Optimization for the Boundary of Classes

@ Another way to obtain this expression is equating the posterior probabilities to have the
equation of the boundary of classes:

set

P(x € C1|X =x) = P(x € C2| X = x). (13)
@ According to Bayes rule, the posterior is:

X =x|x€C)P(x € (1)
P(X = x)
fi(x) m

T Sl B = x|x e Cme

]P(XGC:[|X=X)=]P(

(14)

where |C| is the number of classes which is two here. The fi(x) and 7 are the likelihood
(class conditional) and prior probabilities, respectively, and the denominator is the
marginal probability.

@ Therefore, Eq. (13) becomes:

fi(x) m set fo(x) m2
S PX =x|xec)m DI PX =x|xeC)m

= fi(x)m = fo(x)m2. (15)
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Optimization for the Boundary of Classes

@ Now let us think of data as multivariate data with dimensionality d. The PDF for
multivariate Gaussian distribution, x ~ A (p, X) is:

1 eewTE g
Flx) = (%)d‘z‘ep( > ), (16)

where x € RY, € R? is the mean, £ € R?¥9 s the covariance matrix, and || is the
determinant of matrix. The m ~ 3.14 in this equation should not be confused with the 7
(prior) in Eq. (12) or (15).

@ Therefore, the Eq. (12) or (15) becomes:

1 ex (_ (Xfﬂl)Tzfl(X*Hfl))W
N =T 2 '
(x =) TEy (x — uz)) -

1
NI S 2

where the distributions of the first and second class are N'(pq, X1) and N (p,, X7),
respectively.

17
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Linear Discriminant Analysis for Binary Classification

@ In Linear Discriminant Analysis (LDA), we assume that the two classes have equal
covariance matrices:

T =%,=%. (18)

Therefore, the Eq. (17) becomes:

1 (x =p1) TE 7 (x — )
A H)m
1 (x =) TE 7 (x — p)
oL S S
Ty 1 — — )T Y (x —
(x m)ﬁ (x /"‘1))7T1:exp(7 (x Hz)}; (x "2))@,

— exp (f
a 1 1
L= ) TE T x = )+ In(m) = =5 (x — 1) TE N x = 1) + In(ma),

where (a) takes natural logarithm from the sides of equation.
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Linear Discriminant Analysis for Binary Classification

@ We can simplify this term as:

(= pa) TE TN = ) = (x T = g )ETH(x - )
=x"E x—xTE - T x4 T
T ] Ty - 2] (19)

where (a) is because x T X~ 'p; = p X 71x as it is a scalar and X! is symmetric so
¥~ T =51 Thus, we have:

1 1
— ExT}:*lx — Ep,lT):’ly,l + p T x + In(my)

1 1
= —EXTE_IX — E;L;Z_I;LZ + py T x + In(m).
@ Therefore, if we multiply the sides of equation by 2, we have:

2 (5 (pp — 1)) ' X+ g Ty — g Ty 42 In(:—j) =0, (20)
which is the equation of a line in the form of a’ x + b = 0.

@ Therefore, if we consider Gaussian distributions for the two classes where the covariance
matrices are assumed to be equal, the decision boundary of classification is a line.
Because of linearity of the decision boundary which discriminates the two classes, this
method is named linear discriminant analysis.
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Linear Discriminant Analysis for Binary Classification

@ For obtaining Eq. (20), we brought the expressions to the right side which was
corresponding to the second class; therefore, if we use §(x) : RY — R as the left-hand-side
expression (function) in Eq. (20):

— T — — 2
6(x) =2 (Z M1p — 1)) X+ p T 'y —pg T 1uz+2ln(;1)7 (21)

the class of an instance x is estimated as:

~ 1, ifé(x) <0,
e ={ 5 1950 (22)

@ |If the priors of two classes are equal, i.e., 1 = 2, the Eq. (20) becomes:
_ T _ _
2(Z Y ua— 1) x+pE 7y —pg Ty =0, (23)

whose left-hand-side expression can be considered as §(x) in Eq. (22).
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Quadratic Discriminant Analysis for Binary Classification

@ In Quadratic Discriminant Analysis (QDA), we relax the assumption of equality of the
covariance matrices:

T £ 3, (24)

which means the covariances are not necessarily equal (if they are actually equal, the
decision boundary will be linear and QDA reduces to LDA).

@ Therefore, the Eq. (17) becomes:

1 _ (x— 1) TE N (x — )
O ex ( > )7r1

_ (x = Nz)Tzz_l(X L))
enama ( 2 )

(a)

LS in(@m) — 3 In(E1]) — 5 (x — o) "Ey x — ) + ()

——1In
2
=~ T in(@m) — (%)~ 2 (x — 12) B3 (x — pig) + (),

where (a) takes natural logarithm from the sides of equation.
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Quadratic Discriminant Analysis for Binary Classification
@ Recall Eq. (19):
(x—p)  E M (x—py) =x " E x4 p T 0y —2p T

@ According to Eq. (19), we have:

1 1 _ 1 _ _
5 In(|Z1]) = 5XT21 x - 5#?21 g+ By By x4 In(m)

1 1 _ 1 _ _
=5 In(|X2]) — EXTzz 1x — E;J,QT}:z Ly, + ;J.QT}:z Ix + In(m).

@ Therefore, if we multiply the sides of equation by 2, we have:

X (Z1—Eo) Ix +2( y — ) Tx
%4

Ty-—1 Ty-—1 2
b R n( =0 £ o in(®2y =0,
(1 Z) T — e Ty o) + n(lzz\) + n(m)

(25)

which is in the quadratic form xT Ax + b"x+c=0.

@ Therefore, if we consider Gaussian distributions for the two classes, the decision boundary
of classification is quadratic. Because of quadratic decision boundary which discriminates
the two classes, this method is named quadratic discriminant analysis.
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Quadratic Discriminant Analysis for Binary Classification

@ For obtaining Eq. (25), we brought the expressions to the right side which was
corresponding to the second class; therefore, if we use d(x) : RY — R as the left-hand-side
expression (function) in Eq. (25):

8(x) = xT (X1 — Ep) " x+2 (Z;lp,Q — Z;lp,l)—rx

+(pd Z7 i — g T N2)+|n(:z :) +2 In(:—j), (29)
the class of an instance x is estimated as the Eq. (22):
e ={ 5 1950
@ If the priors of two classes are equal, i.e., m; = m2, the Eq. (20) becomes:
T(E - %) x4+ 2(X - T ) Tx
+ (] E g — b3 E5 M) +In (:z }) 0, @)

whose left-hand-side expression can be considered as §(x) in Eq. (22).
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LDA and QDA for Multi-class Classification

@ Now we consider multiple classes, which can be more than two, indexed by
ke {1,...,|C|}. Recall Eq. (12) or (15) where we are using the scaled posterior, i.e.,
fk(X) Tk-

@ According to Eq. (16), we have:

_ 1 (x — ) TE N (x — )
fr(x) T, = W exp (— 2" )wk.

Taking natural logarithm gives:
d 1 1 Te—1
In(fi(x) 7)) = — 5 In(27) — 5 In(|Z«]) — E(x — ) X (x = ) F In(my).

@ We drop the constant term —(d/2) In(27) which is the same for all classes (note that this
term is multiplied before taking the logarithm). Thus, the scaled posterior of the k-th
class becomes:

1 1 Te—1
5(x) = — 3 () = 5 0x = ) TEL (x = i) + In(ie). (28)
@ In QDA, the class of the instance x is estimated as:

5(x) = arg max Ok (x), (29)

because it maximizes the posterior of that class. In this expression, §x(x) is Eq. (28).
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LDA and QDA for Multi-class Classification

@ In LDA, we assume that the covariance matrices of the k classes are equal:

T =X =X (30)
Therefore, the Eq. (28),
1 1 Te—1
() = = SINELl) — 2 0x = ) 5 x — gm) + (),

becomes:

1 1 Te-1

Sk(x) = ) In(|Z[) — E(X =) T (x — py) + In(mi)
1 1
:—5|”(|z\)— EXTZA Eukz Yo g T x - In(mg).

@ We drop the constant terms —(1/2) In(|X|) and —(1/2) x T £~ 1x which are the same for
all classes (note that before taking the logarithm, the term —(1/2)In(|X|) is multiplied
and the term —(1/2) xT X~ 1x is multiplied as an exponential term). Thus, the scaled
posterior of the k-th class becomes:

1
Sk(x) = pg £~ nguki L+ In(my). (31)

@ In LDA, the class of the instance x is determined by Eq. (29), where §(x) is Eq. (31),
because it maximizes the posterior of that class.
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Estimation of Parameters in LDA and QDA

@ In LDA and QDA, we have several parameters which are required in order to calculate the
posteriors. These parameters are the means and the covariance matrices of classes and
the priors of classes.

@ The priors of the classes are very tricky to calculate. It is somewhat a chicken and egg
problem because we want to know the class probabilities (priors) to estimate the class of
an instance but we do not have the priors and should estimate them.

@ Usually, the prior of the k-th class is estimated according to the sample size of the k-th
class:
Nk

= 2, (32)
n

where ng and n are the number of training instances in the k-th class and in total,

respectively. This estimation considers Bernoulli distribution for choosing every instance
out of the overall training set to be in the k-th class.

Linear and Quadratic Discriminant Analysis 22/33



Estimation of Parameters in LDA and QDA

@ The mean of the k-th class can be estimated using the Maximum Likelihood Estimation
(MLE), or Method of Moments (MOM), for the mean of a Gaussian distribution:

o1
RY >y = o > o xi1(C(x;) = k), (33)
i=1

where I(.) is the indicator function which is one and zero if its condition is satisfied and
not satisfied, respectively.
@ In QDA, the covariance matrix of the k-th class is estimated using MLE:

RIxd 55, — 1 Z(X’ — B T I(C(x1) = k). (34)

Or we can use the unbiased estimation of the covariance matrix:

Rdxd

— ) (xi — ) T 1(C(x)) = k). (35)

@ In LDA, we assume that the covariance matrices of the classes are equal; therefore, we use
the weighted average of the estimated covariance matrices as the common covariance
matrix in LDA:

\CI 5 €] 5
Réxd 5§ TR
B \CI - ’
Zr 10r n
where the weights are the cardinality of the classes.
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Examples for LDA and QDA

Code of these plots and example in my GitHub:
https://github.com/bghojogh/Linear-Quadratic-Discriminant-Analysis
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LDA and QDA are Metric Learning!

@ Recall Eq. (28) which is the scaled posterior for the QDA:

1 1 _
O (x) :=— 3 In(|Zk]) — E(X - l"k)Tzk Yx = ) + In(g).
@ First, assume that the covariance matrices are all equal (as we have in LDA) and they all
are the identity matrix:
==X =1 (37)

which means that all the classes are assumed to be spherically distributed in the d
dimensional space. After this assumption, the Eq. (28) becomes:

B(x) = = 5 (x = ) (x = ) + In(re), (39)

because |[/| =1, In(1) =0, and 1" = I.
@ If we assume that the priors are all equal, the term In(my) is constant and can be dropped:

lx) = = 5 x = ) (= i) = 3 (39)

where dy is the Euclidean distance from the mean of the k-th class:

die = [1x = pglla =/ (x = i) T (x = pay). (40)

@ Thus, the QDA or LDA reduce to simple Euclidean distance from the means of classes if
the covariance matrices are all identity matrix and the priors are equal. Simple distance
from the mean of classes is one of the simplest classification methods where the used
metric is Euclidean distance.
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LDA and QDA are Metric Learning!

@ Now, consider the case where still the covariance matrices are all identity matrix but the
priors are not equal. In this case, we have Eq. (38):

x) = = 5 0x = )T (x = ) + i)

@ If we take an exponential (inverse of logarithm) from this expression, the m; becomes a
scale factor (weight). This means that we still are using distance metric to measure the
distance of an instance from the means of classes but we are scaling the distances by the
priors of classes. If a class happens more, i.e., its prior is larger, it must have a larger
posterior so we reduce the distance from the mean of its class. In other words, we move
the decision boundary according to the prior of classes.

decision decision decision
boundary boundary boundary
: . .
. . .
: . .
H1 ! 2 B k2 M1 T M2
: e ! [ ] ® N
: : b
[ N .
[ N .
. : :
: H ] e .
. o T .
T < T T > Mo
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LDA and QDA are Metric Learning!

@ As the next step, consider a more general case where the covariance matrices are not
equal as we have in QDA.

@ We apply Singular Value Decomposition (SVD) to the covariance matrix of the k-th class:
T = U AU

where the left and right matrices of singular vectors are equal because the covariance
matrix is symmetric. Therefore:

1 ~14,T
Y, =UN U,

where Uk_l = UkT because it is an orthogonal matrix.

@ Therefore, we can simplify the following term:

(=) TE (= ) = (x — ) TURATT U (x — )
= (UEX - UZNk)T/\k_l (UZX - UkTﬂk)~
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LDA and QDA are Metric Learning!

@ We found:
(x =) T (= ) = (U x = U ) T (U] x = U ).

@ As /\;1 is a diagonal matrix with non-negative elements (because it is covariance), we can
decompose it as:

—1_ a-1/2p—1/2
AL =N

Therefore:

—1/2 —1/2

(Uk"*UTHk)T (UkX*Uk Hy) = (UkX* Uk /J'k) (UkX*UkT#k)

D A 2UTx - APUT ) T(N2UT x - AU ),

where (a) is because A, T2 2 I\k_l/2 because it is diagonal.

@ We define the following transformation:

bk x = N ~1/2y Ix, (41)

which also results in the transformation of the mean: ¢, : p — A, ~1/2 UT
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LDA and QDA are Metric Learning!

@ We had:
Ok 1 X I\k_l/2UZx.

@ Therefore, the Eq. (28),
1 1 Te-1
Op(x) :=— 3 In(|X4]) — E(X — i) 0 (x = py) +In(my),
can be restated as:
Bi(x) = =3 I(Ze]) = 3 (66(0) = D)) T (04() = dulpwe)) +Inlm). (42)

@ Ignoring the terms —(1/2) In(|X|) and In(mk), we can see that the transformation has
changed the covariance matrix of the class to identity matrix. Therefore, the QDA (and
also LDA) can be seen as simple comparison of distances from the means of classes
after applying a transformation to the data of every class. In other words, we are
learning the metric using the SVD of covariance matrix of every class. Thus, LDA and
QDA can be seen as metric learning [2, 3] in a perspective.
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LDA and QDA are Metric Learning!

@ Note that in metric learning, a valid distance metric is defined as [2]:
da0x, i) =[x — pela = (x = i) TA(x = ), (43)

where A is a positive semi-definite matrix, i.e., A = 0.
@ In QDA, we are also using (x — uk)T):;l(x — )

@ The covariance matrix is positive semi-definite according to the characteristics of
covariance matrix. Moreover, according to characteristics of a positive semi-definite
matrix, the inverse of a positive semi-definite matrix is positive semi-definite so Z;l > 0.

@ Therefore, QDA is using metric learning.
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Acknowledgment

@ For more information on LDA and QDA, refer to our tutorial paper: Benyamin Ghojogh,
Mark Crowley. "Linear and quadratic discriminant analysis: Tutorial.” arXiv preprint
arXiv:1906.02590 (2019). [4]

@ Code of my LDA and QDA:
https://github.com/bghojogh/Linear-Quadratic-Discriminant-Analysis

@ For more information on LDA and QDA, see the book: Trevor Hastie, Robert Tibshirani,
Jerome H. Friedman, Jerome H. Friedman. “The elements of statistical learning: data
mining, inference, and prediction”. Vol. 2. New York: springer, 2009 [1].

@ Some slides of this slide deck are inspired by teachings of Prof. Ali Ghodsi and Prof. Mu
Zhu at University of Waterloo, Department of Statistics and Prof. Hoda Mohammadzade
at Sharif University of Technology, Department of Electrical Engineering.
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