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Locally Linear Embedding

Locally Linear Embedding (LLE) (2000) [1, 2] is a nonlinear spectral dimensionality
reduction method [3] which can be used for manifold embedding and feature extraction
[4].

LLE tries to preserve the local structure of data in the embedding space. In other
words, the close points in the high-dimensional input space should also be close to each
other in the low-dimensional embedding space. By this local fitting, hopefully the far
points in the input space also fall far away from each other in the embedding space. This
idea of fitting locally and thinking globally is the main idea of LLE [5, 6, 7, 8].

In another perspective, the idea of local fitting by LLE is similar to idea of piece-wise
spline regression [9]. LLE unfolds the nonlinear manifold by locally unfolding of manifold
piece by piece and it hopes that these local unfoldings result in a suitable total manifold
unfolding.
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Locally Linear Embedding

LLE, first proposed in [1] and developed in [10, 6], has three steps [11].

1 First, it finds k-Nearest Neighbors (kNN) graph of all training points.
2 Then, it tries to find weights for reconstructing every point by its neighbors, using

linear combination.
3 Using the same found weights, it embeds every point by a linear combination of its

embedded neighbors.

The main idea of LLE is using the same reconstruction weights in the lower dimensional
embedding space as in the high dimensional input space.

(a) (b) (c)
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k-Nearest Neighbors

Locally Linear Embedding 4 / 22



k-Nearest Neighbors

A kNN graph is formed using pairwise Euclidean distance between the data points.
Therefore, every data point has k neighbors.

Let x ij ∈ Rd denote the j-th neighbor of x i and let the matrix Rd×k ∋ X i := [x i1, . . . , x ik ]
include the k neighbors of x i .

We assume that k is large enough so that the kNN graph is connected.
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Linear Reconstruction
by the Neighbors
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Linear Reconstruction by the Neighbors

In the second step, we find the weights for linear reconstruction of every point by its kNN.
The optimization for this linear reconstruction in the high dimensional input space is
formulated as:

minimize
W̃

ε(W̃ ) :=
n∑

i=1

∣∣∣∣∣∣x i −
k∑

j=1

w̃ijx ij

∣∣∣∣∣∣2
2
,

subject to
k∑

j=1

w̃ij = 1, ∀i ∈ {1, . . . , n},

(1)

where Rn×k ∋ W̃ := [w̃1, . . . , w̃n]⊤ includes the weights, Rk ∋ w̃ i := [w̃i1, . . . , w̃ik ]
⊤

includes the weights of linear reconstruction of the i-th data point using its k neighbors,
and x ij ∈ Rd is the j-th neighbor of the i-th data point.

The constraint
∑k

j=1 w̃ij = 1 means that the weights of linear reconstruction sum to one
for every point. Note that the fact that some weights may be negative causes the
problem of explosion of some weights because very large positive and negative weights
can cancel each other to have a total sum of one. However, this problem does not occur
because, as we will see, the solution to this optimization problem has a closed form; thus,
weights do not explode. If the solution was found iteratively, the weights would grow and
explode gradually [12].
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Linear Reconstruction by the Neighbors
We can restate the objective ε(W̃ ) =

∑n
i=1

∣∣∣∣∣∣x i −
∑k

j=1 w̃ijx ij

∣∣∣∣∣∣2
2
as:

ε(W̃ ) =
n∑

i=1

||x i − X i w̃ i ||22. (2)

The constraint
∑k

j=1 w̃ij = 1 implies that 1⊤w̃ i = 1; therefore, x i = x i1
⊤w̃ i .

We can simplify the term in ε(W̃ ) as:

||x i − X i w̃ i ||22 = ||x i1
⊤w̃ i − X i w̃ i ||22 = ||(x i1

⊤ − X i ) w̃ i ||22
= w̃⊤

i (x i1
⊤ − X i )

⊤(x i1
⊤ − X i ) w̃ i = w̃⊤

i G i w̃ i ,

where G i is a Gram matrix defined as:

Rk×k ∋ G i := (x i1
⊤ − X i )

⊤(x i1
⊤ − X i ). (3)

Finally, Eq. (1) can be rewritten as:

minimize
{w̃ i}ni=1

n∑
i=1

w̃⊤
i G i w̃ i ,

subject to 1⊤w̃ i = 1, ∀i ∈ {1, . . . , n}.

(4)
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Linear Reconstruction by the Neighbors
We had:

minimize
{w̃ i}ni=1

n∑
i=1

w̃⊤
i G i w̃ i ,

subject to 1⊤w̃ i = 1, ∀i ∈ {1, . . . , n}.
The Lagrangian for Eq. (4) is [13]:

L =
n∑

i=1

w̃⊤
i G i w̃ i −

n∑
i=1

λi (1
⊤w̃ i − 1).

Setting the derivative of Lagrangian to zero gives:

Rk ∋
∂L
∂w̃ i

= 2G i w̃ i − λi1
set
= 0 =⇒ w̃ i =

1

2
G−1

i λi1 =
λi

2
G−1

i 1. (5)

R ∋
∂L
∂λ

= 1⊤w̃ i − 1
set
= 0 =⇒ 1⊤w̃ i = 1. (6)

Using Eqs. (5) and (6), we have:

λi

2
1⊤G−1

i 1 = 1 =⇒ λi =
2

1⊤G−1
i 1

. (7)

Using Eqs. (5) and (7), we have:

w̃ i =
λi

2
G−1

i 1 =
G−1

i 1

1⊤G−1
i 1

. (8)
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Linear Reconstruction by the Neighbors

According to Eq. (3):

Rk×k ∋ G i := (x i1
⊤ − X i )

⊤(x i1
⊤ − X i ).

the rank of matrix G i ∈ Rk×k is at most equal to min(k, d).

If d < k, then G i is singular and G i should be replaced by G i + ϵI where ϵ is a small
positive number.

Usually, the data are high dimensional (so k ≪ d) as in images and thus if G i is full rank,
we will not have any problem with inverting it.

Strengthening the main diagonal of G is referred to as regularization in LLE [14]. This
numerical technique is widely used in manifold and subspace learning (e.g., see [15]).
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Linear Embedding
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Linear Embedding
In the second step, we found the weights for linear reconstruction in the high dimensional
input space. In the third step, we embed data in the low dimensional embedding space
using the same weights as in the input space. This linear embedding can be formulated as
the following optimization problem:

minimize
Y

n∑
i=1

∣∣∣∣∣∣y i −
n∑

j=1

wijy j

∣∣∣∣∣∣2
2
,

subject to
1

n

n∑
i=1

y iy
⊤
i = I ,

n∑
i=1

y i = 0,

(9)

where I is the identity matrix, the rows of Rn×p ∋ Y := [y1, . . . , yn]
⊤ are the embedded

data points (stacked row-wise), y i ∈ Rp is the i-th embedded data point, and wij is the
weight obtained from the linear reconstruction if x j is a neighbor of x i and zero otherwise:

wij :=

{
w̃ij if x j ∈ kNN(x i )
0 otherwise.

(10)

The second constraint in Eq. (9) ensures the zero mean of embedded data points. The
first and second constraints together satisfy having unit covariance for the embedded
points.
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Linear Embedding
Suppose Rn ∋ w i := [wi1, . . . ,win]

⊤ and let Rn ∋ 1i := [0, . . . , 1, . . . , 0]⊤ be the vector
whose i-th element is one and other elements are zero. The objective function in Eq. (9)
can be restated as:

n∑
i=1

∣∣∣∣∣∣y i −
n∑

j=1

wijy j

∣∣∣∣∣∣2
2
=

n∑
i=1

||Y⊤1i − Y⊤w i ||22,

which can be stated in matrix form:

n∑
i=1

||Y⊤1i − Y⊤w i ||22 = ||Y⊤I − Y⊤W⊤||2F = ||Y⊤(I − W )⊤||2F , (11)

where the i-th row of Rn×n ∋ W := [w1, . . . ,wn]⊤ includes the weights for the i-th data
point and ||.||F denotes the Frobenius norm of matrix.
The Eq. (11) is simplified as:

||Y⊤(I − W )⊤||2F = tr
(
(I − W )YY⊤(I − W )⊤

)
= tr

(
Y⊤(I − W )⊤(I − W )Y

)
= tr(Y⊤MY ), (12)

where tr(.) denotes the trace of matrix and:

Rn×n ∋ M := (I − W )⊤(I − W ). (13)

Note that (I − W ) is the Laplacian of matrix W because the columns of W , which are
w i ’s, add to one (for the constraint used in Eq. (1)). Hence, according to Eq. (13), the
matrix M can be considered as the gram matrix over the Laplacian of weight matrix.
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Linear Embedding
Finally, Eq. (9) can be rewritten as:

minimize
Y

tr(Y⊤MY ),

subject to
1

n
Y⊤Y = I ,

Y⊤1 = 0,

(14)

where the dimensionality of 1 and 0 are Rn and Rp , respectively.

The second constraint will be satisfied implicitly (see our tutorial paper “Locally linear
embedding and its variants: Tutorial and survey” [16] for proof). Therefore, if we ignore
the second constraint, the Lagrangian for Eq. (14) is [13]:

L = tr(Y⊤MY )− tr
(
Λ⊤(

1

n
Y⊤Y − I )

)
,

where Λ ∈ Rn×n is a diagonal matrix including the Lagrange multipliers.

Equating derivative of L to zero gives us:

Rn×p ∋
∂L
∂Y

= 2MY −
2

n
YΛ

set
= 0 =⇒ MY = Y (

1

n
Λ), (15)

which is the eigenvalue problem for M [17]. Therefore, the columns of Y are the
eigenvectors of M where eigenvalues are the diagonal elements of (1/n)Λ.

As Eq. (14) is a minimization problem, the columns of Y should be sorted from the
smallest to largest eigenvalues.
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Linear Embedding
Recall:

Rn×n ∋ M := (I − W )⊤(I − W ).

Recall that we explained (I − W ) in M is the Laplacian matrix for the weights W . It is
well-known in linear algebra and graph theory that if a graph has k disjoint connected
parts, its Laplacian matrix has k zero eigenvalues (see [18, Theorem 3.10] and [19, 20]).

As the kNN graph, or W , is a connected graph, (I − W ) has one zero eigenvalue whose
eigenvector is 1 = [1, 1, . . . , 1]⊤.

After sorting the eigenvectors from smallest to largest eigenvalues, we ignore the first
eigenvector having zero eigenvalue and take the p smallest eigenvectors of M with
non-zero eigenvalues as the columns of Y ∈ Rn×p .

Lemma

The fact that we have the eigenvector 1 with zero eigenvalue implicitly ensures that∑n
i=1 y i = Y⊤1 = 0 which was the second constraint.

Proof.
See our tutorial paper: “Locally linear embedding and its variants: Tutorial and survey” [16] for
proof.
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Examples of LLE
Embedding
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Examples of LLE Embedding

Swiss roll:
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Examples of LLE Embedding

Frey facial dataset:
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Acknowledgment

Some slides are based on our tutorial paper: “Locally linear embedding and its variants:
Tutorial and survey” [16]

Some slides of this slide deck are inspired by teachings of Prof. Ali Ghodsi at University of
Waterloo, Department of Statistics.

The code of LLE in my GitHub: https://github.com/bghojogh/Generative-LLE

LLe in sklearn: https://scikit-learn.org/stable/modules/generated/sklearn.
manifold.LocallyLinearEmbedding.html
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