Statistical Machine Learning (ENGG*6600*02)

School of Engineering, University of Guelph, ON, Canada

Course Instructor: Benyamin Ghojogh Summer 2023

- Logistic regression is popular in bio-statistics and bio-informatics.
- Let $\mathbf{x} \in \mathbb{R}^d$ be data and $\mathbf{y} \in \mathbb{R}$ be class label. Baye's rule:

$$\boxed{\underbrace{\mathbb{P}(y|x)}_{=} = \underbrace{\underbrace{\mathbb{P}(x|y)\mathbb{P}(y)}_{=}}_{=}}, (1)$$

where $\mathbb{P}(y|\mathbf{x})$ and $\mathbb{P}(\mathbf{x}|y)$ are the posterior and likelihood, respectively, and $\mathbb{P}(\mathbf{x})$ and $\mathbb{P}(y)$ are the priors.

• In contrast to Linear Discriminant Analysis (LDA), logistic regression works on the posterior $\mathbb{P}(y|x)$ directly rather than working on likelihood $\mathbb{P}(x|y)$ and prior $\mathbb{P}(y)$.

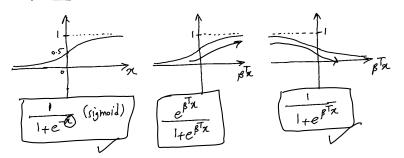
- Logistic regression is a <u>binary classifier</u> where it <u>assigns probability between zero and one</u> for belonging to one of the classes.
- The logistic function, used in logistic regression, was initially proposed in 1845 for modeling the population growth [1]. It was further improved in the 20th century [2]. See
 [3] for the history of logistic regression.
- It considers the classification problem as a regression problem where it regresses (predicts) the probability of belonging to a class. It first considers a linear regression $\beta^\top x + \beta_0$. However, in order to not have the bias, it assumes that x is d+1 dimensional with an additional element of 1 for bias, i.e., $x = [x_1, \ldots, x_d, 1]^\top$. The $\beta \in \mathbb{R}^{d+1}$ is the learnable parameter of the logistic regression model. As a result, the linear regression becomes $\beta^\top x$.
- However, there is no bound on this regression while logistic regression desires the output
 to be in the range [0, 1] to behave like a probability. Therefore, Logistic regression models
 the posterior using a logistic function, also called the sigmoid function, to make this
 regression between zero and one.

- Assume we have two classes $y \in \{0, 1\}$.
- Logistic regression models the posterior using a logistic function, also called the sigmoid function:

$$\mathbb{P}(y=1|X=x) = \frac{e^{\beta^{\top}x}}{1+e^{\beta^{\top}x}},$$

$$\mathbb{P}(y=0|X=x) = 1 - \mathbb{P}(y=1|X=x) = \frac{1}{1+e^{\beta^{\top}x}},$$
(2)

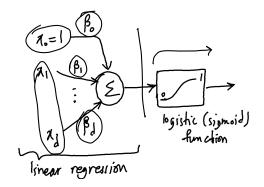
where $\boldsymbol{\beta} \in \mathbb{R}^d$ is the learnable parameter of the logistic regression model.



Logistic Regression

Logistic Regression as a Neural Network

Logistic regression can be seen as a <u>neural network</u> with <u>one neuron</u> where the <u>activation</u> function is the nonlinear sigmoid (logistic) function.



• Consider n data points $\{(x_i, y_i)\}_{i=1}^n$ in the dataset. Assuming that they are independent and identically distributed (i.i.d), the posterior over all data points is:

$$\mathbb{P}(y|X) = \prod_{i=1}^{n} \left(\mathbb{P}(y_i = 1|X = x_i) \mathbb{I}(y_i = 1) + \mathbb{P}(y_i = 0|X = x_i) \mathbb{I}(y_i = 0) \right), \tag{4}$$

where $\mathbb{I}(.)$ is the indicator function which is one if its condition is satisfied and is zero otherwise.

• As the labels are either zero or one, i.e., $y_i \in \{0,1\}$, this equation can be restated as:

$$\mathbb{P}(y|X) = \prod_{i=1}^{n} \left(\mathbb{P}(y_i = 1|X = x_i) \right)^{(i)} \left(\mathbb{P}(y_i = 0|X = x_i) \right)^{(i-y_i)}$$
 (5)

• Substituting Eqs. (2) and (3) in this equation gives:

$$\mathbb{P}(y|X) = \prod_{i=1}^{n} \left(\frac{\mathbf{e}^{\beta^{\top} \mathbf{x}_{i}}}{1 + \mathbf{e}^{\beta^{\top} \mathbf{x}_{i}}}\right)^{y_{i}} \left(\frac{1}{1 + e^{\beta^{\top} \mathbf{x}_{i}}}\right)^{1 - y_{i}}.$$
 (6)

Logistic Regression

The log posterior is:

$$\ell(\beta) := \mathbb{P}(y|X = x) = \log \prod_{i=1}^{n} \left(\frac{e^{\beta^{\top} x_{i}}}{1 + e^{\beta^{\top} x_{i}}} \right)^{y_{i}} \left(\frac{1}{1 + e^{\beta^{\top} x_{i}}} \right)^{1 - y_{i}}$$

$$= \sum_{i=1}^{n} \left(\log \left(\frac{e^{\beta^{\top} x_{i}}}{1 + e^{\beta^{\top} x_{i}}} \right)^{y_{i}} + \log \left(\frac{1}{1 + e^{\beta^{\top} x_{i}}} \right)^{1 - y_{i}} \right)$$

$$= \sum_{i=1}^{n} \left(y_{i} \log(e^{\beta^{\top} x_{i}}) - y_{i} \log(1 + e^{\beta^{\top} x_{i}}) - (1 - y_{i}) \log(1 + e^{\beta^{\top} x_{i}}) \right)$$

$$= \sum_{i=1}^{n} \left(y_{i} \beta^{\top} x_{i} - y_{i} \log(1 + e^{\beta^{\top} x_{i}}) - \log(1 + e^{\beta^{\top} x_{i}}) \right)$$

$$= \sum_{i=1}^{n} \left(y_{i} \beta^{\top} x_{i} - \log(1 + e^{\beta^{\top} x_{i}}) \right).$$

ogistic Regression 7 / 14

The log posterior is:

• Newton's method can be used to find the optimum β . The first derivative, or the gradient, it:

$$\frac{\partial \ell(\beta)}{\partial \beta} = \sum_{i=1}^{n} \left(y_i \mathbf{x}_i - \frac{1}{1 + e^{\beta^{\top} \mathbf{x}_i}} e^{\beta^{\top} \mathbf{x}_i} \mathbf{x}_i \right) = \sum_{i=1}^{n} \left(y_i - \frac{e^{\beta^{\top} \mathbf{x}_i}}{1 + e^{\beta^{\top} \mathbf{x}_i}} \right) \mathbf{x}_i.$$
(7)

Its transpose is:

$$\frac{\partial \ell(\boldsymbol{\beta})}{\partial \boldsymbol{\beta}^{\top}} = \sum_{i=1}^{n} \left(y_i - \frac{e^{\boldsymbol{\beta}^{\top} \mathbf{x}_i}}{1 + e^{\boldsymbol{\beta}^{\top} \mathbf{x}_i}} \right) \mathbf{x}_i^{\top}$$

gistic Regression

The second derivative is:

$$\underbrace{\left(\frac{\partial^{2}\ell(\beta)}{\partial\beta\partial\beta^{\top}}\right)}_{o(\beta)} = \underbrace{\frac{\partial}{\partial\beta}\left(\frac{\partial\ell(\beta)}{\partial\beta^{\top}}\right)}_{o(\beta)} = \underbrace{\frac{\partial}{\partial\beta}\left(\sum_{i=1}^{n}\left(y_{i} - \frac{e^{\beta^{\top}x_{i}}}{1 + e^{\beta^{\top}x_{i}}}\right)x_{i}^{\top}\right)}_{i} = \sum_{i=1}^{n}\left(-\frac{\partial}{\partial\beta}\left(\frac{e^{\beta^{\top}x_{i}}}{1 + e^{\beta^{\top}x_{i}}}\right)\right)x_{i}^{\top}.$$

We define:

$$\mathbb{P}(\mathbf{x}_i|\boldsymbol{\beta}) := \underbrace{\frac{e^{\boldsymbol{\beta}^{\top} \mathbf{x}_i}}{1 + e^{\boldsymbol{\beta}^{\top} \mathbf{x}_i}}}.$$
 (8)

Therefore:

$$\frac{\partial^2 \ell(\beta)}{\partial \beta \partial \beta^{\top}} = -\sum_{i=1}^n \left(\frac{\partial}{\partial \beta} (\mathbb{P}(\mathbf{x}_i | \beta)) \right) \mathbf{x}_i^{\top}. \tag{9}$$

gistic Regression

We have:

$$\frac{\partial}{\partial \beta} \left(\mathbb{P}(\mathbf{x}_{i}|\beta) \right) = \frac{\partial}{\partial \beta} \left(\frac{e^{\beta^{\top} \mathbf{x}_{i}}}{1 + e^{\beta^{\top} \mathbf{x}_{i}}} \right) \\
= \frac{1}{(1 + e^{\beta^{\top} \mathbf{x}_{i}})^{2}} \left(e^{\beta^{\top} \mathbf{x}_{i}} (\mathbf{x}_{i}) (1 + e^{\beta^{\top} \mathbf{x}_{i}}) - e^{\beta^{\top} \mathbf{x}_{i}} (e^{\beta^{\top} \mathbf{x}_{i}} (\mathbf{x}_{i})) \right) \\
= \frac{e^{\beta^{\top} \mathbf{x}_{i}}}{(1 + e^{\beta^{\top} \mathbf{x}_{i}})^{2}} \left(1 + e^{\beta^{\top} \mathbf{x}_{i}} \right) (1 + e^{\beta^{\top} \mathbf{x}_{i}}) (1 + e^{\beta^{\top} \mathbf{x}_{i}}) \mathbf{x}_{i} \\
= \underbrace{\left(e^{\beta^{\top} \mathbf{x}_{i}} \right) (1 + e^{\beta^{\top} \mathbf{x}_{i}})}_{(1 + e^{\beta^{\top} \mathbf{x}_{i}})} \mathbf{x}_{i} \overset{(8)}{=} \mathbb{P}(\mathbf{x}_{i}|\beta) (1 - \mathbb{P}(\mathbf{x}_{i}|\beta)) \mathbf{x}_{i}$$

Substituting it in Eq. (9) gives the second derivative, i.e., the Hessian matrix:

$$\frac{\partial^2 \ell(\boldsymbol{\beta})}{\partial \boldsymbol{\beta} \partial \boldsymbol{\beta}^{\top}} = -\sum_{i=1}^n \left(\underbrace{\mathbb{P}(\boldsymbol{x}_i | \boldsymbol{\beta}) (1 - \mathbb{P}(\boldsymbol{x}_i | \boldsymbol{\beta}))}_{\boldsymbol{x}_i} \boldsymbol{x}_i \right) \boldsymbol{x}_i^{\top}.$$
(10)

• It is possible to write the Newton's method in matrix form. We define:

$$\mathbb{R}^{(d+1)\times n} \ni (\mathbf{X}) := \begin{bmatrix} \mathbf{x}_1 & \mathbf{x}_2 & \mathbf{x}_3 \\ \mathbf{1} & \mathbf{1} & \mathbf{x}_4 \end{bmatrix}, \begin{bmatrix} \mathbf{1} & \mathbf{1} & \mathbf{1} & \mathbf{1} \\ \mathbf{x}_1 & \mathbf{x}_2 & \cdots & \mathbf{x}_n \end{bmatrix}$$

$$\mathbb{R}^n \ni (\mathbf{y}) := [y_1, \dots, y_n]^\top,$$

$$\mathbb{R}^n \ni (\mathbf{p}) := [\frac{e^{\beta^\top \mathbf{x}_1}}{1 + e^{\beta^\top \mathbf{x}_1}}, \dots, \frac{e^{\beta^\top \mathbf{x}_n}}{1 + e^{\beta^\top \mathbf{x}_n}}]^\top.$$

• The Eqs. (7) and (10) can be restated as:

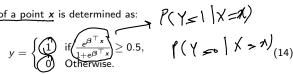
$$\begin{cases}
\mathbf{X} \quad \mathbb{R}^{(d+1)} \ni \frac{\partial \ell(\boldsymbol{\beta})}{\partial \boldsymbol{\beta}} = \mathbf{X}(\mathbf{y} - \mathbf{p}), \\
\mathbf{X} \quad \mathbb{R}^{(d+1)\times(d+1)} \ni \frac{\partial^2 \ell(\boldsymbol{\beta})}{\partial \boldsymbol{\beta} \partial \boldsymbol{\beta}^\top} = -\mathbf{X} \mathbf{W} \mathbf{X}^\top.
\end{cases} (11)$$

• Using Newton's method for maximization of the log posterior is:

$$\beta^{(\tau+1)} := \beta^{(\tau)} \bigoplus \frac{\partial^2 \ell(\beta)}{\partial \beta \partial \beta^{\top}} \xrightarrow{1} \frac{\partial \ell(\beta)}{\partial \beta} \Longrightarrow \beta^{(\tau+1)} := \beta^{(\tau)} \bigoplus (XWX^{\top})^{-1} X(y - p), \tag{13}$$

where τ is the iteration index. It is repeated until convergence of β .

In the test phase, the class of a point \boldsymbol{x} is determined as:



- Comparison to LDA:
 - Logistic regression estimates (d+1) parameters in β , but LDA estimates many more parameters:
 - \star prior of each class: (1.) We have two classes: $2 \times 1 = 2$.
 - * mean of each class: d. We have two classes: $2 \times d = 2d$.
 - * covariance matrix of each class: (d(d+1)/2) We have two classes:
 - * so, in total: $2 + 2d + d(d+1) = d^2 + 2d + 2d + 2$.
 - LDA assumes the distribution of each class is Gaussian which may not be true. However, logistic regression does not assume anything about the distribution of data.

Acknowledgment

Some slides of this slide deck were inspired by teachings of Prof. Ali Ghodsi (at University
of Waterloo, Department of Statistics).

References

- [1] P. F. Verhulst, "Resherches mathematiques sur la loi d'accroissement de la population," Nouveaux memoires de l'academie royale des sciences, vol. 18, pp. 1–41, 1845.
- [2] S. H. Walker and D. B. Duncan, "Estimation of the probability of an event as a function of several independent variables," *Biometrika*, vol. 54, no. 1-2, pp. 167–179, 1967.
- [3] J. S. Cramer, "The origins of logistic regression," 2002.