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Logistic Regression

@ Logistic regression is popular in bio-statistics and bio-informatics.

@ Let x € RY be data and y € R be class label. Baye's rule:

1)

where P(y|x) and P(x|y) are the posterior and likelihood, respectively, and P(x) and P(y)
are the priors.

@ In contrast to Linear Discriminant Analysis (LDA), logistic regression works on the
posterior P(y|x) directly rather than working on likelihood P(x|y) and prior P(y).
e VI 4
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Logistic Regression

@ Logistic regression is a binary classifier where it assigns probability between zero and one
for belonging to one of the classes.

@ The logistic function, used in logistic regression, was initially proposed in 1845 for
modeling the population growth [1]. It was further improved in the 20th century [2]. See
[3] for the history of logistic regression.

@ It considers the classification problem as a regression problem where it reg.resses iiredicts!
G,
Q

the probability of belonging to a class. It first considers a linear regression

However, in order to not have the bias, it assumes that x is d + 1 dimensional with an
additional element of 1 for bias, i.e., x = [x1,...,X4,1] . The @ € R9t! is the learnable
parameter of the logistic regression model. As a result, the linear regression becomes 37 x.

@ However, there is no bound on this regression while logistic regression desires the output
to be in the range [0, 1] to behave like a probability. Therefore, Logistic regression models
the posterior using a logistic function, also called the sigmoid function, to make this
regression between zero and one.
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Logistic Regression

@ Assume we have two classes y € {0,1}.

@ Logistic regression models the posterior using a logistic function, also called the sigmoid
function:
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Logistic Regression as a Neural Network

@ Logistic regression can be seen as a neural network with one neuron where the activation
- . . . . 0 T . _—
function is the nonlinear sigmoid (logistic) function.
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Logistic Regression

@ Consider n data points {(x;,y;)}7_; in the dataset. Assuming that they are independent

and identically distributed (i-1- —the posterior over all data points is:

PoIX) =TT (PUi = X = )ly; = 1) + Py = 01X = x)I(y; =0)),  (4)
e — 4
where I(.) is the indicator function which is one if its condition is satisfied and is zero
otherwise.

@ As the labels are either zero or one, i.e., y; € {0,1}, this equation can be restated as:

/—/%[‘—__VLﬁ
¥ PUIX) = H(P(y,—1|><—x,)>® y,—O\X—x,) 5)

@ Substituting Egs. (2) and (3) in this{e_juation gives:

i 1—y;
- H(H@@TX,)Y(HEETX,) 7. (6)
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Logistic Regression

@ The log posterior is:
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Logistic Regression

@ The log posterior is:
"N /?
¥ up) = > (yiﬁ x; — log(1 + &P Xi)),

i=1

@ Newton's method can be used to find the optimum 3. The first derivative, or the
gradient, it:
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Its transpose is:
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Logistic Regression

@ The second derivative is:
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@ We define: /

_— BT x;
P(x; .
‘V (xilB 1+ eB7x

Therefore:
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Logistic Regression

@ We have:
v
1o} 7] eP xi
* 55" = 55 ()

1 =y
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B xi ;?/" ///Z [ o5 b
1+e Xi —/fe X'@
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eﬁ X ®)
/(1+eﬁT N (1+e3T ) x; = P(x;|B)(1 — P(x|8)) x;

@ Substituting it in Eq. (9) gives the second derivative, i.e., the Hessian matrix:

024(8) N ’
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Logistic Regression

@ It is possible to write the Newton's method in matrix form. We define:

B ()= 2 [
RAXA 3@::fﬁag<ﬁ”(x,~|ﬁ)(l - ]P’(x,-|fl)l)l7

R” @:: L1yves T7
S Rl .
eB x1 eB xn

~ 3@:: [tlie_ﬁll_;m’ 1+engn]
@ The Egs. (7) and (10) can be restated as: %\
T
¢ R 5 MO gy Ty /Q(W* )
8% g
S REDxE) 5 aga(gl _ (12)

@ Using Newton's method for maximization of the log posterior is:

T

ﬁ(7'+1) — ﬁ(T) (w)_liaz(ﬂ)
(0B85 1 9B
6(T+1) = ﬁ(T)@ (XWXT)flx(y _ p)7 (13)
|

where 7 is the iteration index. It is repeated until convergence of 3.

Logistic Regression 11/14



Logistic Regression

@ In the test phase, the class of a point x is determined as: F( Yf\ \)(;ﬁ)
AR PR

. Tx
y = ﬂ i +eB T x
Otherwise.

@ Comparison to LDA: .’{
> Logistic regression estimates (d + 1) parameters in 3, but LDA estimates many

* prior of each cIassO We have two classes: 2 x 1 =2.

* mean of each class: d. We have two classes: 2 x d — 2d.

* covariance matrix_of each class bWe have two/classes:
(2 X !d(d—&- 1)/2) =

* so, in total: 2 I 2d +"‘d(d +_51 =d*+2d+2. ¥

> LDA assumes the distribution of each class is Gaussian which may not be true.
However, logistic regression does not assume anything about the distribution of

data.
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