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Logistic Regression

Logistic regression is popular in bio-statistics and bio-informatics.

Let x ∈ Rd be data and y ∈ R be class label. Baye’s rule:

P(y |x) =
P(x |y)P(y)

P(x)
, (1)

where P(y |x) and P(x |y) are the posterior and likelihood, respectively, and P(x) and P(y)
are the priors.

In contrast to Linear Discriminant Analysis (LDA), logistic regression works on the
posterior P(y |x) directly rather than working on likelihood P(x |y) and prior P(y).
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Logistic Regression

Logistic regression is a binary classifier where it assigns probability between zero and one
for belonging to one of the classes.

The logistic function, used in logistic regression, was initially proposed in 1845 for
modeling the population growth [1]. It was further improved in the 20th century [2]. See
[3] for the history of logistic regression.

It considers the classification problem as a regression problem where it regresses (predicts)
the probability of belonging to a class. It first considers a linear regression β⊤x + β0.
However, in order to not have the bias, it assumes that x is d + 1 dimensional with an
additional element of 1 for bias, i.e., x = [x1, . . . , xd , 1]

⊤. The β ∈ Rd+1 is the learnable
parameter of the logistic regression model. As a result, the linear regression becomes β⊤x .
However, there is no bound on this regression while logistic regression desires the output
to be in the range [0, 1] to behave like a probability. Therefore, Logistic regression models
the posterior using a logistic function, also called the sigmoid function, to make this
regression between zero and one.
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Logistic Regression

Assume we have two classes y ∈ {0, 1}.
Logistic regression models the posterior using a logistic function, also called the sigmoid
function:

P(y = 1|X = x) =
eβ

⊤x

1 + eβ⊤x
, (2)

P(y = 0|X = x) = 1− P(y = 1|X = x) =
1

1 + eβ⊤x
, (3)

where β ∈ Rd is the learnable parameter of the logistic regression model.
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Logistic Regression as a Neural Network

Logistic regression can be seen as a neural network with one neuron where the activation
function is the nonlinear sigmoid (logistic) function.
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Logistic Regression

Consider n data points {(x i , yi )}ni=1 in the dataset. Assuming that they are independent
and identically distributed (i.i.d), the posterior over all data points is:

P(y |X ) =
n∏

i=1

(
P(yi = 1|X = xi )I(yi = 1) + P(yi = 0|X = xi )I(yi = 0)

)
, (4)

where I(.) is the indicator function which is one if its condition is satisfied and is zero
otherwise.

As the labels are either zero or one, i.e., yi ∈ {0, 1}, this equation can be restated as:

P(y |X ) =
n∏

i=1

(
P(yi = 1|X = xi )

)yi (P(yi = 0|X = xi )
)1−yi . (5)

Substituting Eqs. (2) and (3) in this equation gives:

P(y |X ) =
n∏

i=1

( eβ
⊤x i

1 + eβ⊤x i

)yi ( 1

1 + eβ⊤x i

)1−yi . (6)
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Logistic Regression

The log posterior is:

ℓ(β) := P(y |X = x) = log
n∏

i=1

( eβ
⊤x i

1 + eβ⊤x i

)yi ( 1

1 + eβ⊤x i

)1−yi

=
n∑

i=1

(
log

( eβ
⊤x i

1 + eβ⊤x i

)yi + log
( 1

1 + eβ⊤x i

)1−yi
)

=
n∑

i=1

(
yi log(e

β⊤x i )− yi log(1 + eβ
⊤x i )− (1− yi ) log(1 + eβ

⊤x i )
)

=
n∑

i=1

(
yiβ

⊤x i − yi log(1 + eβ
⊤x i )− log(1 + eβ

⊤x i ) + yi log(1 + eβ
⊤x i )

)

=
n∑

i=1

(
yiβ

⊤x i − log(1 + eβ
⊤x i )

)
.
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Logistic Regression

The log posterior is:

ℓ(β) =
n∑

i=1

(
yiβ

⊤x i − log(1 + eβ
⊤x i )

)
.

Newton’s method can be used to find the optimum β. The first derivative, or the
gradient, it:

∂ℓ(β)

∂β
=

n∑
i=1

(
yix i −

1

1 + eβ⊤x i
eβ

⊤x i x i

)
=

n∑
i=1

(
yi −

eβ
⊤x i

1 + eβ⊤x i

)
x i . (7)

Its transpose is:

∂ℓ(β)

∂β⊤ =
n∑

i=1

(
yi −

eβ
⊤x i

1 + eβ⊤x i

)
x⊤
i .
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Logistic Regression

The second derivative is:

∂2ℓ(β)

∂β∂β⊤ =
∂

∂β
(
∂ℓ(β)

∂β⊤ ) =
∂

∂β

( n∑
i=1

(
yi −

eβ
⊤x i

1 + eβ⊤x i

)
x⊤
i

)

=
n∑

i=1

(
−

∂

∂β

( eβ
⊤x i

1 + eβ⊤x i

))
x⊤
i .

We define:

P(x i |β) :=
eβ

⊤x i

1 + eβ⊤x i
. (8)

Therefore:

∂2ℓ(β)

∂β∂β⊤ = −
n∑

i=1

( ∂

∂β

(
P(x i |β)

))
x⊤
i . (9)
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Logistic Regression

We have:

∂

∂β

(
P(x i |β)

)
=

∂

∂β

( eβ
⊤x i

1 + eβ⊤x i

)
=

1

(1 + eβ⊤x i )2

(
eβ

⊤x i x i (1 + eβ
⊤x i )− eβ

⊤x i (eβ
⊤x i x i )

)
=

eβ
⊤x i

(1 + eβ⊤x i )2

(
1 + eβ

⊤x i − eβ
⊤x i

)
x i =

eβ
⊤x i

(1 + eβ⊤x i )2
x i

=
eβ

⊤x i

(1 + eβ⊤x i )

1

(1 + eβ⊤x i )
x i

(8)
= P(x i |β)

(
1− P(x i |β)

)
x i

Substituting it in Eq. (9) gives the second derivative, i.e., the Hessian matrix:

∂2ℓ(β)

∂β∂β⊤ = −
n∑

i=1

(
P(x i |β)

(
1− P(x i |β)

)
x i

)
x⊤
i . (10)
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Logistic Regression
It is possible to write the Newton’s method in matrix form. We define:

R(d+1)×n ∋ X :=

[
x1 x2 . . . xn

1 1 . . . 1

]
,

Rn×n ∋ W := diag
(
P(x i |β)

(
1− P(x i |β)

))
,

Rn ∋ y := [y1, . . . , yn]
⊤,

Rn ∋ p :=
[ eβ

⊤x1

1 + eβ⊤x1
, . . . ,

eβ
⊤xn

1 + eβ⊤xn

]⊤
.

The Eqs. (7) and (10) can be restated as:

R(d+1) ∋
∂ℓ(β)

∂β
= X (y − p), (11)

R(d+1)×(d+1) ∋
∂2ℓ(β)

∂β∂β⊤ = −XWX⊤. (12)

Using Newton’s method for maximization of the log posterior is:

β(τ+1) := β(τ) + (
∂2ℓ(β)

∂β∂β⊤ )−1 ∂ℓ(β)

∂β
=⇒

β(τ+1) := β(τ) − (XWX⊤)−1X (y − p), (13)

where τ is the iteration index. It is repeated until convergence of β.
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Logistic Regression

In the test phase, the class of a point x is determined as:

y =

{
1 if eβ

⊤x

1+eβ
⊤x

≥ 0.5,

0 Otherwise.
(14)

Comparison to LDA:

▶ Logistic regression estimates (d + 1) parameters in β, but LDA estimates many

more parameters:

⋆ prior of each class: 1. We have two classes: 2× 1 = 2.
⋆ mean of each class: d . We have two classes: 2× d = 2d .
⋆ covariance matrix of each class: d(d + 1)/2. We have two classes:

2× (d(d + 1)/2) = d(d + 1).
⋆ so, in total: 2 + 2d + d(d + 1) = d2 + 2d + 2.

▶ LDA assumes the distribution of each class is Gaussian which may not be true.
However, logistic regression does not assume anything about the distribution of
data.
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