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Multidimensional Scaling

MDS, first proposed in (1952) [1], can be divided into several different categories
(2005-2008) [2, 3], i.e., classical MDS, metric MDS, and non-metric MDS. Note that
the results of these are different [4].
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Classical Multidimensional Scaling
The classical MDS is also referred to as Principal Coordinates Analysis (PCoA), or
Torgerson Scaling, or Torgerson-Gower scaling [5].

The goal of classical MDS is to preserve the similarity of data points in the embedding
space as it was in the input space [6].

One way to measure similarity is inner product. Hence, we can minimize the difference of
similarities in the input and embedding spaces:

minimize
{y i}ni=1

c1 :=
n∑

i=1

n∑
j=1

(x⊤
i x j − y⊤

i y j )
2, (1)

whose matrix form is:

minimize
Y

c1 = ||X⊤X − Y⊤Y ||2F , (2)

where ∥·∥F denotes the Frobenius norm, and X⊤X and Y⊤Y are the Gram matrices of
the original data X and the embedded data Y , respectively.

The objective function, in Eq. (2), is simplified as:

||X⊤X − Y⊤Y ||2F = tr
[
(X⊤X − Y⊤Y )⊤(X⊤X − Y⊤Y )

]
= tr

[
(X⊤X − Y⊤Y )(X⊤X − Y⊤Y )

]
= tr

[
(X⊤X − Y⊤Y )2

]
,

where tr(.) denotes the trace of matrix.
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Classical Multidimensional Scaling
If we decompose X⊤X and Y⊤Y using eigenvalue decomposition [7], we have:

X⊤X = V∆V⊤, (3)

Y⊤Y = QΨQ⊤, (4)

where eigenvectors are sorted from leading (largest eigenvalue) to trailing (smallest
eigenvalue). Note that, rather than eigenvalue decomposition of X⊤X and Y⊤Y , one
can decompose X and Y using Singular Value Decomposition (SVD) and take the right
singular vectors of X and Y as V and Q, respectively. The matrices ∆ and Ψ are the
obtained by squaring the singular values (to power 2). See [8, Proposition 1] for proof.

The objective function can be further simplified as:

||X⊤X − Y⊤Y ||2F = tr
[
(X⊤X − Y⊤Y )2

]
= tr

[
(V∆V⊤ −QΨQ⊤)2

]
(a)
= tr

[
(V∆V⊤ − VV⊤QΨQ⊤VV⊤)2

]
= tr

[(
V (∆− V⊤QΨQ⊤V )V⊤)2]

= tr
[
V 2(∆− V⊤QΨQ⊤V )2(V⊤)2

]
(b)
= tr

[
(V⊤)2V 2(∆− V⊤QΨQ⊤V )2

]
= tr

[
(V⊤V︸ ︷︷ ︸

I

)2(∆− V⊤QΨQ⊤V )2
]

(c)
= tr

[
(∆− V⊤QΨQ⊤V )2

]
,

where (a) and (c) are for V⊤V = VV⊤ = I because V is a non-truncated (square)
orthogonal matrix (where I denotes the identity matrix). The reason of (b) is the cyclic
property of trace.

Multidimensional Scaling, Sammon Mapping, and Isomap 5 / 30



Classical Multidimensional Scaling
Let Rn×n ∋M := V⊤Q, so:

||X⊤X − Y⊤Y ||2F = tr
[
(∆−MΨM⊤)2

]
.

Therefore:

∴ minimize
Y

||X⊤X − Y⊤Y ||2F ≡ minimize
M,Ψ

tr
[
(∆−MΨM⊤)2

]
.

The objective function is:

c1 = tr
[
(∆−MΨM⊤)2

]
= tr(∆2 + (MΨM⊤)2 − 2∆MΨM⊤)

= tr(∆2) + tr((MΨM⊤)2)− 2 tr(∆MΨM⊤).

As the optimization problem is unconstrained and the objective function is the trace of a
quadratic function, the minimum is non-negative.

If we take derivative with respect to the first objective variable, i.e., M, we have:

Rn×n ∋
∂c1

∂M
= 2(MΨM⊤)MΨ− 2∆MΨ

set
= 0

=⇒ (MΨM⊤)(MΨ) = (∆)(MΨ)
(a)
=⇒ MΨM⊤ = ∆, (5)

where (a) is because MΨ ̸= 0.
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Classical Multidimensional Scaling
For the derivative with respect to the second objective variable, i.e., Ψ, we simplify the
objective function a little bit:

c1 = tr(∆2) + tr((MΨM⊤)2)− 2 tr(∆MΨM⊤)

= tr(∆2) + tr(M2Ψ2M⊤2)− 2 tr(∆MΨM⊤)

(a)
= tr(∆2) + tr(M⊤2M2Ψ2)− 2 tr(M⊤∆MΨ)

= tr(∆2) + tr((M⊤MΨ)2)− 2 tr(M⊤∆MΨ),

where (a) is because of the cyclic property of trace.
Taking derivative with respect to the second objective variable, i.e., Ψ, gives:

Rn×n ∋
∂c1

∂Ψ
= 2M⊤(MΨM⊤)M − 2M⊤∆M set

= 0

=⇒ M⊤(MΨM⊤)M = M⊤(∆)M
(a)
=⇒ MΨM⊤ = ∆, (6)

where (a) is because M ̸= 0.
Both Eqs. (5) and (6) are:

MΨM⊤ = ∆,

whose one possible solution is:

M = I , (7)

Ψ = ∆. (8)
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Classical Multidimensional Scaling
We had:

M = I ,
Ψ = ∆,

which means that the minimum value of the non-negative objective function
tr((∆−MΨM⊤)2) is zero.

We had M = V⊤Q. Therefore, according to Eq. (7), we have:

∴ V⊤Q = I =⇒ Q = V . (9)

According to Eq. (4), we have:

Y⊤Y = QΨQ⊤ (a)
= QΨ

1
2 Ψ

1
2 Q⊤ =⇒ Y = Ψ

1
2 Q⊤

(8),(9)
=⇒ Y = ∆

1
2 V⊤, (10)

where (a) can be done because Ψ does not include negative entry as the Gram matrix
Y⊤Y is positive semi-definite by definition.

In summary, for embedding X using classical MDS, the eigenvalue decomposition of
X⊤X is obtained as in Eq. (3). Then, using Eq. (10), Y ∈ Rn×n is obtained. Truncating
this Y to have Y ∈ Rp×n, with the first (top) p rows, gives us the p-dimensional
embedding of the n points. Note that the leading p columns are used because singular
values are sorted from largest to smallest in SVD which can be used for Eq. (3).
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MDS (Kernel Classical
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Generalized Classical MDS

If d2
ij = ||x i − x j ||22 is the squared Euclidean distance between x i and x j , we have:

d2
ij = ||x i − x j ||22 = (x i − x j )

⊤(x i − x j )

= x⊤
i x i − x⊤

i x j − x⊤
j x i + x⊤

j x j

= x⊤
i x i − 2x⊤

i x j + x⊤
j x j = G ii − 2G ij + G jj ,

where Rn×n ∋ G := X⊤X is the Gram matrix.

If Rn ∋ g := [g1, . . . , gn] = [G11, . . . ,Gnn] = diag(G), we have:

d2
ij = g i − 2G ij + g j ,

D = g1⊤ − 2G + 1g⊤ = 1g⊤ − 2G + g1⊤,

where 1 is the vector of ones and D is the distance matrix with squared Euclidean
distance (d2

ij as its elements).
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Generalized Classical MDS

Let Rn×n ∋ H := I − 1
n
11⊤ denote the centering matrix. We double-center the matrix D

as follows [9]:

HDH = (I −
1

n
11⊤)D(I −

1

n
11⊤) = (I −

1

n
11⊤)(1g⊤ − 2G + g1⊤)(I −

1

n
11⊤)

=
[
(I −

1

n
11⊤)1︸ ︷︷ ︸

= 0

g⊤ − 2(I −
1

n
11⊤)G + (I −

1

n
11⊤)g1⊤

]
(I −

1

n
11⊤)

= −2(I −
1

n
11⊤)G(I −

1

n
11⊤) + (I −

1

n
11⊤)g 1⊤(I −

1

n
11⊤)︸ ︷︷ ︸

= 0

= −2(I −
1

n
11⊤)G(I −

1

n
11⊤) = −2HGH

∴ HGH = HX⊤XH = −
1

2
HDH. (11)

Note that (I − 1
n
11⊤)1 = 0 and 1⊤(I − 1

n
11⊤) = 0 because removing the row mean of 1

and column mean of of 1⊤ results in the zero vectors, respectively.

Multidimensional Scaling, Sammon Mapping, and Isomap 11 / 30



Generalized Classical MDS
If data X are already centered, i.e., the mean has been removed (X ← XH), Eq. (11)
becomes:

X⊤X = −
1

2
HDH. (12)

Corollary
If Eq. (3) is used as the Gram matrix, the classical MDS uses the Euclidean distance as its
metric. Because of using Euclidean distance, the classical MDS using Gram matrix is a linear
subspace learning method.

In Eq. (11) or (12), we can write a general kernel matrix [10] rather than the
double-centered Gram matrix, to have [2]:

Rn×n ∋ K = −
1

2
HDH. (13)

Note that the classical MDS with Eq. (3) is using a linear kernel X⊤X for its kernel. This
is another reason for why classical MDS with Eq. (3) is a linear method.

It is also noteworthy that Eq. (13) can be used for unifying the spectral dimensionality
reduction methods as special cases of kernel principal component analysis with different
kernels. See [11, 12] and [13, Table 2.1] for more details.
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Generalized Classical MDS

Comparing Eqs. (11), (12), and (13) with Eq. (3) shows that we can use a general kernel
matrix, like Radial Basis Function (RBF) kernel, in classical MDS to have generalized
classical MDS. In summary, for embedding X using classical MDS, the eigenvalue
decomposition of the kernel matrix K is obtained similar to Eq. (3):

K = V∆V⊤. (14)

Then, using Eq. (10), Y ∈ Rn×n is obtained:

Y = ∆
1
2 V⊤.

It is noteworthy that in this case, we are replacing X⊤X with the kernel
K = Φ(X )⊤Φ(X ).

According to Eqs. (10) and (14), we have:

K = Y⊤Y . (15)

Truncating the Y , obtained from Eq. (10), to have Y ∈ Rp×n, with the first (top) p rows,
gives us the p-dimensional embedding of the n points. It is noteworthy that, because of
using kernel in the generalized classical MDS, one can name it the kernel classical MDS.
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Equivalence of PCA and kernel PCA with Classical MDS
and Generalized Classical MDS, Respectively

Lemma
Classical MDS with Euclidean distance is equivalent to Principal Component Analysis (PCA).
Moreover, the generalized classical MDS is equivalent to kernel PCA.

Proof.
On one hand, the Eq. (3) can be obtained by the SVD of X . The projected data onto
classical MDS subspace is obtained by Eq. (10) which is ∆V⊤.

On the other hand, according to [8, Eq. 42], the projected data onto PCA subspace is
∆V⊤ where ∆ and V⊤ are from the SVD of X . Comparing these shows that classical
MDS is equivalent to PCA.

Moreover, Eq. (14) is the eigenvalue decomposition of the kernel matrix. The projected
data onto the generalized classical MDS subspace is obtained by Eq. (10) which is ∆V⊤.
According to [8, Eq. 62], the projected data onto the kernel PCA subspace is ∆V⊤ where
∆ and V⊤ are from the eigenvalue decomposition of the kernel matrix; see [8, Eq. 61].
Comparing these shows that the generalized classical MDS is equivalent to kernel PCA.
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Metric Multidimensional Scaling
Recall that the classical MDS tries to preserve the similarities of points in the embedding
space.
In later approaches after classical MDS, the cost function was changed to preserve the
distances rather than the similarities [14, 15]. Metric MDS has this opposite view and
tries to preserve the distances of points in the embedding space [16].
For this, it minimizes the difference of distances of points in the input and embedding
spaces [17]. The cost function in metric MDS is usually referred to as the stress function
[18, 19]. This method is named metric MDS because it uses distance metric in its
optimization.
The optimization in metric MDS is:

minimize
{y i}ni=1

c2 :=

(∑n
i=1

∑n
j=1,j<i

(
dx (x i , x j )− dy (y i , y j )

)2∑n
i=1

∑n
j=1,j<i d

2
x (x i , x j )

) 1
2

, (16)

or, without the normalization factor:

minimize
{y i}ni=1

c2 :=

(
n∑

i=1

n∑
j=1,j<i

(
dx (x i , x j )− dy (y i , y j )

)2) 1
2

, (17)

where dx (., .) and dy (., .) denote the distance metrics in the input and the embedded
spaces, respectively.
The Eqs. (16) and (17) use indices j < i rather than j ̸= i because the distance metric is
symmetric and it is not necessary to consider the distance of the j-th point from the i-th
point when we already have considered the distance of the i-th point from the j-th point.
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Metric Multidimensional Scaling

Note that in Eq. (16) and (17), dy is usually the Euclidean distance, i.e. dy = ∥y i − y j∥2,
while dx can be any valid metric distance such as the Euclidean distance.

The optimization problem (16) can be solved using either gradient descent or Newton’s
method.

Note that the classical MDS is a linear method and has a closed-form solution; however,
the metric and non-metric MDS methods are nonlinear but do not have closed-form
solutions and should be solved iteratively. Note that in mathematics, whenever you get
something, you lose something. Likewise, here, the method has become nonlinear but lost
its closed form solution and became iterative.
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Sammon Mapping
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Sammon Mapping

Sammon mapping (1969) [20] is a special case of metric MDS; hence, it is a nonlinear
method.

It is probably correct to call this method the first proposed nonlinear method for
dimensionality reduction [21].

This method has different names in the literature such as Sammon’s nonlinear mapping,
Sammon mapping, and Nonlinear Mapping (NLM) [14]. Sammon originally named it
NLM [20]. Its most well-known name is Sammon mapping.

The optimization problem in Sammon mapping is almost a weighted version of Eq. (16),
formulated as:

minimize
{y i}ni=1

1

a

n∑
i=1

n∑
j=1,j<i

wij

(
dx (x i , x j )− dy (y i , y j )

)2
, (18)

where wij is the weight and a is the normalizing factor. The dx (., .) can be any metric but
usually is considered to be Euclidean distance for simplicity [14]. The dy (., .), however, is
Euclidean distance metric.
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Sammon Mapping

We had:

minimize
{y i}ni=1

1

a

n∑
i=1

n∑
j=1,j<i

wij

(
dx (x i , x j )− dy (y i , y j )

)2
.

In Sammon mapping, the weights and the normalizing factor in Eq. (18) are:

wij =
1

dx (x i , x j )
, (19)

a =
n∑

i=1

n∑
j=1,j<i

dx (x i , x j ). (20)

The weight wij in Sammon mapping is giving more credit to the small distances (neighbor
points) focusing on preserving the “local” structure of the manifold; hence it fits the
manifold locally [22].

Substituting Eqs. (19) and (20) in Eq. (18) gives:

minimize
Y

c4 :=
1∑n

i=1

∑n
j=1,j<i dx (x i , x j )

×
n∑

i=1

n∑
j=1,j<i

(
dx (x i , x j )− dy (y i , y j )

)2
dx (x i , x j )

.

(21)
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Sammon Mapping

Sammon used diagonal quasi-Newton’s method for solving this optimization problem
[20, 14]:

y
(ν+1)
i,k := y

(ν)
i,k − η

∣∣∣ ∂2c2

∂y2
i,k

∣∣∣−1 ∂c2

∂yi,k
, (22)

where η is the learning rate, yi,k is the k-th element of the i-th embedded point

Rp ∋ y i = [yi,1, . . . , yi,p ]
⊤, and |·| is the absolute value guaranteeing that we move

toward the minimum and not maximum in the Newton’s method.

The learning rate η is named the magic factor in [20]. For solving optimization, both
gradient and second derivative are required. In the following, we derive these two.

Note that, in practice, the classical MDS or PCA is used for initialization of points in
Sammon mapping optimization.

See our tutorial paper “Multidimensional scaling, sammon mapping, and isomap: Tutorial
and survey” [23] for the derivation of gradient and second derivative.
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Isometric Mapping
(Isomap)
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Isometric Mapping (Isomap)

Isometric Mapping (Isomap) [24] is a special case of the generalized classical MDS.

Rather than the Euclidean distance, Isomap uses an approximation of the geodesic
distance.

As was explained, the classical MDS is linear; hence, it cannot capture the nonlinearity of
the manifold. Isomap makes use of the geodesic distance to make the generalized
classical MDS nonlinear.

The geodesic distance is the length of shortest path between two points on the possibly
curvy manifold.
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Isometric Mapping (Isomap)
It is ideal to use the geodesic distance; however, calculation of the geodesic distance is
very difficult because it requires traversing from a point to another point on the manifold.
This calculation requires differential geometry and Riemannian manifold calculations [25].
Therefore, Isomap approximates the geodesic distance by piece-wise Euclidean distances.
It finds the k-Nearest Neighbors (kNN) graph of dataset. Then, the shortest path
between two points, through their neighbors, is found using a shortest-path algorithm,
such as the Dijkstra algorithm or the Floyd-Warshal algorithm [26]. Note that the
approximated geodesic distance is also referred to as the curvilinear distance [27]. The
approximated geodesic distance can be formulated as [28]:

D(g)
ij := min

r

l∑
i=2

∥r i − r i+1∥2, (23)

where l ≥ 2 is the length of sequence of points r i ∈ {x i}ni=1 and D(g)
ij denotes the (i , j)-th

element of the geodesic distance matrix D(g) ∈ Rn×n.
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Isometric Mapping (Isomap)

As was mentioned before, Isomap is a special case of the generalized classical MDS with
the geodesic distance used. Hence, Isomap uses Eq. (13) as:

Rn×n ∋ K = −
1

2
HD(g)H. (24)

It then uses Eqs. (14) and (10) to embed the data:

K = V∆V⊤,

Y = ∆
1
2 V⊤.

As Isomap uses the nonlinear geodesic distance in its kernel calculation, it is a nonlinear
method.
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Acknowledgment

Some slides are based on our tutorial paper: “Multidimensional scaling, sammon mapping,
and isomap: Tutorial and survey” [23]

Some slides of this slide deck are inspired by teachings of Prof. Ali Ghodsi at University of
Waterloo, Department of Statistics.

The code of MDS, Sammon mapping, and Isomap in my GitHub:
https://github.com/bghojogh/MDS-SammonMapping-Isomap

MDS in sklearn:
https://scikit-learn.org/stable/modules/generated/sklearn.manifold.MDS.html

Isomap in sklearn: https:
//scikit-learn.org/stable/modules/generated/sklearn.manifold.Isomap.html

Sammon mapping library:
https://data-farmers.github.io/2019-06-10-sammon-mapping/
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