
Support Vector Machines

Statistical Machine Learning (ENGG*6600*02)

School of Engineering,
University of Guelph, ON, Canada

Course Instructor: Benyamin Ghojogh
Summer 2023

Support Vector Machines 1 / 53

SVM vs. Perceptron

Support Vector Machines 2 / 53

SVM vs. Perceptron

Perceptron proposed by Rosenblatt (physiologist) in 1958, at Cornell Aeronautical
Laboratory [1], was a neuron of neural network for binary classification.

In later attempts, Hebbian learning, prpoposed in 1949 [2], was used for learning in
Perceptron.

Perceptron cannot generalize well enough because, for linearly separable classes, it finds
one of the many possible decision boundaries.

Support Vector Machines 3 / 53

SVM vs. Perceptron

Linear SVM was proposed by Vladimir Vapnik et al. in 1974 [3].

Liner SVM tries to find the best decision boundary rather than one of the possible
decision boundaries. The best decision boundary is the one which has the largest distance
from the closest points of classes to the decision boundary. This is because those points
are also the closest points of the two classes to each other and therefore they are most
capable of being confused between the two classes. These points are called the support
vectors.

Support Vector Machines 4 / 53

Hard Margin SVM

Support Vector Machines 5 / 53

Hard Margin SVM
We want to find a linear decision boundary where one class falls in one side and the other
class falls on the other side.

The equation of a line for linear decision boundary:

β⊤x + β0 = 0, (1)

where x ∈ Rd is the data point, β ∈ Rd is the normal vector of the linear line, and β0 is
the bias (intercept) of the line.

Consider any two points x1 and x2 on the decision boundary. As the line passes through
each of them, they both satisfy Eq. (1):

β⊤x1 + β0 = 0, β⊤x2 + β0 = 0 =⇒ β⊤x1 + β0 = β⊤x2 + β0,

=⇒ β⊤(x1 − x2) = 0 =⇒ β ⊥ (x1 − x2),

which verifies that β is the normal vector of the decision boundary.

Support Vector Machines 6 / 53

Hard Margin SVM

Consider a point x0 on the decision boundary and a point x on one of the sides of the
decision boundary. Therefore:

β⊤x0 + β0 = 0 =⇒ β0 = −β⊤x0. (2)

The distance of point x from the decision boundary is:

d =
β⊤

∥β∥2
(x − x0) =

β⊤(x − x0)

∥β∥2
=

β⊤x − β⊤x0

∥β∥2

(2)
=

β⊤x + β0

∥β∥2
. (3)

The distance should be non-negative so we have:

d = |
β⊤x + β0

∥β∥2
| =

|β⊤x + β0|
∥β∥2

.

However, the absolute value is non-smooth and non-differentiable. Therefore, we can
multiply the distance with the target label to make it always non-negative:

y = +1 =⇒ β⊤x + β0 > 0, y = −1 =⇒ β⊤x + β0 < 0, (4)

=⇒ d :=
y(β⊤x + β0)

∥β∥2
. (5)

Support Vector Machines 7 / 53

Hard Margin SVM
This distance from decision boundary is either zero or greater than zero:

d =
y(β⊤x + β0)

∥β∥2
=

{
0 if x on decision boundary
> 0 if x not on decision boundary.

(6)

Suppose there are {x i ∈ Rd}ni=1 data points and their class labels {yi}ni=1, where
yi ∈ {−1, 1}, ∀i ∈ {1, . . . , n}.

The closest points to the decision boundary are more at risk of being confused and
misclassified. In each class of data, these closest points to the decision boundary are
called support vectors.

We want to maximize the margin (gap) between the support vectors and the decision
boundary, so the decision boundary becomes as far as possible from data for having least
amount of misclassification:

maximize
β,β0

di =
yi (β

⊤x i + β0)

∥β∥2
, ∀i ∈ {1, . . . , n}. (7)

This can be converted to a minimization problem:

minimize
β,β0

∥β∥2

yi (β
⊤x i + β0)

, ∀i ∈ {1, . . . , n}. (8)

Support Vector Machines 8 / 53

Hard Margin SVM
We had this:

minimize
β,β0

∥β∥2

yi (β
⊤x i + β0)

, ∀i ∈ {1, . . . , n}.

Assume we desire to find a decision boundary which has some distance from data of
classes so the distance of points are positive for support vectors. Let the constant s
denote the smallest distance to the decision boundary, which is the distance of support
vectors from the decision boundary. Then, all distances are greater then or equal to s:

di =
yi (β

⊤x i + β0)

∥β∥2
≥ s, ∀i ∈ {1, . . . , n}.

As this expression is greater than or equal to the constant s, we can assume that its
numerator is greater than or equal to some constant c:

yi (β
⊤x i + β0) ≥ c, ∀i ∈ {1, . . . , n}. (9)

This equation appears in the denominator of Eq. (8). We can convert the optimization
problem (8) to minimization of its numerator while its denominator satisfies Eq. (9):

minimize
β,β0

∥β∥2

subject to yi (β
⊤x i + β0) ≥ c, ∀i ∈ {1, . . . , n}.

(10)

Support Vector Machines 9 / 53

Hard Margin SVM

It is simpler to minimize (1/2)∥β∥2
2 rather than ∥β∥2 because ∥β∥2

2 is quadratic.
Therefore, we convert Eq. (10) to:

minimize
β,β0

1

2
∥β∥2

2

subject to yi (β
⊤x i + β0) ≥ c, ∀i ∈ {1, . . . , n}.

(11)

The constant c can be any constant which is not important because of not having effect
in derivative. Usually, literature uses c = 1.

The constraint can be stated as:

yi (β
⊤x i + β0) ≥ c =⇒ =⇒ −yi (β

⊤x i + β0) + c ≤ 0.

The Lagrangian function for this problem is:

L(β, β0, {αi}ni=1) =
1

2
∥β∥2

2 +
n∑

i=1

αi

(
− yi (β

⊤x i + β0) + c
)
,

where {αi}ni=1 are the Lagrange multipliers.

Support Vector Machines 10 / 53

Hard Margin SVM

We had:

L(β, β0, {αi}ni=1) =
1

2
∥β∥2

2 +
n∑

i=1

αi

(
− yi (β

⊤x i + β0) + c
)
.

Derivative of Lagrangian w.r.t. β:

∂L
∂β

= β −
n∑

i=1

αiyix i
set
= 0 =⇒ β =

n∑
i=1

αiyix i . (12)

Derivative of Lagrangian w.r.t. β0:

∂L
∂β0

= −
n∑

i=1

αiyi
set
= 0 =⇒

n∑
i=1

αiyi = 0. (13)

Support Vector Machines 11 / 53

Hard Margin SVM
We substitute Eqs. (12) and (13) in the Lagrangian:

L(β, β0, {αi}ni=1) =
1

2
∥β∥2

2 +
n∑

i=1

αi

(
− yi (β

⊤x i + β0) + c
)
.

The first term:

1

2
∥β∥2

2 =
1

2
β⊤β

(12)
=

1

2

n∑
j=1

αjyjx⊤
j

n∑
i=1

αiyix i =
1

2

n∑
j=1

n∑
i=1

αiαjyiyjx⊤
i x j .

The second term:

n∑
i=1

αi

(
− yi (β

⊤x i + β0) + c
)

= −
n∑

i=1

αiyiβ
⊤x i −

n∑
i=1

αiyiβ0 +
n∑

i=1

αic

= −β⊤
n∑

i=1

αiyix i − β0

n∑
i=1

αiyi + c
n∑

i=1

αi

(a)
= −

n∑
j=1

αjyjx⊤
j

n∑
i=1

αiyix i + c
n∑

i=1

αi = −
n∑

j=1

n∑
i=1

αiαjyiyjx⊤
i x j + c

n∑
i=1

αi ,

where (a) is because of Eqs. (12) and (13).

Support Vector Machines 12 / 53

Hard Margin SVM

Putting the obtained β and β0 from Eqs. (12) and (13), denoted by β† and β†
0 , in the

Lagrangian gives the dual function:

g({αi}ni=1) = L(β†, β†
0 , {αi}ni=1)

=
1

2

n∑
j=1

n∑
i=1

αiαjyiyjx⊤
i x j −

n∑
j=1

n∑
i=1

αiαjyiyjx⊤
i x j + c

n∑
i=1

αi

= −
1

2

n∑
j=1

n∑
i=1

αiαjyiyjx⊤
i x j + c

n∑
i=1

αi . (14)

Also, according to the dual feasibility in Karush-Kuhn-Tucker (KKT) conditions, the dual
variable should be non-negative:

αi ≥ 0, ∀i ∈ {1, . . . , n}. (15)

Support Vector Machines 13 / 53

Hard Margin SVM
Considering Eqs. (13), (14), and (15), the dual optimization problem is [4]:

maximize
{αi}ni=1

−
1

2

n∑
j=1

n∑
i=1

αiαjyiyjx⊤
i x j + c

n∑
i=1

αi

subject to
n∑

i=1

αiyi = 0,

αi ≥ 0, ∀i ∈ {1, . . . , n}.

(16)

We define α := [α1, . . . , αn]⊤ ∈ Rn, y := [y1, . . . , yn]⊤ ∈ Rn, 1 := [1, 1, . . . , 1]⊤ ∈ Rn,
and a matrix S whose (i , j)-th element is S(i , j) := (yix⊤

i)(yjx j). Then, Eq. (16) can be
stated in vector form as:

maximize
α

−
1

2
α⊤Sα + c1⊤α

subject to y⊤α = 0,

α ⪰ 0.

(17)

It is a quadratic programming problem. So, it is a concave optimization problem. So, it
has one global solution. That is while Perceptron algorithm has various solutions based on
its initial random optimization variables.

Support Vector Machines 14 / 53

Hard Margin SVM

KKT conditions:

1 Stationarity condition:
∂L
∂β

set
= 0,

∂L
∂β0

set
= 0, (18)

which resulted in Eqs. (12) and (13).

2 Primal feasibility:

yi (β
⊤x i + β0) ≥ c, ∀i ∈ {1, . . . , n}. (19)

3 Dual feasibility:

αi ≥ 0, ∀i ∈ {1, . . . , n}, (20)

which is already Eq. (15).

4 Complementary slackness:

αi

(
− yi (β

⊤x i + β0) + c
)

= 0, ∀i ∈ {1, . . . , n}. (21)

Support Vector Machines 15 / 53

Hard Margin SVM

KKT conditions:

We had:

αi

(
− yi (β

⊤x i + β0) + c
)

= 0, ∀i ∈ {1, . . . , n}.

Also according to Eq. (19), we have:

yi (β
⊤x i + β0) ≥ c, ∀i ∈ {1, . . . , n}.

And according to Eq. (20):

αi ≥ 0, ∀i ∈ {1, . . . , n},

So, there are two cases: {
αi = 0 if yi (β

⊤x i + β0) > c
αi ≥ 0 if yi (β

⊤x i + β0) = c.
(22)

Support Vector Machines 16 / 53

Hard Margin SVM

We had: {
αi = 0 if yi (β

⊤x i + β0) > c
αi ≥ 0 if yi (β

⊤x i + β0) = c.

When yi (β
⊤x i + β0) = c, it means that the point x i is on the margin which is the closest

distance from the decision boundary. These are called support vectors whose αi values
are greater than or equal to zero, according to Eq. (22).

For points out of the margin, which are farther than the support vectors from the decision
boundary, we have yi (β

⊤x i + β0) > c and therefore αi = 0 based on Eq. (22).

Support Vector Machines 17 / 53

Hard Margin SVM

In summary:

In hard-margin SVM, support vector is defined as the points on the margin boundary.

According to Eq. (20), the range of αi , corresponding to the point x i , is αi ≥ 0. Various
cases happen in this range:

If the point x i is a non-support vector, i.e., outside of margins, then αi = 0.

If the point x i is a support vector, i.e., on the margin boundary or in the margin, then
αi ≥ 0.

Support Vector Machines 18 / 53

Hard Margin SVM

According to Eq. (16), the cost function is − 1
2

∑n
j=1

∑n
i=1 αiαjyiyjx⊤

i x j + c
∑n

i=1 αi .
For non-support vectors, we have αi = 0 which makes the cost function zero. Therefore,
SVM only cares about support vectors, which are most capable of being misclassified, and
the other points are not important. Therefore, SVM is a sparse algorithm which is
effective for the “betting on sparsity principle” [5, 6] and the Occam’s razor [7].

Support Vector Machines 19 / 53

Hard Margin SVM: Test Phase

Optimization problem (17) is solved using an optimization toolbox by any optimization
algorithm such as the interior-point algorithm. Therefore, we obtain the optimum α.

The optimum α is put in Eq. (12):

β =
n∑

i=1

αiyix i ,

to obtain the optimum β.

As discussed in KKT conditions, for any support vector x i (which is on the smallest
margin to the decision boundary), we have:

yi (β
⊤x i + β0) = c.

Putting the obtained β in this equation gives β0.

The class label of a point x is estimated as:

ŷ = sign(β⊤x + β0), (23)

where sign(.) is the sign function.

Support Vector Machines 20 / 53

Soft Margin SVM

Support Vector Machines 21 / 53

Soft Margin SVM
When the two classes are roughly linearly separable but not exactly linearly separable, we
can use soft margin SVM.

In this algorithm, we penalize the few points which are misclassified by the decision
boundary.

Soft margin SVM adds n additional non-negative scalar variables {ζi}ni=1 and changes the
optimization problem (11) to:

minimize
β,β0,{ζi}ni=1

1

2
∥β∥2

2 + γ
n∑

i=1

ζi

subject to yi (β
⊤x i + β0) ≥ c − ζi , ∀i ∈ {1, . . . , n},

ζi ≥ 0, ∀i ∈ {1, . . . , n},

(24)

where γ > 0 is the regularization parameter.

When ζi = 0, the optimization problem reduces to the problem of hard margin SVM.
meaning that the point x i is correctly classified by the decision boundary.

If a point x i is misclassified, ζi > 0 for that point. Therefore, the less the value of ζi , the
more accurate the classification is. This is the reason for penalizing the summation of the
ζ values.

Addition of the variables {ζi}ni=1 has loosened how hard SVM gets on the classification of
the points.

Support Vector Machines 22 / 53

Soft Margin SVM

We had:

minimize
β,β0,{ζi}ni=1

1

2
∥β∥2

2 + γ
n∑

i=1

ζi

subject to yi (β
⊤x i + β0) ≥ c − ζi , ∀i ∈ {1, . . . , n},

ζi ≥ 0, ∀i ∈ {1, . . . , n}.

The constraints can be restated as:

yi (β
⊤x i + β0) ≥ c − ζi =⇒ −yi (β

⊤x i + β0) + c − ζi ≤ 0,

ζi ≥ 0 =⇒ −ζi ≤ 0.

The Lagrangian:

L(β, β0, {ζi}ni=1, {αi}ni=1, {λi}ni=1)

=
1

2
∥β∥2

2 + γ
n∑

i=1

ζi +
n∑

i=1

αi

(
− yi (β

⊤x i + β0) + c − ζi
)

+
n∑

i=1

λi (−ζi),

where {αi}ni=1 and {λi}ni=1 are the Lagrange multipliers.

Support Vector Machines 23 / 53

Soft Margin SVM
The Lagrangian:

L(β, β0, {ζi}ni=1, {αi}ni=1, {λi}ni=1)

=
1

2
∥β∥2

2 + γ
n∑

i=1

ζi +
n∑

i=1

αi

(
− yi (β

⊤x i + β0) + c − ζi
)

+
n∑

i=1

λi (−ζi).

Derivative of Lagrangian w.r.t. β:

∂L
∂β

= β −
n∑

i=1

αiyix i
set
= 0 =⇒ β =

n∑
i=1

αiyix i . (25)

Derivative of Lagrangian w.r.t. β0:

∂L
∂β0

= −
n∑

i=1

αiyi
set
= 0 =⇒

n∑
i=1

αiyi = 0. (26)

Derivative of Lagrangian w.r.t. ζi :

∂L
∂ζi

= γ − αi − λi
set
= 0 =⇒ γ − αi − λi = 0. (27)

Support Vector Machines 24 / 53

Soft Margin SVM
We substitute Eqs. (25), (26), and (27) in the Lagrangian:

L(β, β0, {ζi}ni=1, {αi}ni=1, {λi}ni=1)

=
1

2
∥β∥2

2 + γ
n∑

i=1

ζi +
n∑

i=1

αi

(
− yi (β

⊤x i + β0) + c − ζi
)

+
n∑

i=1

λi (−ζi).

The first term:

1

2
∥β∥2

2 =
1

2
β⊤β

(12)
=

1

2

n∑
j=1

αjyjx⊤
j

n∑
i=1

αiyix i =
1

2

n∑
j=1

n∑
i=1

αiαjyiyjx⊤
i x j .

The third term:
n∑

i=1

αi

(
− yi (β

⊤x i + β0) + c − ζi
)

= −
n∑

i=1

αiyiβ
⊤x i −

n∑
i=1

αiyiβ0 +
n∑

i=1

αic −
n∑

i=1

αiζi

= −β⊤
n∑

i=1

αiyix i − β0

n∑
i=1

αiyi + c
n∑

i=1

αi −
n∑

i=1

αiζi

(a)
= −

n∑
j=1

αjyjx⊤
j

n∑
i=1

αiyix i + c
n∑

i=1

αi −
n∑

i=1

αiζi

= −
n∑

j=1

n∑
i=1

αiαjyiyjx⊤
i x j + c

n∑
i=1

αi −
n∑

i=1

αiζi ,

where (a) is because of Eqs. (25) and (26).
Support Vector Machines 25 / 53

Soft Margin SVM

Therefore, the dual function becomes:

g({αi}ni=1, {λi}ni=1) = L(β†, β†
0 , {ζ

†
i }

n
i=1, {αi}ni=1, {λi}ni=1)

=
1

2

n∑
j=1

n∑
i=1

αiαjyiyjx⊤
i x j + γ

n∑
i=1

ζi −
n∑

j=1

n∑
i=1

αiαjyiyjx⊤
i x j

+ c
n∑

i=1

αi −
n∑

i=1

αiζi +
n∑

i=1

λi (−ζi)

= −
1

2

n∑
j=1

n∑
i=1

αiαjyiyjx⊤
i x j + c

n∑
i=1

αi +
n∑

i=1

(γ − αi − λi)ζi

(27)
= −

1

2

n∑
j=1

n∑
i=1

αiαjyiyjx⊤
i x j + c

n∑
i=1

αi . (28)

Also, according to the dual feasibility in Karush-Kuhn-Tucker (KKT) conditions, the dual
variable should be non-negative:

αi ≥ 0, λi ≥ 0, ∀i ∈ {1, . . . , n}. (29)

Support Vector Machines 26 / 53

Soft Margin SVM

Considering Eqs. (26), (28), and (29), the dual optimization problem is:

maximize
{αi}ni=1

−
1

2

n∑
j=1

n∑
i=1

αiαjyiyjx⊤
i x j + c

n∑
i=1

αi

subject to
n∑

i=1

αiyi = 0,

αi ≥ 0, ∀i ∈ {1, . . . , n},
λi ≥ 0, ∀i ∈ {1, . . . , n}.

(30)

Comparing Eqs. (16) and (30) shows that the only difference between hard margin and
soft margin SVM algorithms is addition of the constraints λi ≥ 0, ∀i in the soft margin
SVM.

According to Eq. (27), the constraint λi ≥ 0 can be restated as:

λi ≥ 0
(27)
=⇒ γ − αi ≥ 0 =⇒ αi ≤ γ. (31)

Support Vector Machines 27 / 53

Soft Margin SVM

Combining this equation with the constraint αi ≥ 0 can restate the optimization problem
as:

maximize
{αi}ni=1

−
1

2

n∑
j=1

n∑
i=1

αiαjyiyjx⊤
i x j + c

n∑
i=1

αi

subject to
n∑

i=1

αiyi = 0,

0 ≤ αi ≤ γ, ∀i ∈ {1, . . . , n}.

(32)

Comparing Eqs. (16) and (32) shows that the only difference between hard margin and
soft margin SVM algorithms is the upper bound γ on the optimization variables.

Defining α := [α1, . . . , αn]⊤ ∈ Rn, y := [y1, . . . , yn]⊤ ∈ Rn, 1 := [1, 1, . . . , 1]⊤ ∈ Rn, and
a matrix S whose (i , j)-th element is S(i , j) := (yix⊤

i)(yjx j), the problem can be stated in
vector form as:

maximize
α

−
1

2
α⊤Sα + c1⊤α

subject to y⊤α = 0,

0 ⪯ α ⪯ γ1.

(33)

It is a quadratic programming problem. So, it is a concave optimization problem. So, it
has one global solution. That is while Perceptron algorithm has various solutions based on
its initial random optimization variables.

Support Vector Machines 28 / 53

Soft Margin SVM
The test phase of the soft margin SVM is the same as the test phase of the hard margin
SVM.

KKT conditions:

1 Stationarity condition:
∂L
∂β

set
= 0,

∂L
∂β0

set
= 0,

∂L
∂ζi

set
= 0. (34)

which resulted in Eqs. (25), (26), and (27).

2 Primal feasibility:

yi (β
⊤x i + β0) ≥ c − ζi , ∀i ∈ {1, . . . , n}. (35)

3 Dual feasibility:

αi ≥ 0, λi ≥ 0, ∀i ∈ {1, . . . , n}, (36)

which is already Eq. (29).

4 Complementary slackness:

αi

(
− yi (β

⊤x i + β0) + c − ζi
)

= 0, ∀i ∈ {1, . . . , n}, (37)

λi (−ζi) = 0 =⇒ λiζi = 0, ∀i ∈ {1, . . . , n}. (38)

Support Vector Machines 29 / 53

Soft Margin SVM
We found:

αi

(
− yi (β

⊤x i + β0) + c − ζi
)

= 0, ∀i ∈ {1, . . . , n},
λi (−ζi) = 0 =⇒ λiζi = 0, ∀i ∈ {1, . . . , n}.

According to the primal feasibility, yi (β
⊤x i + β0) ≥ c − ζi .

If yi (β
⊤x i + β0) > c − ζi , then αi = 0 according to Eq. (37). It means the point is a

non-support vector and outside of the margins. Setting αi = 0 in the cost function of
problem (30) makes the cost zero; therefore, soft-margin SVM also does not care about
the non-support vector points.

If yi (β
⊤x i + β0) = c − ζi , then αi ≥ 0 according to Eq. (37). It means the point is a

support vector and either on the margin or inside the margin (violating the margin).
▶ Dual feasibility: ζi ≥ 0.
▶ If ζi > 0 (violate margin, i.e., it passes the margin): According to Eq. (38), λi = 0.

According to Eq. (27):

γ − αi − λi = 0 =⇒ λi = γ − αi = 0 =⇒ αi = γ.

▶ If ζi = 0 (not violate margin, i.e., exactly on the margin border): According to Eqs.
(36) and (38), λi ≥ 0. The case λi = 0 is like above case and we have αi = γ.
However, for case λi > 0, according to Eq. (27):

γ − αi − λi = 0 =⇒ λi = γ − αi > 0 =⇒ αi < γ.

Overall, in case there is ζi = 0, i.e., the point is on the margin border, we have
αi ≤ γ.

Support Vector Machines 30 / 53

Soft Margin SVM
In summary:

In soft-margin SVM, support vector is defined as the points inside of margins, either on
the margin boundary or in the margin.
According to the constraint in Eq. (32), the range of αi , corresponding to the point x i , is
0 ≤ αi ≤ γ. Various cases happen in this range:
If the point x i is a non-support vector, i.e., outside of margins, then αi = 0.
If the point x i is a support vector, i.e., inside of margins (either on the margin boundary
or in the margin), then αi ≥ 0:

▶ If the point violates the margin, i.e., it passes the margin, then λi = 0, αi = γ.
⋆ The point x i is either in the margin but correctly classified.
⋆ or the point x i is in the margin but in the other side of decision

boundary, i.e., is misclassified.
▶ If the point does not violate the margin, i.e., it is exactly on the margin border, then

λi ≥ 0, αi ≤ γ.

Support Vector Machines 31 / 53

Soft Margin SVM

Support Vector Machines 32 / 53

Kernelization in
Machine Learning

Support Vector Machines 33 / 53

Kernelization
Linear algorithms cannot properly handle nonlinear patterns of data obviously.
When dealing with nonlinear data, if the algorithm is linear, two solutions exist to have
acceptable performance:

1 Either the linear method should be modified to become nonlinear or a completely
new nonlinear algorithm should be proposed to be able to handle nonlinear data.
Some examples of this category are nonlinear dimensionality methods such as
locally linear embedding [8] and Isomap [9].

2 Or the nonlinear data should be modified in a way to become more linear in
pattern. In other words, a transformation should be applied on data so that the
pattern of data becomes roughly linear or easier to process by the linear algorithm.
Some examples of this category are kernel versions of linear methods such as kernel
Principal Component Analysis (PCA) [10, 11, 12], kernel Fisher Discriminant
Analysis (FDA) [13, 14], and kernel Support Vector Machine (SVM) [15, 16].

The second approach is called kernelization in machine learning which we define in the
following.
This figure shows how kernelization for transforming data can help separate classes for
better classification.

Support Vector Machines 34 / 53

Kernel Trick

Generally, there exist two main approaches for kernelization in machine learning. These
two approaches are related in theory but have two ways for kernelization. These
approaches are:

▶ Kernelization by Kernel Trick, e.g., in kernel SVM
▶ Kernelization by Representation Theory, e.g., in kernel FDA

Here, we explain the kernel trick used in kernel SVM.

Support Vector Machines 35 / 53

Kernel Trick

Definition (Feature Map or Pulling Function)
We define the mapping:

ϕ : X → H, (39)

to transform data from the input space to the feature space, i.e. Hilbert space. In other words,
this mapping pulls data to the feature space:

x 7→ ϕ(x). (40)

The function ϕ(x) is called the feature map or pulling function. The feature map is a (possibly
infinite-dimensional) vector whose elements are [17]:

ϕ(x) = [ϕ1(x), ϕ2(x), . . .]⊤. (41)

Let t denote the dimensionality of ϕ(x). The feature map may be infinite or finite
dimensional, i.e. t can be infinity; it is usually a very large number (the Hilbert space may
have infinite number of dimensions).

Support Vector Machines 36 / 53

Kernel Trick
One technique to kernelize an algorithm is kernel trick. In this technique, we first try to
formulate the algorithm formulas or optimization in a way that data always appear as
inner product of data instances and not a data instance alone. In other words, the
formulation of algorithm should only have x⊤x , x⊤X , X⊤x , or X⊤X and not a lonely x
or X .

In this way, kernel trick replaces x⊤x with ϕ(x)⊤ϕ(x) [4]:

x⊤x 7→ ϕ(x)⊤ϕ(x) = k(x , x). (42)

because kernel can be computed by inner product between pulled data instances to the
RKHS (see our tutorial [18] for more information).

Therefore, the inner products of points are all replaced with the kernel between points.
The matrix form of kernel trick is:

X⊤X 7→ Φ(X)⊤Φ(X) = K(X ,X) ∈ Rn×n. (43)

Most often, kernel matrix is computed over one dataset; hence, its dimensionality is n× n.
However, in some cases, the kernel matrix is computed between two sets of data instances
with sample sizes n1 and n2 for example, i.e. datasets X 1 := [x1,1, . . . , x1,n1] and
X 2 := [x2,1, . . . , x2,n2]. In this case, the kernel matrix has size n1 × n2 and the kernel
trick is:

x⊤
1,ix1,j 7→ ϕ(x1,i)

⊤ϕ(x1,j) = k(x1,i , x1,j), (44)

X⊤
1 X 2 7→ Φ(X 1)⊤Φ(X 2) = K(X 1,X 2) ∈ Rn1×n2 . (45)

Support Vector Machines 37 / 53

Well-known Kernel Functions
Linear Kernel: Linear kernel is the simplest kernel which is the inner product of points:

k(x , y) := x⊤y . (46)

▶ Comparing this with Eq. (44) shows that in linear kernel we have ϕ(x) = x .
▶ Hence, in this kernel, the feature map is explicitly known.
▶ Note that ϕ(x) = x shows that data are not pulled to any other space in linear

kernel but in the input space, the inner products of points are calculated to obtain
the feature space.

▶ If we use kernel trick, the kernelized algorithm with a linear kernel is equivalent to
the non-kernelized algorithm. This is because in linear kernel, we have ϕ(x) = x
and k(x , y) = x⊤y according to Eq. (46). So, the kernel trick, which is Eq. (44),
maps data as x⊤y 7→ ϕ(x)⊤ϕ(y) = x⊤y for linear kernel. Therefore, linear kernel
does not have any effect when using kernel trick. Examples for this are kernel PCA
[10, 11, 12] and kernel SVM [15, 16] which are equivalent to PCA and SVM,
respectively, if linear kernel is used.

▶ However, linear kernel does have impact when using kernelization by representation
theory because it finds the inner products of pulled data points after pulling the
solution and representation as a span of bases. Hence, kernelized algorithm using
representation theory with linear kernel is not equivalent to non-kernelized
algorithm. Examples of this are kernel FDA [13, 14] and kernel supervised PCA
[19, 12] which are different from FDA and supervised PCA, respectively, even if
linear kernel is used. For more information about kernelization by representation
theory, see our tutorial [18].

Support Vector Machines 38 / 53

Well-known Kernel Functions

Radial Basis Function (RBF) or Gaussian Kernel: RBF kernel has a scaled Gaussian (or
normal) distribution where the normalization factor of distribution is usually ignored.
Hence, it is also called the Gaussian kernel. The RBF kernel is formulated as:

k(x , y) := exp(−γ ∥x − y∥2
2) = exp(−

∥x − y∥2
2

σ2
), (47)

where γ := 1/σ2 and σ2 is the variance of kernel. A proper value for this parameter is
γ = 1/d where d is the dimensionality of data. Note that RBF kernel has also been
widely used in RBF networks [20] and kernel density estimation [21].

Laplacian Kernel: The Laplacian kernel, also called the Laplace kernel, is similar to the
RBF kernel but with ℓ1 norm rather than squared ℓ2 norm. The Laplacian kernel is:

k(x , y) := exp(−γ ∥x − y∥1) = exp(−
∥x − y∥1

σ2
), (48)

where ∥x − y∥1 is also called the Manhattan distance. A proper value for this parameter
is γ = 1/d where d is the dimensionality of data. In some specific fields of science, the
Laplacian kernel has been found to perform better than Gaussian kernel [22]. This makes
sense because of betting on sparsity principal [23] since ℓ1 norm makes algorithm sparse.
Note that ℓ2 norm in RBF kernel is also more sensitive to noise; however, the computation
and derivative of ℓ1 norm is more difficult than ℓ2 norm.

Support Vector Machines 39 / 53

Well-known Kernel Functions

Sigmoid Kernel: Sigmoid kernel is a hyperbolic tangent function applied on inner product
of points. It is formulated as:

k(x , y) := tanh(γx⊤y + c), (49)

where γ > 0 is the slope and c is the intercept. Some proper values for these parameters
are γ = 1/d and c = 1 where d is the dimensionality of data. Note that the hyperbolic
tangent function is also used widely for activation functions in neural networks [24].

Polynomial Kernel: Polynomial kernel applies a polynomial function with degree δ (a
positive integer) on inner product of points:

k(x , y) := (γx⊤y + c)d , (50)

where γ > 0 is the slope and c is the intercept. Some proper values for these parameters
are γ = 1/d and c = 1 where d is the dimensionality of data.

Support Vector Machines 40 / 53

Well-known Kernel Functions

Cosine Kernel: Kernel is a measure of similarity [18] and computes the inner product
between points in the feature space. Cosine kernel computes the similarity between
points. It is obtained from the formula of cosine and inner product:

k(x , y) := cos(x , y) =
x⊤y

∥x∥2 ∥y∥2
. (51)

The normalization in the denominator projects the points onto a unit hyper-sphere so that
the inner product measures the similarity of their angles regardless of their lengths. Note
that angle-based measures such as cosine are found to work better for face recognition
compared to Euclidean distances [25].

Chi-squared Kernel: Assume x(j) denotes the j-th dimension of the d-dimensional point
x . The Chi-squared (χ2) kernel is [26]:

k(x , y) := exp
(
−γ

d∑
j=1

(
x(j) − y(j)

)2

x(j) + y(j)

)
, (52)

where γ > 0 is a parameter (a proper value is γ = 1). Note that the summation term
inside exponential (without the minus) is the Chi-squared distance which is related to the
Chi-squared test in statistics.

Support Vector Machines 41 / 53

Kernel SVM

Support Vector Machines 42 / 53

Kernel SVM
Kernel SVM was proposed by Vladimir Vapnik et al. in years 1992-1995 [15, 16].

Recall Eq. (16) which is the dual optimization problem in hard margin SVM:

maximize
{αi}ni=1

−
1

2

n∑
j=1

n∑
i=1

αiαjyiyjx⊤
i x j + c

n∑
i=1

αi

subject to
n∑

i=1

αiyi = 0,

αi ≥ 0, ∀i ∈ {1, . . . , n}.

For kernelization using kernel trick, we can replace x⊤
i x j with ϕ(x i)

⊤ϕ(x j) = k(x i , x j):

maximize
{αi}ni=1

−
1

2

n∑
j=1

n∑
i=1

αiαjyiyjk(x i , x j) + c
n∑

i=1

αi

subject to
n∑

i=1

αiyi = 0,

αi ≥ 0, ∀i ∈ {1, . . . , n}.

(53)

Note that it is possible to use kernel trick in soft-margin SVM also; however, it is not
required as soft-margin SVM tried to handle nonlinear classes while kernel trick can do
this even when it is used with the hard margin SVM.

Analysis of KKT conditions of kernel trick is the same as we did for hard-margin SVM.

Support Vector Machines 43 / 53

Kernel SVM vs. Neural Networks

Because of usage of the kernel function, kernel SVM can handle nonlinearly separable
classes.

Kernel SVM was winning the competition with in 1990’s and start of the 21st century.
This time period is referred to as the winter of neural networks. The reasons of the
overcome of kernel SVM over neural networks were:

▶ Kernel SVM is mathematically sound and solid.
▶ Kernel SVM was able to perform nonlinear classification.
▶ at that time, multilayer Perceptron neural networks could not become deep because

of gradient vanishing or gradient explosion problem.

Since about 2006, neural networks could win the battle back against kernel SVM. The
reasons for this winning back were:

▶ Kernel SVM required choice of kernel function. It was not obvious which kernel
function is best for a dataset. Usually, the RBF kernel function was used by default.

▶ Calculation of kernel function is time consuming and thus cannot handle big data
with a huge n. This is while neural networks could handle big data. At that time,
the world was facing the explosion of data and information and handling big data
was crucial.

▶ The problems of gradient vanishing and explosion were resolved using various
techniques such as initialization by Restricted Boltzmann Machines (RBM) (2006)
[27, 28], ReLU activation function (2011) [29] and the dropout technique (2014)
[30].

Support Vector Machines 44 / 53

More Notes

Support Vector Machines 45 / 53

Some More Notes
For multi-class classification, we can consider every pairs of classes as a binary
classification. Therefore, a multi-class classification can be considered as a set of binary
classification problems.
SVM can also be used for regression (Support Vector Regression - SVR) [31] and
clustering (one-class SVM) [32], too. Here, we went through SVM and kernel SVM for
binary classification.
SVR:

minimize
β,β0

1

2
∥β∥2

2

subject to yi − (β⊤x i + β0) ≤ ε, ∀i ∈ {1, . . . , n},

(β⊤x i + β0) − yi ≤ ε, ∀i ∈ {1, . . . , n}.

(54)

One-class SVM: It considers a class of inliers and a class of outliers. So, it is a binary
classification again.

Support Vector Machines 46 / 53

SVM and Kernel SVM in Sklearn

SVM in sklearn: https:

//scikit-learn.org/stable/modules/generated/sklearn.svm.LinearSVC.html

Kernel SVM in sklearn:
https://scikit-learn.org/stable/modules/generated/sklearn.svm.SVC.html

Linear SVM is much faster than Kernel SVM in sklearn. Sklearn itself recommends using
LinearSVC for large datasets.

Tutorial page for SVM in sklearn:
https://scikit-learn.org/stable/modules/svm.html

Support Vector Machines 47 / 53

https://scikit-learn.org/stable/modules/generated/sklearn.svm.LinearSVC.html
https://scikit-learn.org/stable/modules/generated/sklearn.svm.LinearSVC.html
https://scikit-learn.org/stable/modules/generated/sklearn.svm.SVC.html
https://scikit-learn.org/stable/modules/svm.html

Acknowledgment

For more information on KKT conditions, dual problem, method of Lagrange multipliers,
etc, refer to my Optimization Techniques course at the University of Guelph, whose
lectures are on my youTube channel.

For more information on KKT conditions, dual problem, method of Lagrange multipliers,
etc, see our tutorial paper: Benyamin Ghojogh, Ali Ghodsi, Fakhri Karray, Mark Crowley.
”KKT Conditions, First-Order and Second-Order Optimization, and Distributed
Optimization: Tutorial and Survey.” arXiv preprint arXiv:2110.01858 (2021). [33]

For more information on kernels, see our tutorial paper: Benyamin Ghojogh, Ali Ghodsi,
Fakhri Karray, Mark Crowley. ”Reproducing Kernel Hilbert Space, Mercer’s Theorem,
Eigenfunctions, Nyström Method, and Use of Kernels in Machine Learning: Tutorial and
Survey.” arXiv preprint arXiv:2106.08443 (2021). [18]

Some slides of this slide deck are inspired by teachings of Prof. Ali Ghodsi at University of
Waterloo, Department of Statistics.

Support Vector Machines 48 / 53

References

[1] F. Rosenblatt, “The Perceptron – a perceiving and recognizing automaton project para,”
tech. rep., Report 85-460-1, Cornell Aeronautical Laboratory., 1957.

[2] D. O. Hebb, The Organization of Behavior.
New York: Wiley & Sons, 1949.

[3] V. Vapnik and A. Chervonenkis, Theory of pattern recognition.
Nauka, Moscow, 1974.

[4] C. J. Burges, “A tutorial on support vector machines for pattern recognition,” Data mining
and knowledge discovery, vol. 2, no. 2, pp. 121–167, 1998.

[5] J. Friedman, T. Hastie, and R. Tibshirani, The elements of statistical learning: Data
Mining, Inference, and Prediction, vol. 2.
Springer series in statistics, New York, NY, USA, 2009.

[6] R. Tibshirani, M. Wainwright, and T. Hastie, Statistical learning with sparsity: the lasso
and generalizations.
Chapman and Hall/CRC, 2015.

[7] P. Domingos, “The role of Occam’s razor in knowledge discovery,” Data mining and
knowledge discovery, vol. 3, no. 4, pp. 409–425, 1999.

[8] B. Ghojogh, A. Ghodsi, F. Karray, and M. Crowley, “Locally linear embedding and its
variants: Tutorial and survey,” arXiv preprint arXiv:2011.10925, 2020.

Support Vector Machines 49 / 53

References (cont.)

[9] B. Ghojogh, A. Ghodsi, F. Karray, and M. Crowley, “Multidimensional scaling, Sammon
mapping, and Isomap: Tutorial and survey,” arXiv preprint arXiv:2009.08136, 2020.

[10] B. Schölkopf, A. Smola, and K.-R. Müller, “Kernel principal component analysis,” in
International conference on artificial neural networks, pp. 583–588, Springer, 1997.

[11] B. Schölkopf, A. Smola, and K.-R. Müller, “Nonlinear component analysis as a kernel
eigenvalue problem,” Neural computation, vol. 10, no. 5, pp. 1299–1319, 1998.

[12] B. Ghojogh and M. Crowley, “Unsupervised and supervised principal component analysis:
Tutorial,” arXiv preprint arXiv:1906.03148, 2019.

[13] S. Mika, G. Ratsch, J. Weston, B. Scholkopf, and K.-R. Mullers, “Fisher discriminant
analysis with kernels,” in Neural networks for signal processing IX: Proceedings of the 1999
IEEE signal processing society workshop, pp. 41–48, IEEE, 1999.

[14] B. Ghojogh, F. Karray, and M. Crowley, “Fisher and kernel Fisher discriminant analysis:
Tutorial,” arXiv preprint arXiv:1906.09436, 2019.

[15] B. E. Boser, I. M. Guyon, and V. N. Vapnik, “A training algorithm for optimal margin
classifiers,” in Proceedings of the fifth annual workshop on Computational learning theory,
pp. 144–152, 1992.

[16] V. Vapnik, The nature of statistical learning theory.
Springer science & business media, 1995.

Support Vector Machines 50 / 53

References (cont.)

[17] H. Q. Minh, P. Niyogi, and Y. Yao, “Mercer’s theorem, feature maps, and smoothing,” in
International Conference on Computational Learning Theory, pp. 154–168, Springer, 2006.

[18] B. Ghojogh, A. Ghodsi, F. Karray, and M. Crowley, “Reproducing kernel Hilbert space,
Mercer’s theorem, eigenfunctions, Nystr\” om method, and use of kernels in machine
learning: Tutorial and survey,” arXiv preprint arXiv:2106.08443, 2021.

[19] E. Barshan, A. Ghodsi, Z. Azimifar, and M. Z. Jahromi, “Supervised principal component
analysis: Visualization, classification and regression on subspaces and submanifolds,”
Pattern Recognition, vol. 44, no. 7, pp. 1357–1371, 2011.

[20] M. J. L. Orr, “Introduction to radial basis function networks,” tech. rep., Center for
Cognitive Science, University of Edinburgh, 1996.

[21] D. W. Scott, Multivariate density estimation: theory, practice, and visualization.
John Wiley & Sons, 1992.

[22] M. Rupp, “Machine learning for quantum mechanics in a nutshell,” International Journal
of Quantum Chemistry, vol. 115, no. 16, pp. 1058–1073, 2015.

[23] T. Hastie, R. Tibshirani, and J. Friedman, The elements of statistical learning: data
mining, inference, and prediction.
Springer Science & Business Media, 2009.

[24] I. Goodfellow, Y. Bengio, A. Courville, and Y. Bengio, Deep learning, vol. 1.
MIT press Cambridge, 2016.

Support Vector Machines 51 / 53

References (cont.)

[25] V. Perlibakas, “Distance measures for PCA-based face recognition,” Pattern recognition
letters, vol. 25, no. 6, pp. 711–724, 2004.

[26] J. Zhang, M. Marsza lek, S. Lazebnik, and C. Schmid, “Local features and kernels for
classification of texture and object categories: A comprehensive study,” International
journal of computer vision, vol. 73, no. 2, pp. 213–238, 2007.

[27] G. E. Hinton and R. R. Salakhutdinov, “Reducing the dimensionality of data with neural
networks,” Science, vol. 313, no. 5786, pp. 504–507, 2006.

[28] G. E. Hinton, S. Osindero, and Y.-W. Teh, “A fast learning algorithm for deep belief nets,”
Neural computation, vol. 18, no. 7, pp. 1527–1554, 2006.

[29] X. Glorot, A. Bordes, and Y. Bengio, “Deep sparse rectifier neural networks,” in
Proceedings of the fourteenth international conference on artificial intelligence and
statistics, pp. 315–323, JMLR Workshop and Conference Proceedings, 2011.

[30] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov, “Dropout: a
simple way to prevent neural networks from overfitting,” The journal of machine learning
research, vol. 15, no. 1, pp. 1929–1958, 2014.

[31] A. J. Smola and B. Schölkopf, “A tutorial on support vector regression,” Statistics and
computing, vol. 14, pp. 199–222, 2004.

Support Vector Machines 52 / 53

References (cont.)

[32] B. Schölkopf, R. C. Williamson, A. Smola, J. Shawe-Taylor, and J. Platt, “Support vector
method for novelty detection,” Advances in neural information processing systems, vol. 12,
1999.

[33] B. Ghojogh, A. Ghodsi, F. Karray, and M. Crowley, “KKT conditions, first-order and
second-order optimization, and distributed optimization: Tutorial and survey,” arXiv
preprint arXiv:2110.01858, 2021.

Support Vector Machines 53 / 53

