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Data Graph in the Input Space

Uniform Manifold Approximation and Projection (UMAP) was proposed in 2018 [1].

Consider a training dataset X = [x1, . . . , xn] ∈ Rd×n where n is the sample size and d is
the dimensionality.

We construct a k-Nearest Neighbors (kNN) graph for this dataset. It has been
empirically observed that UMAP requires fewer number of neighbors than t-SNE [2]. Its
default value is k = 15. We denote the j-th neighbor of x i by x i,j . Let Ni denote the set
of neighbor points for the point x i , i.e., Ni := {x i,1, . . . , x i,k}.
We treat neighborhood relationship between points stochastically. Inspired by SNE [3] and
t-SNE [4, 5], we use the Gaussian or Radial Basis Function (RBF) kernel for the measure
of similarity between points in the input space. The probability that a point x i has the
point x j as its neighbor can be computed by the similarity of these points:

pj|i :=

{
exp

(
− ∥x i−x j∥2−ρi

σi

)
if x j ∈ Ni

0 Otherwise,
(1)

where ∥.∥2 denotes the ℓ2 norm.

The ρi is the distance from x i to its nearest neighbor:

ρi := min{∥x i − x i,j∥2 | 1 ≤ j ≤ k}. (2)
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Data Graph in the Input Space
The σi is the scale parameter which is calculated such that the total similarity of point x i

to its k nearest neighbors is normalized. By binary search, we find σi to satisfy:

k∑
j=1

exp
(
−

∥x i − x i,j∥2 − ρi

σi

)
= log2(k). (3)

Note that t-SNE [4] has a similar search for its scale using entropy as perplexity. These
searches make the neighborhoods of various points behave similarly because the scale
for a point in a dense region of dataset becomes small while the scale of a point in a
sparse region of data becomes large.

In other words, UMAP and t-SNE both assume (or approximate) that points are
uniformly distributed on an underlying low-dimensional manifold. This approximation is
also included in the name of UMAP.

Eq. (1):

pj|i :=

{
exp

(
− ∥x i−x j∥2−ρi

σi

)
if x j ∈ Ni

0 Otherwise,

is a directional similarity measure. To have a symmetric measure with respect to i and j ,
we symmetrize it as:

R ∋ pij := pj|i + pi|j − pj|i pi|j . (4)

This is a symmetric measure of similarity between points x i and x j in the input space.
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Data Graph in the Embedding Space

Let the embeddings of points be Y = [y1, . . . , yn] ∈ Rp×n where p is the dimensionality
of embedding space and is smaller than input dimensionality, i.e., p ≪ d . Note that y i is
the embedding corresponding to x i .

In the embedding space, the probability that a point y i has the point y j as its neighbor
can be computed by the similarity of these points:

R ∋ qij := (1 + a ∥y i − y j∥2b2 )−1, (5)

which is symmetric with respect to i and j .

The variables a > 0 and b > 0 are hyperparameters determined by the user. By default,
we have a ≈ 1.929 and b ≈ 0.7915 [1], although it has been empirically seen that setting
a = b = 1 does not qualitatively impact the results [6].
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Optimization Cost Function
UMAP aims to make the data graph in the low-dimensional embedding space similar to
the data graph in the high-dimensional embedding space. In other words, we treat Eqs.
(4) and (5) as probability distributions and minimize the difference of these distributions
to make similarities of points in the embedding space as the similarities of points in the
input space. A measure for the difference of these similarities of graphs is the fuzzy
cross-entropy defined as:

c1 :=
n∑

i=1

n∑
j=1,j ̸=i

(
pij ln(

pij

qij
) + (1− pij ) ln(

1− pij

1− qij
)
)
, (6)

where ln(.) is the natural logarithm. The definition of this cross-entropy is in the field of
fuzzy category theory (see our tutorial paper [7] for more information).

The first term in Eq. (6) is the attractive force which attracts the embeddings of
neighbor points toward each other. This term should only appear when pij ̸= 0 which
means either x j is a neighbor of x i , or x i is a neighbor of x j , or both (see Eq. (4),
R ∋ pij := pj|i + pi|j − pj|i pi|j ).

The second term in Eq. (6) is the repulsive force which repulses the embeddings of
non-neighbor points away from each other.

As the number of all permutations of non-neighbor points is very large, computation of
the second term is non-tractable in big data. Inspired by Word2Vec [8] and LargeVis [9],
UMAP uses negative sampling where, for every point x i , m points are sampled randomly
from the training dataset and treat them as non-negative (negative) points for x i .

As the dataset is usually large, i.e. m ≪ n, the sampled points will be actual negative
points with high probability.
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Optimization Cost Function
We had:

c1 :=
n∑

i=1

n∑
j=1,j ̸=i

(
pij ln(

pij

qij
) + (1− pij ) ln(

1− pij

1− qij
)
)
.

The summation over the second term in Eq. (6) is computed only over these negative
samples rather than all negative points.
UMAP changes the data graph in the embedding space to make it similar to the data
graph in the input space.
Eq. (6) is the cost function which is minimized in UMAP where the optimization variables
are {yi}ni=1:

min
{y i}ni=1

c1 := min
{y i}ni=1

n∑
i=1

n∑
j=1,j ̸=i

(
pij ln(pij )− pij ln(qij )

+ (1− pij ) ln(1− pij )− (1− pij ) ln(1− qij )
)
.

According to Eqs. (1), (4), and (5), in contrast to qij , the pij is independent of the
optimization variables {yi}ni=1. Hence, we can drop the constant terms to revise the cost
function:

c2 := −
n∑

i=1

n∑
j=1,j ̸=i

(
pij ln(qij ) + (1− pij ) ln(1− qij )

)
, (7)

which should be minimized.
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Optimization Cost Function
We had:

c2 := −
n∑

i=1

n∑
j=1,j ̸=i

(
pij ln(qij ) + (1− pij ) ln(1− qij )

)
.

Two important terms in this cost function are:

cai,j := − ln(qij ), (8)

c ri,j := − ln(1− qij ), (9)

and we can write:

c2 :=
n∑

i=1

n∑
j=1,j ̸=i

(
pij c

a
i,j + (1− pij ) c

r
i,j

)
(10)

(a)
= 2

n∑
i=1

n∑
j=i+1

(
pij c

a
i,j + (1− pij ) c

r
i,j

)
, (11)

where (a) is because pij = pji , c
a
i,j = caj,i , and c ri,j = c rj,i are symmetric.

The Eqs. (8) and (9) are the attractive and repulsive forces in Eq. (7), respectively. The
attractive force attracts the neighbor points toward each other in the embedding space
while the repulsive force pushes the non-neighbor points (i.e., points with low probability
of being neighbors) away from each other in the embedding space.
According to Eq. (10), cai,j and c ri,j occur with probability pij and (1− pij ), respectively.
For every point, we call it the anchor point and we call its neighbor and non-neighbor
points, with large and small pij , as the positive and negative points, respectively.
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The Training Algorithm of UMAP
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The Training Algorithm of UMAP
As this algorithm shows, a kNN graph is constructed from the training data {x i}ni=1.
UMAP uses Laplacian eigenmap [10, 11], also called spectral embedding, for initializing
the embeddings of points denoted by {y i}ni=1.
Using Eqs. (4) and (5), pij and qij are calculated for all points.
Stochastic Gradient Descent (SGD) is used for optimization where optimization is
performed iteratively.
In every iteration (epoch), we iterate over points twice with indices i and j where the i-th
point is called the anchor. For every pair of points x i and x j , we update their embeddings
x i and x j with probability pij (recall Eq. (7)).
If pij is large, it means that the points x i and x j are probably neighbors (in this case, the
j-th point is called the positive point) and their embeddings are highly likely to be
updated to become close in the embedding space based on the attractive force. For
implementing it, we can sample a uniform value from the continuous uniform distribution
U(0, 1) and if that is less than pij , we update the embeddings.
We update the embeddings y i and y j by gradients ∂cai,j/∂y i and ∂cai,j/∂y j , respectively,
where η is the learning rate.
For repulsive forces, we use negative sampling as was explained before. If m denotes the
size of negative sample, we sample m indices from the discrete uniform distribution
U{1, . . . , n}. These are the indices of points which are considered as negative samples
{y l} where |{y l}| = m. As the size of dataset is usually large enough to satisfy n ≫ m,
these negative points are probably valid because many of the points are non-neighbors of
the considered anchor.
In negative sampling, the original UMAP [1] updates only the embedding of anchor y i by
gradient of the repulsive force ∂cai,j/∂y i . One can additionally update the embedding of

negative point y l by gradient of the repulsive force ∂cai,j/∂y l [12].
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The Training Algorithm of UMAP
We had:

cai,j := − ln(qij ),

c ri,j := − ln(1− qij ).

The gradients of attractive and repulsive cost functions in UMAP are:

∂cai,j

∂y i

=
2ab∥y i − y j∥

2(b−1)
2

(1 + a ∥y i − y j∥2b2 )
(y i − y j ), (12)

∂c ri,j

∂y i

=
−2b

(ε+ ∥y i − y j∥22)(1 + a ∥y i − y j∥2b2 )
(y i − y j ), (13)

where ε is a small positive number, e.g. ε = 0.001, for stability to prevent division by zero
when y i ≈ y j .

Likewise, we have:

∂cai,j

∂y j

=
2ab∥y i − y j∥

2(b−1)
2

(1 + a ∥y i − y j∥2b2 )
(y j − y i ),

∂c ri,j

∂y j

=
−2b

(ε+ ∥y i − y j∥22)(1 + a ∥y i − y j∥2b2 )
(y j − y i ).
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The Training Algorithm of UMAP
Proof: We had:

cai,j := − ln(qij ),

c ri,j := − ln(1− qij ),

R ∋ qij := (1 + a ∥y i − y j∥2b2 )−1.

For the first equation, we have:

∂cai,j

∂y i

=
∂cai,j

∂qij
×

∂qij

∂y i

=
−1

qij
×

( −1

(1 + a ∥y i − y j∥2b2 )2
× 2ab(y i − y j )× ∥y i − y j∥

2(b−1)
2

)
(5)
=

2ab∥y i − y j∥
2(b−1)
2

(1 + a ∥y i − y j∥2b2 )
(y i − y j ). (14)

For the second equation, we have:

∂c ri,j

∂y i

=
∂c ri,j

∂qij
×

∂qij

∂y i

=
1

1− qij
×

( −1

(1 + a ∥y i − y j∥2b2 )2
× 2ab(y i − y j )× ∥y i − y j∥

2(b−1)
2

)

=
−2ab∥y i − y j∥

2(b−1)
2

(1− qij )(1 + a ∥y i − y j∥2b2 )2
(y i − y j ). (15)
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The Training Algorithm of UMAP
Eq. (5) was: R ∋ qij := (1 + a ∥y i − y j∥2b2 )−1.
The term in the numerator can be simplified as:

− 2ab∥y i − y j∥
2(b−1)
2 = −2b(a∥y i − y j∥2b2 )∥y i − y j∥

−2
2

(5)
= −2b (q−1

ij − 1)∥y i − y j∥
−2
2 .

The term in the denominator can be simplified as:

(1− qij )(1 + a ∥y i − y j∥2b2 )2
(5)
= (1− qij )q

−2
ij = q−2

ij − q−1
ij = q−1

ij (q−1
ij − 1).

Hence, Eq. (15):

∂c ri,j

∂y i

=
−2ab∥y i − y j∥

2(b−1)
2

(1− qij )(1 + a ∥y i − y j∥2b2 )2
(y i − y j ),

can be simplified as:

∂c ri,j

∂y i

=
−2b (q−1

ij − 1)∥y i − y j∥
−2
2

q−1
ij (q−1

ij − 1)
(y i − y j ) =

−2b

∥y i − y j∥22 q
−1
ij

(y i − y j )

(5)
=

−2b

∥y i − y j∥22 (1 + a ∥y i − y j∥2b2 )
(y i − y j ).

If we add ε for stability to the squared distance in the denominator, the equation is
obtained. Q.E.D.
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Example of UMAP Embedding (Digit Dataset)

Credit of image: https://umap-learn.readthedocs.io/en/latest/basic_usage.html

Uniform Manifold Approximation and Projection (UMAP) 17 / 20

https://umap-learn.readthedocs.io/en/latest/basic_usage.html


Acknowledgment

Some slides are based on our tutorial paper: “Uniform Manifold approximation and
projection (UMAP) and its variants: tutorial and survey” [7]

For more information on UMAP, refer to our tutorial paper [7].

UMAP library: https://umap-learn.readthedocs.io/en/latest/basic_usage.html

Uniform Manifold Approximation and Projection (UMAP) 18 / 20

https://umap-learn.readthedocs.io/en/latest/basic_usage.html


References

[1] L. McInnes, J. Healy, and J. Melville, “UMAP: Uniform manifold approximation and
projection for dimension reduction,” arXiv preprint arXiv:1802.03426, 2018.

[2] T. Sainburg, L. McInnes, and T. Q. Gentner, “Parametric UMAP: learning embeddings
with deep neural networks for representation and semi-supervised learning,” arXiv preprint
arXiv:2009.12981, 2020.

[3] G. E. Hinton and S. T. Roweis, “Stochastic neighbor embedding,” in Advances in neural
information processing systems, pp. 857–864, 2003.

[4] L. van der Maaten and G. Hinton, “Visualizing data using t-SNE,” Journal of machine
learning research, vol. 9, no. Nov, pp. 2579–2605, 2008.

[5] B. Ghojogh, A. Ghodsi, F. Karray, and M. Crowley, “Stochastic neighbor embedding with
Gaussian and Student-t distributions: Tutorial and survey,” arXiv preprint
arXiv:2009.10301, 2020.
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