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@ Consider a dataset {x;}" ,. Assume that every data point x; € R? is generated from a
latent variable z; € RP. This latent variable has a prior distribution P(z;). According to
I§ayes' rule, we have:

_ P(xi|2i) P(zi) O
P(x;)
@ Let P(z;) be an arbitrary distribution denoted by q(z;). Suppose the parameter g
conditional distribution of z; on x; is denoted by &; hence, P(z; | x;) = P(z; | x; .
LioT A - o
Therefore, we can say:
) )
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Variational Inference

@ Consider the Kullback-Leibler (KL) divergence [1] between the prior probability of the
latent variable and the posterior of the latent variable:

@ /q(z,—)( log(q(z;)) — log(P(x; | z;, 0)) — log(P(z; | 0)) K log(P(x; | 0) @

© log(P(x; ] 0)) + /(JS)( log(q(z;)) — log(P(x; | z;,8)) — log(P(z; | Ol))dz,'

= Iog(]P’(x,-|0))+/q(z,-)Iolg (X'|27(GZ)I‘I)P(2»‘0 )dz,-/
[ ! IR 1 1

q(z/)

= 10g(P(xi10)) + [ a(27) og TRz
og(P(x;16)) + KL (glz) I1Pxi 2 160)). fe—

where (a) is for definition of KL divergence and (b) is because log(P(x;|0)) is
independent of z; and comes out of integral and f dz; = 1.
@ Hence:

—>  log(P(x;]0)) =KL(a(z/) | P(zi | x;, 0)) — KL(q(2) | P(xi, z; | 9)). ®3)
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Variational Inference - L(499)

@ We found:
D e e |
I log(P(x;|0)) =KL(q(2) | P(zi | x;, 0)) OKL(q(2) || P(x;, 2; | 6)).

® We define the Evidence{Lower Bound |ELBO) as:
<«
W | £2.0) —OKL(az) P21 10). *)

So:
° Ve
< | log(P(x;]8)) = KL(q(2) || P(z; | x,-,ﬂb + C(q,u
@ Thereforg: — ([/ '(/
) £(q.6) = log(P(x;10)) (KL (a(z)) | P(zi [ x:,0)) (&= (9)
¥ \\g >0

@ As the second term is negative with its minus, the ELBO is a lower bound on the log
likelihood of data:

&
og(P(x, [69)), ' / (6)
The likelihood P(x; | 8) is also referred to as the evidence.

@ Note that this lower bound gets tight when:

rs—'\
£(q.6(og(P(x: 1)) — (D)< KL S I o 0) ¥0)

= (a(z1) = (Z:\Xnﬂ)f ™
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Variational Inference
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@ We found:

KL(g(z) || P(2; | z;,0))
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Expectation I\@njl/zation in Variational Inference
@ According to MLE, we want to maximize the log-likelihood of data. According to Eq. (6):

< log(B(x; 0)), T

maximizing the ELBO will also maximize the log-likelihood.

@ The Eq. (6) holds for any prior distribution g. We want to find the best distribution to
= any pnor Cixnb o 9 2 DrTiuton
maximize the lower bound.

@ Hence, EM for variational inference is performed iteratively as:

E-step: 1= arg max
M-step: : arg max

where t denotes the iteration index. ML[ N @7
L genotes the iteration Index — o« ,(

(®)
(9)
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Expectation Maximization in Variational Inference
@ E-step in EM for Variational Inference: The E-step is:

‘m‘?x m) @ max M) L(q(z) || P(2; | x;, 0¢71)))

= ml?xlog(IP(Xi \ O(f—1)))w_
(SR

@ The second term is alwa n-negative; hence, its minimum is zero:
>econd term IS ¢ 1S MINIMUM IS ZEro:

KL(q(z,-)Huw(z,-|x,-,e(f*1))) = q(z;):P(z;|x;,9(t’1)T]/
. )

which was already found in Eq. (7). Thus, the E-step assigns:

( q(z)) + P(z; | x;, 007 ). ( (10)
.-~
@ In other words, in the figure, it pushes the middle line toward the above line by

maximizing the ELBO.

KL(q(z:) || P(=i | @:,0))
LoAkehhood IOg(P(mi | B))

A
4\ ELBO

L(q,0)

A
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Expectation Maximization in Variational Inference

@ M-step in EM for Variational Inference: The M-step is:

—
785:£(0,0) 2 max (— @) (a9 (2) | P(xi, 211 0)))

© max [— mz,-) log(%) dz‘,-]

= msax/q(t)(z,-) log(P(x;, z; |0)) dz; — /q(t)(z-

where (a) is for definition of KL divergence.

og(q')(2:)) dz;,

@ The second term is constant w.r.t. 8. Hence:

e F_\‘
max £(q"), 8) = maxlog(IP’(XhZi \@)) dz;
6 y 0. -
@ méaxx]E ‘ og P(x;, z; | 0;],

where (a) is because of definition of expectation. Thus, the M-step assigns:

|[0(f)  arg max E () [logP(x;,z; | 6)]. K
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Expectation Maximization in Variational Inference
@ We found:

00 arg méax ]ENq(t)(z’.) [Iog P(x;, z; | 9)]

@ In other words, in the figure, it pushes the above line higher.
——

KL (q(z:) || P(zi |, 0))

T Log/;ikenhood log(P(z; | 0))

T ELBO

L(q,0)

A

@ The E-step and M-step together somehow play a game where the E-step tries to reach
the middle line (or the ELBO) to the log-likelihood and the M-step tries to increase the
above line (or the log-likelihood). This procedure is done repeatedly so the two steps help
each other improve to higher values.

@ To summarize, the EM in variational inference is:

q'(z)) < P(z; | x;,0071), (12)
0 « arg max E o0z [logP(x;,z; | 6)]. (13)
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Expectation Maximization in Variational Inference

@ It is noteworthy that, in variational inference, sometimes, the parameter 0 is absorbed into
the latent variable z;.

-
@ According to the chain rule, we have:
——

(\/\_/\
P(xi, zi,0) = P(x; | zi, 0) P(z; | 0) P(6).
¢ —1 1 sL——t

@ Considering the term P(z; | ) P(@) as one probability term, we have:

@z;) =P(x;| z,-}

where the parameter 0 disappears because of absorption.
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Factor Analysis

@ Factor analysis [2, 3, 4, 5] is one of the simplest and most fundamental generative models.

@ Factor analysis assumes that every data point x; € RY is generated from a latent variable
z; € RP. The latent variable is also referred to as the latent factor; hence, the name of
. . ———
factor analysis comes from the fact that it analyzes the latent factors.

@ In factor analysis, we assume that the data point x; is obtained through the following
steps: (1) by linear projection of the pm z; onto a d-dimensional space by
projection matrix A € RZ*P, then (2) applying some linear translation, and finally (3)
adding_a Gaussian noise € € RY with covariance matrix W € RI%9,

@ Note that as the noises in different dimensions are independent, the covariance matrix W
iR LS KA

is diagonal.
@ Factor analysis can be illustrated as a graphical model [6] where the visible data variable
is conditioned on the latent variable and the noise random variable.

=0
ol
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Factor Analysis

@ For simplicity, the prior distribution of the latent variable can be assumed to be a
multivariate Gaussian distribution:

Y

7 z < _(Zi—Ho)Tzo_l(Zi—Mo)
PR 125 M——L (14)

where gy € RP and g € RPXP are the mean and the covariance matrix of z; and |.| is
the deferminant of matrix.

@ x; is obtained through (1) the linear projection of z; by A € R?*P, (2) applying some
linear translation, and (3) adding a Gaussian noise € € R? with covariance W € RI*¢,

@ Hence, the data point x; has a conditional multivariate Gaussian distribution given the

latent variable; it itional likelihood is: ]
atent variable; 1ts conditional likelihood Is A*r ll 1 d}‘l
P(X,’|Z,‘):]P7(X,'|Z,',A lll):/\/(l\z, (15)
+* , @ 7 dqd

where g, which is the translation vector, is the mean of data {x;}7_;:

(16)
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Factor Analysis 0 %)
@ The marginal distribution of x; is: / 17

P(x;) :/mzi =

[~ NN ~— ~
]P(XI' ‘ A7“7 w) = /]P(Xl' | Z,‘7A7 M, w) P(Z,’ ‘ “0720) dZ,‘

L—— 5
! |
Yo % Kk
D TR st iAo
N T C~—
— N(a AR, (18)
where RY 9@/:: Apg + p, RIxd ::_I\Zgl/z), and (a) is because mean is linear and

variance is quadram mean and variance of projection are applied linearly and
quadratically, respectively.

/70 As the Mand_w are needed to be learned, we can absorb pg and ¥ into
p and A and assume that pg =0 and o = /.

@ In summary, factor analysis assumes every data point x; € R? is obtained by projecting a

latent variable z; € RP onto a d-dimensional space by projection matrix A € RY%P and
translating it by u € R? and finally adding some Gaussian noise € € R? (whose
dimensions are independent) as:

(19)
(20)
(21)

P(e) = N'(0, W).
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Factor Analysis

@ The joint distribution of x; and z; is:

—> )= | a, Y My E) (22)

@ The expectation of x; is: v 9
(19) A @)
E[x;] = E[Az; + p + €] = AE[£] + p + EJfe] =@ (23)
A U

where (a) is because of Egs. (20) and (21).

@ Hence:
(a
o B% @

where (a) is because of Eqs. (20) and (23).
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Factor Analysis

@ Lemma:

Lemma

Consider two_random variables x; € R? and z; € RP_and let € RI*tP. Assume
that x; and z; are jointly multivariate Gaussian; hence, the variable y; has a multivariate
Gaussian distribution, i.e., y; ~ N(p,,Ey). The mean and covariance can be decomposéd as:
e EERE] IR Yi = \WHy ") AN Iy el TE I

(25)

(26)

where p € RY, g € RP, 11 € RIX9, Tpy € RPXP, X1 € RI%P, and T = X, € RPXY,
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Factor Analysis

@ Lemma [7]:
Lemma
Rd E I“X|Z =p + 21222_21(21' - “0)’ (27)
RIS F,, =Ty — ¥y Ty, (28)
- ——

and likewise for zj|x; ~ N (|, Z7|x):

RP > IJ’z|x = K + z2121_11()“ - ”‘L): (29)

— —n
RPXP 5 }:Z|X = Xy — }:21}:11 PEPR (30)
N )
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Factor Analysis

@ According to Eq. (20), we hav@According to Eq. (19), we have:
€)= E@mxi — ],
D e

=E[(Az;+p+e—p)Azi+tp+te

——

= IFJ@Z,—Z,TI\T —i—@\T + I\z,-eT + eeT] .

(31)

where (a) is because of Eqs. (20) and (21).

@ Moreover, we have: N
N T
T =2 =E[(x; — p)(zi — f1o) ']
(a) , [ZA) T‘J
D El(0z + o+ e~ i)z )]

@ AB[ziz/ )+ Al = A1+ (007) () (32)

where (a) is because of Eqs. (19) and (20) and (b) is because z; and € are independent.
@ We also have Xjp; = ZE = AT. Therefore:

(33)
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Factor Analysis
@ Hence, the marginal distribution of data point x; is:

P(x) = B(x; | A, 1, W) (34)

According to Egs. (29) and (30) [Lemma], the posterior or the conditional distribution of
latent variable given data is:

(12)
z)) = P(z;|x;) =P(z; | x;, N\, ., W
q(zj) (zi | xi) = P(zi] w, W)

(35)
= N(F/z\xa zz|><)7
where:
RP 3 puy = NT(ANT + W)~ (x; — pa), (36)
RP*P S E, . ==1—ANT (AT +W)7IA, (37)

@ Recall that the conditional distribution of data given the latent variable, i.e. P(x; | z;),
was introduced in Eq. (15):

r—\
P(x;|z;) = P(x; | z;, N\, p, W) = N(Az; +(;:L ).
If data {x;}7_; are centered, i.e. =0, the marginal of data, Eq. (34), and the likelihood
of data, Eq. 15), become:

P(x; |\, W) = /\/Q W4 ANT), (38)
P(Xi|2i7/\7“’):/\/(&“’)7 (39)
respectively. In some works, people center the data as a pre-processing to factor analysis.
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Factor Analysis

@ We can find the parameters A and W using Expectation_Maximization.
—_ " — —

@ See our tutorial “Factor analysis, probabilistic principal componen lysis, variational

inference, and variational autoencoder: Tutorial and survey” [8] for the details of EM
steps in factor analysis.
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Probabilistic Principal Component Analysis

@ Probabilistic PCA (PPCA) (1997-1999) [9, 10] is a special case of factor analysis where
the variance of noise is equal in all dimensions of data space with covariance between

dimensions, i.e.:
‘ v :C%I. ’ (40)

@ In other words, PPCA considers an isotropic noise in its formulation. Therefore, Eq. (21)
is simplified to:

P(e) = N(0,021). (41)

@ Because of having zero covariance of noise between different dimensions, PPCA assumes
that the data points are independent of each other given latent variables.

@ PPCA can be illustrated as a graphical model, where the visible data variable is
conditioned on the latent variable and the isotropic noise random variable.
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Probabilistic Principal Component Analysis

@ As PPCA is a special case of factor analysis, it also is solved using EM. Similar to factor
analysis, it can be solved iteratively using EM [9].
@ However, one can also find a closed-form solution to its EM approach jlgl Hence, by

restricting the noise covariance to be isotropic, its solution becomes simpler and
closed-form.
—_

@ We can find the parameters A and o using Expectation Maximization.

@ See our tutorial “Factor analysis, probabilistic principal component analysis, variational
inference, and variational autoencoder: Tutorial and survey” [8] for the details of EM
steps in PPCA.

Factor Analysis, Proba c PCA, and Varia 24 /27



Acknowledgment

@ Some slides are based on our tutorial paper: “Factor analysis, probabilistic principal
component analysis, variational inference, and variational autoencoder: Tutorial and
survey” [8

@ Some slides of this slide deck are inspired by teachings of deep learning course at the
Carnegie Mellon University (you can see their YouTube channel).

@ Factor analysis in sklearn: https://scikit-learn.org/stable/modules/generated/
sklearn.decomposition.FactorAnalysis.html
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