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Variational Inference
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Variational Inference

Consider a dataset {x i}ni=1. Assume that every data point x i ∈ Rd is generated from a
latent variable z i ∈ Rp . This latent variable has a prior distribution P(z i ). According to
Bayes’ rule, we have:

P(z i | x i ) =
P(x i | z i )P(z i )

P(x i )
. (1)

Let P(z i ) be an arbitrary distribution denoted by q(z i ). Suppose the parameter of
conditional distribution of z i on x i is denoted by θ; hence, P(z i | x i ) = P(z i | x i ,θ).
Therefore, we can say:

P(z i | x i ,θ) =
P(x i | z i ,θ)P(z i |θ)

P(x i |θ)
. (2)

Factor Analysis, Probabilistic PCA, and Variational Inference 3 / 27



Variational Inference
Consider the Kullback-Leibler (KL) divergence [1] between the prior probability of the
latent variable and the posterior of the latent variable:

KL
(
q(z i ) ∥P(z i | x i ,θ)

) (a)
=

∫
q(z i ) log

( q(z i )

P(z i | x i ,θ)

)
dz i

=

∫
q(z i )

(
log(q(z i ))− log(P(z i | x i ,θ))

)
dz i

(2)
=

∫
q(z i )

(
log(q(z i ))− log(P(x i | z i ,θ))− log(P(z i |θ)) + log(P(x i |θ))

)
dz i

(b)
= log(P(x i |θ)) +

∫
q(z i )

(
log(q(z i ))− log(P(x i | z i ,θ))− log(P(z i |θ))

)
dz i

= log(P(x i |θ)) +
∫

q(z i ) log(
q(z i )

P(x i | z i ,θ)P(z i |θ)
) dz i

= log(P(x i |θ)) +
∫

q(z i ) log(
q(z i )

P(x i , z i |θ)
) dz i

= log(P(x i |θ)) + KL
(
q(z i ) ∥P(x i , z i |θ)

)
,

where (a) is for definition of KL divergence and (b) is because log(P(x i |θ)) is
independent of z i and comes out of integral and

∫
dz i = 1.

Hence:

log(P(x i |θ)) =KL
(
q(z i ) ∥P(z i | x i ,θ)

)
− KL

(
q(z i ) ∥P(x i , z i |θ)

)
. (3)
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Variational Inference
We found:

log(P(x i |θ)) =KL
(
q(z i ) ∥P(z i | x i ,θ)

)
− KL

(
q(z i ) ∥P(x i , z i |θ)

)
.

We define the Evidence Lower Bound (ELBO) as:

L(q,θ) := −KL
(
q(z i ) ∥P(x i , z i |θ)

)
. (4)

So:

log(P(x i |θ)) = KL
(
q(z i ) ∥P(z i | x i ,θ)

)
+ L(q,θ).

Therefore:

L(q,θ) = log(P(x i |θ))− KL
(
q(z i ) ∥P(z i | x i ,θ)

)︸ ︷︷ ︸
≥0

. (5)

As the second term is negative with its minus, the ELBO is a lower bound on the log
likelihood of data:

L(q,θ) ≤ log(P(x i |θ)). (6)

The likelihood P(x i |θ) is also referred to as the evidence.
Note that this lower bound gets tight when:

L(q,θ) ≈ log(P(x i |θ)) =⇒ 0 ≤ KL
(
q(z i ) ∥P(z i | x i ,θ)

) set
= 0

=⇒ q(z i ) = P(z i | x i ,θ). (7)
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Variational Inference

We found:

log(P(x i |θ)) = KL
(
q(z i ) ∥P(z i | x i ,θ)

)
+ L(q,θ).
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Expectation Maximization in Variational Inference

According to MLE, we want to maximize the log-likelihood of data. According to Eq. (6):

L(q,θ) ≤ log(P(x i |θ)),

maximizing the ELBO will also maximize the log-likelihood.

The Eq. (6) holds for any prior distribution q. We want to find the best distribution to
maximize the lower bound.

Hence, EM for variational inference is performed iteratively as:

E-step: q(t) := argmax
q

L(q,θ(t−1)), (8)

M-step: θ(t) := argmax
θ

L(q(t),θ), (9)

where t denotes the iteration index.
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Expectation Maximization in Variational Inference
E-step in EM for Variational Inference: The E-step is:

max
q
L(q,θ(t−1))

(5)
= max

q
log(P(x i |θ(t−1))) + max

q

(
− KL

(
q(z i ) ∥P(z i | x i ,θ

(t−1))
))

= max
q

log(P(x i |θ(t−1))) + min
q

KL
(
q(z i ) ∥P(z i | x i ,θ

(t−1))
)
.

The second term is always non-negative; hence, its minimum is zero:

KL
(
q(z i ) ∥P(z i | x i ,θ

(t−1))
) set
= 0 =⇒ q(z i ) = P(z i | x i ,θ

(t−1)),

which was already found in Eq. (7). Thus, the E-step assigns:

q(t)(z i )← P(z i | x i ,θ
(t−1)). (10)

In other words, in the figure, it pushes the middle line toward the above line by
maximizing the ELBO.
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Expectation Maximization in Variational Inference
M-step in EM for Variational Inference: The M-step is:

max
θ
L(q(t),θ) (4)

= max
θ

(
− KL

(
q(t)(z i ) ∥P(x i , z i |θ)

))
(a)
= max

θ

[
−
∫

q(t)(z i ) log(
q(t)(z i )

P(x i , z i |θ)
) dz i

]
= max

θ

∫
q(t)(z i ) log(P(x i , z i |θ)) dz i −max

θ

∫
q(t)(z i ) log(q

(t)(z i )) dz i ,

where (a) is for definition of KL divergence.

The second term is constant w.r.t. θ. Hence:

max
θ
L(q(t),θ) = max

θ

∫
q(t)(z i ) log(P(x i , z i |θ)) dz i

(a)
= max

θ
E∼q(t)(z i )

[
log P(x i , z i |θ)

]
,

where (a) is because of definition of expectation. Thus, the M-step assigns:

θ(t) ← argmax
θ

E∼q(t)(z i )
[
log P(x i , z i |θ)

]
. (11)
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Expectation Maximization in Variational Inference
We found:

θ(t) ← argmax
θ

E∼q(t)(z i )
[
log P(x i , z i |θ)

]
.

In other words, in the figure, it pushes the above line higher.

The E-step and M-step together somehow play a game where the E-step tries to reach
the middle line (or the ELBO) to the log-likelihood and the M-step tries to increase the
above line (or the log-likelihood). This procedure is done repeatedly so the two steps help
each other improve to higher values.

To summarize, the EM in variational inference is:

q(t)(z i )← P(z i | x i ,θ
(t−1)), (12)

θ(t) ← argmax
θ

E∼q(t)(z i )
[
log P(x i , z i |θ)

]
. (13)
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Expectation Maximization in Variational Inference

It is noteworthy that, in variational inference, sometimes, the parameter θ is absorbed into
the latent variable z i .

According to the chain rule, we have:

P(x i , z i ,θ) = P(x i | z i ,θ)P(z i |θ)P(θ).

Considering the term P(z i |θ)P(θ) as one probability term, we have:

P(x i , z i ) = P(x i | z i )P(z i ),

where the parameter θ disappears because of absorption.
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Factor Analysis
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Factor Analysis

Factor analysis [2, 3, 4, 5] is one of the simplest and most fundamental generative models.

Factor analysis assumes that every data point x i ∈ Rd is generated from a latent variable
z i ∈ Rp . The latent variable is also referred to as the latent factor; hence, the name of
factor analysis comes from the fact that it analyzes the latent factors.

In factor analysis, we assume that the data point x i is obtained through the following
steps: (1) by linear projection of the p-dimensional z i onto a d-dimensional space by
projection matrix Λ ∈ Rd×p , then (2) applying some linear translation, and finally (3)
adding a Gaussian noise ϵ ∈ Rd with covariance matrix Ψ ∈ Rd×d .

Note that as the noises in different dimensions are independent, the covariance matrix Ψ
is diagonal.

Factor analysis can be illustrated as a graphical model [6] where the visible data variable
is conditioned on the latent variable and the noise random variable.
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Factor Analysis

For simplicity, the prior distribution of the latent variable can be assumed to be a
multivariate Gaussian distribution:

P(z i ) = N (z i |µ0,Σ0) =
1√

(2π)p |Σ0|
exp

(
−

(z i − µ0)
⊤Σ−1

0 (z i − µ0)

2

)
, (14)

where µ0 ∈ Rp and Σ0 ∈ Rp×p are the mean and the covariance matrix of z i and |.| is
the determinant of matrix.

x i is obtained through (1) the linear projection of z i by Λ ∈ Rd×p , (2) applying some
linear translation, and (3) adding a Gaussian noise ϵ ∈ Rd with covariance Ψ ∈ Rd×d .

Hence, the data point x i has a conditional multivariate Gaussian distribution given the
latent variable; its conditional likelihood is:

P(x i | z i ) = P(x i | z i ,Λ,µ,Ψ) = N (Λz i + µ,Ψ), (15)

where µ, which is the translation vector, is the mean of data {x i}ni=1:

Rd ∋ µ :=
1

n

n∑
i=1

x i . (16)
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Factor Analysis
The marginal distribution of x i is:

P(x i ) =

∫
P(x i | z i )P(z i ) dz i =⇒

P(x i |Λ,µ,Ψ) =

∫
P(x i | z i ,Λ,µ,Ψ)P(z i |µ0,Σ0) dz i

(a)
= N (Λµ0 + µ,Ψ+ ΛΣ0Λ

⊤) (17)

= N (µ̂,Ψ+ Λ̂Λ̂
⊤
), (18)

where Rd ∋ µ̂ := Λµ0 + µ, Rd×d ∋ Λ̂ := ΛΣ
(1/2)
0 , and (a) is because mean is linear and

variance is quadratic so the mean and variance of projection are applied linearly and
quadratically, respectively.

As the mean µ̂ and covariance Λ̂ are needed to be learned, we can absorb µ0 and Σ0 into
µ and Λ and assume that µ0 = 0 and Σ0 = I .
In summary, factor analysis assumes every data point x i ∈ Rd is obtained by projecting a
latent variable z i ∈ Rp onto a d-dimensional space by projection matrix Λ ∈ Rd×p and
translating it by µ ∈ Rd and finally adding some Gaussian noise ϵ ∈ Rd (whose
dimensions are independent) as:

x i := Λz i + µ+ ϵ, (19)

P(z i ) = N (0, I ), (20)

P(ϵ) = N (0,Ψ). (21)
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Factor Analysis

The joint distribution of x i and z i is:

y i :=

[
x i

z i

]
∼ N (µy ,Σy ). (22)

The expectation of x i is:

E[x i ]
(19)
= E[Λz i + µ+ ϵ] = ΛE[z i ] + µ+ E[ϵ]

(a)
= µ, (23)

where (a) is because of Eqs. (20) and (21).

Hence:

µy :=

[
µx
µz

]
(a)
=

[
µ
0

]
, (24)

where (a) is because of Eqs. (20) and (23).
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Factor Analysis

Lemma:

Lemma
Consider two random variables x i ∈ Rd and z i ∈ Rp and let y i := [x⊤

i , z⊤
i ]⊤ ∈ Rd+p . Assume

that x i and z i are jointly multivariate Gaussian; hence, the variable y i has a multivariate
Gaussian distribution, i.e., y i ∼ N (µy ,Σy ). The mean and covariance can be decomposed as:

µy = [µ⊤,µ⊤
0 ]⊤ ∈ Rd+p , (25)

Σy =

[
Σ11 Σ12

Σ21 Σ22

]
∈ R(d+p)×(d+p), (26)

where µ ∈ Rd , µ0 ∈ Rp , Σ11 ∈ Rd×d , Σ22 ∈ Rp×p , Σ12 ∈ Rd×p , and Σ21 = Σ⊤
12 ∈ Rp×d .
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Factor Analysis

Lemma [7]:

Lemma

Rd ∋ µx|z := µ+Σ12Σ
−1
22 (z i − µ0), (27)

Rd×d ∋ Σx|z := Σ11 −Σ12Σ
−1
22 Σ21, (28)

and likewise for z i |x i ∼ N (µz|x ,Σz|x ):

Rp ∋ µz|x := µ0 +Σ21Σ
−1
11 (x i − µ), (29)

Rp×p ∋ Σz|x := Σ22 −Σ21Σ
−1
11 Σ12. (30)
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Factor Analysis
According to Eq. (20), we have Σ22 = Σz = I . According to Eq. (19), we have:

Σ11 = Σx = E[(x i − µ)(x i − µ)⊤]

= E[(Λz i + µ+ ϵ− µ)(Λz i + µ+ ϵ− µ)⊤]

= E[Λz iz⊤
i Λ⊤ + ϵz⊤

i Λ⊤ + Λz iϵ
⊤ + ϵϵ⊤]

= ΛE[z iz⊤
i ]Λ⊤ + E[ϵ]E[z i ]

⊤Λ⊤ + ΛE[z i ]E[ϵ]⊤ + E[ϵϵ⊤]

(a)
= ΛIΛ⊤ + 0+ 0+Ψ = ΛΛ⊤ +Ψ, (31)

where (a) is because of Eqs. (20) and (21).

Moreover, we have:

Σ12 = Σxz = E[(x i − µ)(z i − µ0)
⊤]

(a)
= E[(Λz i + µ+ ϵ− µ)(z i − 0)⊤]

(b)
= ΛE[z iz⊤

i ] + E[ϵ]E[z⊤
i ] = ΛI + (00⊤) = Λ, (32)

where (a) is because of Eqs. (19) and (20) and (b) is because z i and ϵ are independent.

We also have Σ21 = Σ⊤
12 = Λ⊤. Therefore:[

x i

z i

]
∼ N

([
µ
0

]
,

[
ΛΛ⊤ +Ψ Λ

Λ⊤ I

])
. (33)
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Factor Analysis
Hence, the marginal distribution of data point x i is:

P(x i ) = P(x i |Λ,µ,Ψ) = N (µ,ΛΛ⊤ +Ψ). (34)

According to Eqs. (29) and (30) [Lemma], the posterior or the conditional distribution of
latent variable given data is:

q(z i )
(12)
= P(z i | x i ) = P(z i | x i ,Λ,µ,Ψ)

= N (µz|x ,Σz|x ),
(35)

where:

Rp ∋ µz|x := Λ⊤(ΛΛ⊤ +Ψ)−1(x i − µ), (36)

Rp×p ∋ Σz|x := I − Λ⊤(ΛΛ⊤ +Ψ)−1Λ. (37)

Recall that the conditional distribution of data given the latent variable, i.e. P(x i | z i ),
was introduced in Eq. (15):

P(x i | z i ) = P(x i | z i ,Λ,µ,Ψ) = N (Λz i + µ,Ψ).

If data {x i}ni=1 are centered, i.e. µ = 0, the marginal of data, Eq. (34), and the likelihood
of data, Eq. (15), become:

P(x i |Λ,Ψ) = N (0,Ψ+ ΛΛ⊤), (38)

P(x i | z i ,Λ,Ψ) = N (Λz i ,Ψ), (39)

respectively. In some works, people center the data as a pre-processing to factor analysis.
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Factor Analysis

We can find the parameters Λ and Ψ using Expectation Maximization.

See our tutorial “Factor analysis, probabilistic principal component analysis, variational
inference, and variational autoencoder: Tutorial and survey” [8] for the details of EM
steps in factor analysis.
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Probabilistic Principal
Component Analysis
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Probabilistic Principal Component Analysis
Probabilistic PCA (PPCA) (1997-1999) [9, 10] is a special case of factor analysis where
the variance of noise is equal in all dimensions of data space with covariance between
dimensions, i.e.:

Ψ = σ2I . (40)

In other words, PPCA considers an isotropic noise in its formulation. Therefore, Eq. (21)
is simplified to:

P(ϵ) = N (0, σ2I ). (41)

Because of having zero covariance of noise between different dimensions, PPCA assumes
that the data points are independent of each other given latent variables.

PPCA can be illustrated as a graphical model, where the visible data variable is
conditioned on the latent variable and the isotropic noise random variable.
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Probabilistic Principal Component Analysis

As PPCA is a special case of factor analysis, it also is solved using EM. Similar to factor
analysis, it can be solved iteratively using EM [9].

However, one can also find a closed-form solution to its EM approach [10]. Hence, by
restricting the noise covariance to be isotropic, its solution becomes simpler and
closed-form.

We can find the parameters Λ and σ using Expectation Maximization.

See our tutorial “Factor analysis, probabilistic principal component analysis, variational
inference, and variational autoencoder: Tutorial and survey” [8] for the details of EM
steps in PPCA.
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Acknowledgment

Some slides are based on our tutorial paper: “Factor analysis, probabilistic principal
component analysis, variational inference, and variational autoencoder: Tutorial and
survey” [8]

Some slides of this slide deck are inspired by teachings of deep learning course at the
Carnegie Mellon University (you can see their YouTube channel).

Factor analysis in sklearn: https://scikit-learn.org/stable/modules/generated/
sklearn.decomposition.FactorAnalysis.html
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