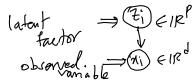
Factor Analysis, Probabilistic PCA, and Variational Inference

Statistical Machine Learning (ENGG*6600*02)

School of Engineering, University of Guelph, ON, Canada

Course Instructor: Benyamin Ghojogh Summer 2023



• Consider a dataset $\{x_i\}_{i=1}^n$. Assume that every data point $x_i \in \mathbb{R}^d$ is generated from a latent variable $z_i \in \mathbb{R}^p$. This latent variable has a prior distribution $\mathbb{P}(z_i)$. According to Bayes' rule, we have:

$$\boxed{\mathbb{P}(z_i \mid x_i)} = \frac{\mathbb{P}(x_i \mid z_i) \, \mathbb{P}(z_i)}{\mathbb{P}(x_i)}.$$
(1)

• Let $\mathbb{P}(z_i)$ be an arbitrary distribution denoted by $q(z_i)$. Suppose the parameter of conditional distribution of z_i on x_i is denoted by θ ; hence, $\mathbb{P}(z_i \mid x_i) = \mathbb{P}(z_i \mid x_i)$. Therefore, we can say:

$$\begin{array}{c|c}
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& &$$

 Consider the Kullback-Leibler (KL) divergence [1] between the prior probability of the latent variable and the posterior of the latent variable:

$$\begin{array}{l}
\left(KL\left(q(z_{i}) \parallel \mathbb{P}(z_{i} \mid x_{i}, \theta) \right) \stackrel{(a)}{=} \int q(z_{i}) \log \left(\frac{q(z_{i})}{\mathbb{P}(z_{i} \mid x_{i}, \theta)} \right) dz_{i} \\
= \int q(z_{i}) \left(\log(q(z_{i})) - \log \left(\mathbb{P}(z_{i} \mid x_{i}, \theta) \right) \right) dz_{i} \\
\stackrel{(2)}{=} \int q(z_{i}) \left(\log(q(z_{i})) - \log(\mathbb{P}(x_{i} \mid z_{i}, \theta)) - \log(\mathbb{P}(z_{i} \mid \theta)) + \log(\mathbb{P}(x_{i} \mid \theta)) \right) dz_{i} \\
\stackrel{(b)}{=} \log(\mathbb{P}(x_{i} \mid \theta)) + \int q(z_{i}) \left(\log(q(z_{i})) - \log(\mathbb{P}(x_{i} \mid z_{i}, \theta)) - \log(\mathbb{P}(z_{i} \mid \theta)) \right) dz_{i} \\
= \log(\mathbb{P}(x_{i} \mid \theta)) + \int q(z_{i}) \log \left(\frac{q(z_{i})}{\mathbb{P}(x_{i} \mid z_{i}, \theta)} \right) dz_{i} \\
= \log(\mathbb{P}(x_{i} \mid \theta)) + KL\left(q(z_{i}) \parallel \mathbb{P}(x_{i}, z_{i} \mid \theta)\right),
\end{array}$$

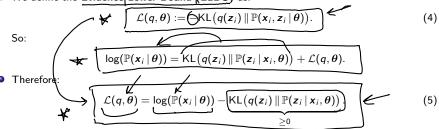
where (a) is for definition of KL divergence and (b) is because $\log(\mathbb{P}(x_i \mid \theta))$ is independent of z_i and comes out of integral and $\int dz_i = 1$.

Hence:

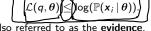
$$\log(\mathbb{P}(\mathbf{x}_i \mid \boldsymbol{\theta})) = \mathsf{KL}(q(\mathbf{z}_i) \parallel \mathbb{P}(\mathbf{z}_i \mid \mathbf{x}_i, \boldsymbol{\theta})) - \mathsf{KL}(q(\mathbf{z}_i) \parallel \mathbb{P}(\mathbf{x}_i, \mathbf{z}_i \mid \boldsymbol{\theta})).$$
 (3)

We found:

• We define the Evidence Lower Bound (ELBO) as:



 As the second term is negative with its minus, the ELBO is a lower bound on the log likelihood of data:

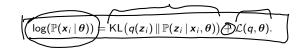


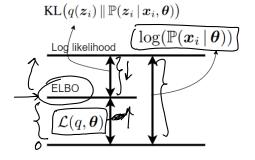
The likelihood $\mathbb{P}(\mathbf{x}_i | \boldsymbol{\theta})$ is also referred to as the **evidence**.

Note that this lower bound gets tight when:

$$\mathcal{L}(q,\theta) \underbrace{\bigotimes_{\substack{(q(z_i) | p(z_i | x_i, \theta)) \\ \Rightarrow (q(z_i) = p(z_i | x_i, \theta))}}} \underbrace{\bigotimes_{\substack{(q(z_i) | p(z_i | x_i, \theta)) \\ \Rightarrow (q(z_i) = p(z_i | x_i, \theta))}} \underbrace{\bigotimes_{\substack{(q(z_i) | p(z_i | x_i, \theta)) \\ \Rightarrow (q(z_i) | p(z_i | x_i, \theta))}} \underbrace{\bigotimes_{\substack{(q(z_i) | p(z_i | x_i, \theta)) \\ \Rightarrow (q(z_i) | p(z_i | x_i, \theta))}} \underbrace{\bigotimes_{\substack{(q(z_i) | p(z_i | x_i, \theta)) \\ \Rightarrow (q(z_i) | p(z_i | x_i, \theta))}} \underbrace{\bigotimes_{\substack{(q(z_i) | p(z_i | x_i, \theta)) \\ \Rightarrow (q(z_i) | p(z_i | x_i, \theta))}} \underbrace{\bigotimes_{\substack{(q(z_i) | p(z_i | x_i, \theta)) \\ \Rightarrow (q(z_i) | p(z_i | x_i, \theta))}} \underbrace{\bigotimes_{\substack{(q(z_i) | p(z_i | x_i, \theta)) \\ \Rightarrow (q(z_i) | p(z_i | x_i, \theta))}} \underbrace{\bigotimes_{\substack{(q(z_i) | p(z_i | x_i, \theta)) \\ \Rightarrow (q(z_i) | p(z_i | x_i, \theta))}} \underbrace{\bigotimes_{\substack{(q(z_i) | p(z_i | x_i, \theta)) \\ \Rightarrow (q(z_i) | p(z_i | x_i, \theta))}} \underbrace{\bigotimes_{\substack{(q(z_i) | p(z_i | x_i, \theta)) \\ \Rightarrow (q(z_i) | p(z_i | x_i, \theta))}} \underbrace{\bigotimes_{\substack{(q(z_i) | p(z_i | x_i, \theta)) \\ \Rightarrow (q(z_i) | p(z_i | x_i, \theta))}} \underbrace{\bigotimes_{\substack{(q(z_i) | p(z_i | x_i, \theta)) \\ \Rightarrow (q(z_i) | p(z_i | x_i, \theta))}} \underbrace{\bigotimes_{\substack{(q(z_i) | p(z_i | x_i, \theta)) \\ \Rightarrow (q(z_i) | p(z_i | x_i, \theta))}} \underbrace{\bigotimes_{\substack{(q(z_i) | p(z_i | x_i, \theta)) \\ \Rightarrow (q(z_i) | p(z_i | x_i, \theta))}} \underbrace{\bigotimes_{\substack{(q(z_i) | p(z_i | x_i, \theta)) \\ \Rightarrow (q(z_i) | p(z_i | x_i, \theta))}} \underbrace{\bigotimes_{\substack{(q(z_i) | p(z_i | x_i, \theta)) \\ \Rightarrow (q(z_i) | p(z_i | x_i, \theta))}}} \underbrace{\bigotimes_{\substack{(q(z_i) | p(z_i | x_i, \theta)) \\ \Rightarrow (q(z_i) | p(z_i | x_i, \theta))}} \underbrace{\bigotimes_{\substack{(q(z_i) | p(z_i | x_i, \theta)) \\ \Rightarrow (q(z_i) | p(z_i | x_i, \theta))}}} \underbrace{\bigotimes_{\substack{(q(z_i) | p(z_i | x_i, \theta)) \\ \Rightarrow (q(z_i) | p(z_i | x_i, \theta))}}} \underbrace{\bigotimes_{\substack{(q(z_i) | p(z_i | x_i, \theta)) \\ \Rightarrow (q(z_i | x_i, \theta))}}} \underbrace{\bigotimes_{\substack{(q(z_i) | p(z_i | x_i, \theta)) \\ \Rightarrow (q(z_i | x_i, \theta))}}} \underbrace{\bigotimes_{\substack{(q(z_i) | p(z_i | x_i, \theta))}}} \underbrace{\bigotimes_{\substack{(q(z_i) | p(z_i | x_i, \theta)) \\ \Rightarrow (q(z_i | x_i, \theta))}}} \underbrace{\bigotimes_{\substack{(q(z_i) | p(z_i | x_i, \theta)$$

We found:





• According to MLE, we want to maximize the log-likelihood of data. According to Eq. (6):

$$\mathcal{L}(q, \theta) \leq \log(\mathbb{P}(x_i | \theta)),$$

maximizing the ELBO will also maximize the log-likelihood.

- The Eq. (6) holds for any prior distribution q. We want to find the best distribution to maximize the lower bound.
- Hence, EM for variational inference is performed iteratively as:

E-step:
$$q^{(t)} := \arg\max_{q} \mathcal{L}(q, \theta^{(t-1)}),$$
 (8)

M-step: $\theta^{(t)} := \arg\max_{q} \mathcal{L}(q^{(t)}, \theta),$ (9)

where t denotes the iteration index.

MLE on L(1)20)

• E-step in EM for Variational Inference: The E-step is:

$$\underbrace{\max_{q} \mathcal{L}(q, \boldsymbol{\theta}^{(t-1)})}_{q} \overset{(5)}{=} \max_{q} \log(\mathbb{P}(\boldsymbol{x}_{i} \mid \boldsymbol{\theta}^{(t-1)})) + \underbrace{\max_{q}}_{q} \left(\underbrace{\mathsf{KL}(q(\boldsymbol{z}_{i}) \parallel \mathbb{P}(\boldsymbol{z}_{i} \mid \boldsymbol{x}_{i}, \boldsymbol{\theta}^{(t-1)}))}_{\mathsf{KL}(q(\boldsymbol{z}_{i}) \parallel \mathbb{P}(\boldsymbol{z}_{i} \mid \boldsymbol{x}_{i}, \boldsymbol{\theta}^{(t-1)})) \right)$$

$$= \underbrace{\max_{q} \log(\mathbb{P}(\boldsymbol{x}_{i} \mid \boldsymbol{\theta}^{(t-1)})) + \underbrace{\min_{q} \mathsf{KL}(q(\boldsymbol{z}_{i}) \parallel \mathbb{P}(\boldsymbol{z}_{i} \mid \boldsymbol{x}_{i}, \boldsymbol{\theta}^{(t-1)}))}_{q} \right) .$$

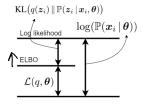
The second term is <u>always non-negative</u>; hence, its <u>minimum is zero</u>:

$$\mathsf{KL}(q(z_i) \| \mathbb{P}(z_i | \mathbf{x}_i, \mathbf{\theta}^{(t-1)})) \stackrel{\mathsf{set}}{=} 0 \implies q(z_i) = \mathbb{P}(z_i | \mathbf{x}_i, \mathbf{\theta}^{(t-1)}),$$

which was already found in Eq. (7). Thus, the E-step assigns:

$$q^{(t)}(z_i) \leftarrow \mathbb{P}(z_i | x_i, \theta^{(t-1)}).$$
(10)

 In other words, in the figure, it pushes the middle line toward the above line by maximizing the ELBO.



• M-step in EM for Variational Inference: The M-step is:

$$\max_{\boldsymbol{\theta}} \mathcal{L}(q^{(t)}, \boldsymbol{\theta}) \stackrel{(4)}{=} \max_{\boldsymbol{\theta}} \left(- \left(\bigcup (q^{(t)}(\boldsymbol{z}_i) \| \mathbb{P}(\boldsymbol{x}_i, \boldsymbol{z}_i | \boldsymbol{\theta})) \right) \right)$$

$$\stackrel{(a)}{=} \max_{\boldsymbol{\theta}} \left[- \int q^{(t)}(\boldsymbol{z}_i) \log \left(\frac{q^{(t)}(\boldsymbol{z}_i)}{\mathbb{P}(\boldsymbol{x}_i, \boldsymbol{z}_i | \boldsymbol{\theta})} \right) d\boldsymbol{z}_i \right]$$

$$= \max_{\boldsymbol{\theta}} \int q^{(t)}(\boldsymbol{z}_i) \log (\mathbb{P}(\boldsymbol{x}_i, \boldsymbol{z}_i | \boldsymbol{\theta})) d\boldsymbol{z}_i - \max_{\boldsymbol{\theta}} \int q^{(t)}(\boldsymbol{z}_i) \log (q^{(t)}(\boldsymbol{z}_i)) d\boldsymbol{z}_i,$$

$$\Rightarrow \text{ is for a finition of } (A \text{ discourse.})$$

where (a) is for definition of KL divergence.

• The second term is constant w.r.t. θ . Hence:

$$\max_{\boldsymbol{\theta}} \mathcal{L}(q^{(t)}, \boldsymbol{\theta}) = \max_{\boldsymbol{\theta}} \underbrace{\int_{\boldsymbol{q}^{(t)}(\boldsymbol{z}_i)} \log(\mathbb{P}(\boldsymbol{x}_i, \boldsymbol{z}_i | \boldsymbol{\theta})) d\boldsymbol{z}_i}_{\boldsymbol{\theta}}$$

$$\stackrel{(a)}{=} \max_{\boldsymbol{\theta}} \mathbb{E}_{\boldsymbol{q}^{(t)}(\boldsymbol{z}_i)} \underbrace{\log \mathbb{P}(\boldsymbol{x}_i, \boldsymbol{z}_i | \boldsymbol{\theta})]}_{\boldsymbol{\theta}},$$

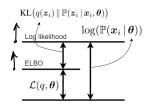
where (a) is because of definition of expectation. Thus, the M-step assigns:

$$\int_{\theta} \theta^{(t)} \leftarrow \arg \max_{\theta} \mathbb{E}_{\sim q^{(t)}(z_i)} \left[\log \mathbb{P}(\boldsymbol{x}_i, \boldsymbol{z}_i \mid \theta)\right].$$
(11)

We found:

$$\boldsymbol{\theta}^{(t)} \leftarrow \arg\max_{\boldsymbol{\theta}} \; \mathbb{E}_{\sim q^{(t)}(\boldsymbol{z}_i)} \big[\log \mathbb{P}(\boldsymbol{x}_i, \boldsymbol{z}_i \,|\, \boldsymbol{\theta}) \big].$$

• In other words, in the figure, it pushes the above line higher.



- The E-step and M-step together somehow play a game where the E-step tries to reach the middle line (or the ELBO) to the log-likelihood and the M-step tries to increase the above line (or the log-likelihood). This procedure is done repeatedly so the two steps help each other improve to higher values.
- To summarize, the EM in variational inference is:

$$\begin{cases}
q^{(t)}(z_i) \leftarrow \mathbb{P}(z_i \mid x_i, \theta^{(t-1)}), \\
\theta^{(t)} \leftarrow \arg\max_{\theta} \mathbb{E}_{\sim q^{(t)}(z_i)} \left[\log \mathbb{P}(x_i, z_i \mid \theta)\right].
\end{cases} (12)$$

- It is noteworthy that, in variational inference, sometimes, the parameter θ is absorbed into the latent variable z_i .
- According to the chain rule, we have:

$$\mathbb{P}(x_i,z_i,\theta) = \mathbb{P}(x_i \mid z_i,\theta) \mathbb{P}(z_i \mid \theta) \mathbb{P}(\theta).$$

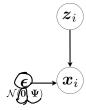
• Considering the term $\mathbb{P}(z_i | \theta) \mathbb{P}(\theta)$ as one <u>probability</u> term, we have:

$$\mathbb{P}(x_i, z_i) = \mathbb{P}(x_i \mid z_i)$$

where the parameter heta disappears because of absorption.

12 / 27

- Factor analysis [2, 3, 4, 5] is one of the simplest and most fundamental generative models.
- Factor analysis assumes that every data point $x_i \in \mathbb{R}^d$ is generated from a latent variable $z_i \in \mathbb{R}^p$. The latent variable is also referred to as the latent factor; hence, the name of factor analysis comes from the fact that it analyzes the latent factors.
- In factor analysis, we assume that the data point x_i is obtained through the following steps: (1) by linear projection of the <u>p-dimensional</u> z_i onto a <u>d-dimensional space</u> by projection matrix $\mathbf{\Lambda} \in \mathbb{R}^{d \times p}$, then (2) applying some linear translation, and finally (3) adding a Gaussian noise $\epsilon \in \mathbb{R}^d$ with covariance matrix $\mathbf{\Psi} \in \mathbb{R}^{d \times d}$.
- Note that as the noises in different dimensions are independent, the covariance matrix Ψ is diagonal.
- Factor analysis can be illustrated as a <u>graphical model</u> [6] where the visible data variable is conditioned on the latent variable and the noise random variable.



 For simplicity, the <u>prior distribution of the latent variable</u> can be assumed to be a multivariate Gaussian distribution:

$$\mathbb{P}(z_i) = \mathcal{N}(z_i | \boldsymbol{\mu}_0) \boldsymbol{\Sigma}_0 = \frac{1}{\sqrt{(2\pi)^p |\boldsymbol{\Sigma}_0|}} \exp\left(-\frac{(z_i - \boldsymbol{\mu}_0)^\top \boldsymbol{\Sigma}_0^{-1} (z_i - \boldsymbol{\mu}_0)}{2}\right), \quad (14)$$

where $\mu_0 \in \mathbb{R}^p$ and $\underline{\Sigma}_0 \in \mathbb{R}^{p \times p}$ are the mean and the covariance matrix of z_i and |.| is the determinant of matrix.

- x_i is obtained through (1) the linear projection of z_i by $\Lambda \in \mathbb{R}^{d \times p}$, (2) applying some linear translation, and (3) adding a Gaussian noise $\epsilon \in \mathbb{R}^d$ with covariance $\Psi \in \mathbb{R}^{d \times d}$.

$$\mathbb{P}(\mathbf{x}_i \mid \mathbf{z}_i) = \mathbb{P}(\mathbf{x}_i \mid \mathbf{z}_i, \mathbf{\Lambda}(\boldsymbol{\mu})\boldsymbol{\Psi}) = \mathcal{N}(\mathbf{\Lambda}\mathbf{z}_i + \boldsymbol{\mu})\boldsymbol{\Psi})$$
(15)

where μ , which is the translation vector, is the mean of data $\{x_i\}_{i=1}^n$:

$$\mathbb{R}^d \ni \mu := \frac{1}{n} \sum_{i=1}^n \mathbf{x}_i.$$
 (16)

• The marginal distribution of x_i is:

SIS
istribution of
$$\mathbf{x}_{i}$$
 is:

$$\mathbb{P}(\mathbf{x}_{i}) = \int \mathbb{P}(\mathbf{x}_{i} \mid \mathbf{z}_{i}) \mathbb{P}(\mathbf{z}_{i}) d\mathbf{z}_{i} \implies \mathbb{P}(\mathbf{x}_{i} \mid \widehat{\mathbf{\Lambda}}, \widehat{\boldsymbol{\mu}}, \widehat{\boldsymbol{\Psi}}) = \int \mathbb{P}(\mathbf{x}_{i} \mid \mathbf{z}_{i}, \widehat{\mathbf{\Lambda}}, \widehat{\boldsymbol{\mu}}, \widehat{\boldsymbol{\Psi}}) \mathbb{P}(\mathbf{z}_{i} \mid \widehat{\boldsymbol{\mu}}_{0}, \widehat{\boldsymbol{\Sigma}}_{0}) d\mathbf{z}_{i}$$

$$\stackrel{(a)}{=} \mathcal{N}(\widehat{\boldsymbol{\mu}}_{0} + \widehat{\boldsymbol{\mu}}) \widehat{\boldsymbol{\Psi}} + \widehat{\boldsymbol{\Lambda}} \widehat{\boldsymbol{\Sigma}}_{0} \widehat{\boldsymbol{\Lambda}}^{\top} \longrightarrow \mathcal{N} \underbrace{\boldsymbol{\Sigma}_{0}^{\top} \widehat{\boldsymbol{\lambda}}_{i}^{\top}}_{\mathbf{A}^{\top}} \stackrel{(17)}{\longrightarrow} \mathbb{P}(\widehat{\boldsymbol{\mu}}_{0}, \widehat{\boldsymbol{\Psi}}_{0}) d\widehat{\boldsymbol{\mu}}_{i}$$

$$= \mathcal{N}(\widehat{\boldsymbol{\mu}}_{0}, \widehat{\boldsymbol{\Psi}} + \widehat{\boldsymbol{\mu}} \widehat{\boldsymbol{\Lambda}}^{\top}), \qquad (18)$$

where $\mathbb{R}^d\ni\widehat{\mu}:=\Lambda\mu_0+\mu_1$ $\mathbb{R}^{d\times d}\ni\widehat{\Lambda}:=\Lambda\Sigma_0^{(1/2)}$, and (a) is because mean is linear and variance is quadratic so the mean and variance of projection are applied linearly and quadratically, respectively.

- As the mean $\hat{\mu}$ and covariance $\hat{\Lambda}$ are needed to be learned, we can absorb μ_0 and Σ_0 into μ and Λ and assume that $\mu_0 = 0$ and $\Sigma_0 = I$.
- In summary, factor analysis assumes every data point $x_i \in \mathbb{R}^d$ is obtained by projecting a latent variable $\mathbf{z}_i \in \mathbb{R}^p$ onto a d-dimensional space by projection matrix $\mathbf{\Lambda} \in \mathbb{R}^{d \times p}$ and translating it by $\mu \in \mathbb{R}^d$ and finally adding some Gaussian noise $\epsilon \in \mathbb{R}^d$ (whose dimensions are independent) as:

$$\begin{array}{c}
x_i := \Lambda z_i + \mu + \epsilon, \\
\mathbb{P}(z_i) = \mathcal{N}(0, I), \\
\end{array} (19)$$

$$\mathbb{P}(\epsilon) = \mathcal{N}(\mathbf{0}, \mathbf{\Psi}). \tag{21}$$

$$\mathbb{P}(\epsilon) = \mathcal{N}(\mathbf{0}, \mathbf{\Psi}). \tag{2}$$

• The joint distribution of x_i and z_i is:

$$\longrightarrow (y_j) := (\Sigma_i) \sim \mathcal{N}(\mu_y, \Sigma_y). \tag{22}$$

• The expectation of x_i is:

$$\mathbb{E}[\mathbf{x}_{i}] \stackrel{(19)}{=} \mathbb{E}[\mathbf{\Lambda}\mathbf{z}_{i} + \boldsymbol{\mu} + \boldsymbol{\epsilon}] = \mathbf{\Lambda}\mathbb{E}[\mathbf{z}_{i}] + \boldsymbol{\mu} + \mathbb{E}[\boldsymbol{\epsilon}] \stackrel{(a)}{=} \boldsymbol{\mu}, \tag{23}$$

where (a) is because of Eqs. (20) and (21).

Hence:

$$\mu_{y} := \mu_{x} \quad (24)$$

where (a) is because of Eqs. (20) and (23).

Lemma:

Lemma

Consider two random variables $\mathbf{x}_i \in \mathbb{R}^d$ and $\mathbf{z}_i \in \mathbb{R}^p$ and let $\mathbf{y}_i := [\mathbf{x}_i^\top, \mathbf{z}_i^\top]^\top \in \mathbb{R}^{d+p}$. Assume that \mathbf{x}_i and \mathbf{z}_i are jointly multivariate Gaussian; hence, the variable \mathbf{y}_i has a multivariate Gaussian distribution, i.e., $\mathbf{y}_i \sim \mathcal{N}(\mu_{\mathbf{y}}, \mathbf{\Sigma}_{\mathbf{y}})$. The mean and covariance can be decomposed as:

$$\begin{cases}
\mu_{y} = [\mu^{\top}, \mu_{0}^{\top}]^{\top} \in \mathbb{R}^{d+p}, \\
\Sigma_{y} = \begin{bmatrix} \Sigma_{11} & \Sigma_{12} \\ \Sigma_{21} & \Sigma_{22} \end{bmatrix} \in \mathbb{R}^{(d+p)\times(d+p)},
\end{cases} (25)$$

where $\mu \in \mathbb{R}^d$, $\mu_0 \in \mathbb{R}^p$, $\Sigma_{11} \in \mathbb{R}^{d \times d}$, $\Sigma_{22} \in \mathbb{R}^{p \times p}$, $\Sigma_{12} \in \mathbb{R}^{d \times p}$, and $\Sigma_{21} = \Sigma_{12}^{\top} \in \mathbb{R}^{p \times d}$.

Lemma [7]:

Lemma

$$\mathbb{R}^{d} \ni \underline{\mu}_{\times|z} := \underline{\mu} + \underline{\Sigma}_{12} \underline{\Sigma}_{22}^{-1} (z_{i} - \underline{\mu}_{0}), \qquad (27)$$

$$\mathbb{R}^{d \times d} \ni \underline{\Sigma}_{\times|z} := \underline{\Sigma}_{11} - \underline{\Sigma}_{12} \underline{\Sigma}_{22}^{-1} \underline{\Sigma}_{21}, \qquad (28)$$

and likewise for $z_i|x_i \sim \mathcal{N}(\mu_{z|x}, \Sigma_{z|x})$:

$$\mathbb{R}^{p} \ni \mu_{z|x} := \mu_{0} + \Sigma_{21} \Sigma_{11}^{-1} (x_{i} - \mu), \tag{29}$$

$$\mathbb{R}^{\rho} \ni \underbrace{\mu_{z|x}} := \mu_0 + \mathbf{\Sigma}_{21} \mathbf{\Sigma}_{11}^{-1} (\mathbf{x}_i - \mu),$$

$$\mathbb{R}^{\rho \times \rho} \ni \underbrace{\mathbf{\Sigma}_{z|x}} := \mathbf{\Sigma}_{22} - \mathbf{\Sigma}_{21} \mathbf{\Sigma}_{11}^{-1} \mathbf{\Sigma}_{12}.$$
(30)

• According to Eq. (20), we have $\Sigma_{22} = \Sigma_z$. According to Eq. (19), we have:

$$\Sigma_{11} = \Sigma_{2} = \mathbb{E}[(k_{i} - \mu)(x_{i} - \mu)^{\top}]$$

$$= \mathbb{E}[(\Lambda z_{i} + \mu + \epsilon - \mu)(\Lambda z_{i} + \mu + \epsilon - \mu)^{\top}]$$

$$= \mathbb{E}[0 z_{i} z_{i}^{\top} \Lambda^{\top} + (z_{i}^{\top} \Lambda^{\top} + \Lambda z_{i} \epsilon^{\top} + \epsilon \epsilon^{\top}]$$

$$= \Lambda \mathbb{E}[z_{i} z_{i}^{\top}] \Lambda^{\top} + \mathbb{E}[\varepsilon] \mathbb{E}[z_{i}] \Lambda^{\top} + \Lambda \mathbb{E}[z_{i}] \mathbb{E}[\epsilon]^{\top} + \mathbb{E}[\epsilon \epsilon^{\top}]$$

$$\stackrel{(a)}{=} \Lambda \Lambda^{\top} + 0 + 0 + 0 + 0 + 0 + 0$$
(31)

where (a) is because of Eqs. (20) and (21).

Moreover, we have:

$$\underline{\Sigma_{12}} = \underline{\Sigma_{xz}} = \underline{\mathbb{E}[(x_i - \mu)(z_i - \mu_0)^\top]}$$

$$\stackrel{(a)}{=} \mathbb{E}[(\Lambda z_i + \mu + \epsilon - \mu)(z_i - 0)^\top]$$

$$\stackrel{(b)}{=} \Lambda \mathbb{E}[z_i z_i^\top] + \mathbb{E}[\epsilon] \mathbb{E}[z_i^\top] = \Lambda I + (00^\top) = \Lambda.$$
(32)

where (a) is because of Eqs. (19) and (20) and (b) is because z_i and ϵ are independent.

• We also have
$$\Sigma_{21} = \Sigma_{12}^{\top} = \Lambda^{\top}$$
. Therefore:
$$\begin{bmatrix} \mathbf{x}_i \\ \mathbf{z}_i \end{bmatrix} \sim \mathcal{N} \begin{bmatrix} \mathbf{A} \Lambda^{\top} + \mathbf{\Psi} \\ \mathbf{A} \end{bmatrix}$$

$$\begin{bmatrix} \mathbf{x}_i \\ \mathbf{z}_i \end{bmatrix} \sim \mathcal{N} \begin{bmatrix} \mathbf{A} \Lambda^{\top} + \mathbf{\Psi} \\ \mathbf{A} \end{bmatrix}$$
(33)

• Hence, the marginal distribution of data point x; is:

According to Eqs. (29) and (30) [Lemma], the posterior or the conditional distribution of latent variable given data is:

$$\underbrace{q(z_i)}^{(12)} = \underbrace{\mathbb{P}(z_i \mid x_i)}_{= \mathcal{N}(\underline{\mu}_{z|x}, \mathbf{\Sigma}_{z|x})} = \underbrace{\mathbb{P}(z_i \mid x_i, \mathbf{\Lambda}, \mu, \mathbf{\Psi})}_{= \mathcal{N}(\underline{\mu}_{z|x}, \mathbf{\Sigma}_{z|x}),} \tag{35}$$

where:

$$\begin{cases}
\mathbb{R}^{\rho} \ni \mu_{z|x} := \mathbf{\Lambda}^{\top} (\mathbf{\Lambda} \mathbf{\Lambda}^{\top} + \mathbf{\Psi})^{-1} (\mathbf{x}_{i} - \boldsymbol{\mu}), \\
\mathbb{R}^{\rho \times \rho} \ni \mathbf{\Sigma}_{z|x} := \mathbf{I} - \mathbf{\Lambda}^{\top} (\mathbf{\Lambda} \mathbf{\Lambda}^{\top} + \mathbf{\Psi})^{-1} \mathbf{\Lambda}.
\end{cases} (36)$$

Recall that the conditional distribution of data given the latent variable, i.e. $\mathbb{P}(x_i | z_i)$, was introduced in Eq. (15):

$$\mathbb{P}(\mathbf{x}_i \mid \mathbf{z}_i) = \mathbb{P}(\mathbf{x}_i \mid \mathbf{z}_i, \mathbf{\Lambda}, \boldsymbol{\mu}, \boldsymbol{\Psi}) = \mathcal{N}(\mathbf{\Lambda}\mathbf{z}_i + \boldsymbol{\mu}, \boldsymbol{\Psi}).$$

If data $\{x_i\}_{i=1}^n$ are centered, i.e. $\mu = 0$, the marginal of data, Eq. (34), and the likelihood of data, Eq. (15), become:

$$\int_{\mathbb{P}(\mathbf{x}_{i} \mid \mathbf{\Lambda}, \mathbf{\Psi}) = \mathcal{N}(\mathbf{0}) \mathbf{\Psi} + \mathbf{\Lambda} \mathbf{\Lambda}^{\top}), \qquad (38)$$

$$\mathbb{P}(\mathbf{x}_{i} \mid \mathbf{z}_{i}, \mathbf{\Lambda}, \mathbf{\Psi}) = \mathcal{N}(\mathbf{\Lambda} \mathbf{z}_{i}, \mathbf{\Psi}), \qquad (39)$$

$$\mathbb{P}(\mathbf{x}_i \mid \mathbf{z}_i, \mathbf{\Lambda}, \mathbf{\Psi}) = \mathcal{N}(\mathbf{\Lambda}\mathbf{z}_i, \mathbf{\Psi}), \tag{39}$$

respectively. In some works, people center the data as a pre-processing to factor analysis.

- We can find the parameters Λ and Ψ using Expectation Maximization.
- See our tutorial "Factor analysis, probabilistic principal component analysis, variational inference, and variational autoencoder: Tutorial and survey" [8] for the details of EM steps in factor analysis.

Probabilistic Principal Component Analysis

Probabilistic Principal Component Analysis

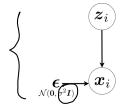
Probabilistic PCA (PPCA) (1997-1999) [9, 10] is a special case of factor analysis where
the variance of noise is equal in all dimensions of data space with covariance between
dimensions, i.e.:

$$\Psi = 0$$
(40)

In other words, PPCA considers an isotropic noise in its formulation. Therefore, Eq. (21) is simplified to:

$$\mathbb{P}(\boldsymbol{\epsilon}) = \mathcal{N}(\mathbf{0}, \sigma^2 \mathbf{I}). \tag{41}$$

- Because of having zero covariance of noise between different dimensions, PPCA assumes that the data points are independent of each other given latent variables.
- PPCA can be illustrated as a graphical model, where the visible data variable is conditioned on the latent variable and the isotropic noise random variable.



Probabilistic Principal Component Analysis

- As PPCA is a special case of factor analysis, it also is solved using EM. Similar to factor
 analysis, it can be solved iteratively using EM [9].
- However, one can also find a closed-form solution to its EM approach [10]. Hence, by restricting the noise covariance to be isotropic, its solution becomes simpler and closed-form.
- We can find the parameters Λ and σ using Expectation Maximization.
- See our tutorial "Factor analysis, probabilistic principal component analysis, variational inference, and variational autoencoder: Tutorial and survey" [8] for the details of EM steps in PPCA.

Acknowledgment

- Some slides are based on our tutorial paper: "Factor analysis, probabilistic principal component analysis, variational inference, and variational autoencoder: Tutorial and survey" [8]
- Some slides of this slide deck are inspired by teachings of deep learning course at the Carnegie Mellon University (you can see their YouTube channel).
- Factor analysis in sklearn: https://scikit-learn.org/stable/modules/generated/sklearn.decomposition.FactorAnalysis.html

References

- S. Kullback and R. A. Leibler, "On information and sufficiency," The annals of mathematical statistics, vol. 22, no. 1, pp. 79–86, 1951.
- [2] B. Fruchter, *Introduction to factor analysis*. Van Nostrand, 1954.
- [3] R. B. Cattell, "A biometrics invited paper. factor analysis: An introduction to essentials i. the purpose and underlying models," *Biometrics*, vol. 21, no. 1, pp. 190–215, 1965.
- [4] H. H. Harman, *Modern factor analysis*. University of Chicago press, 1976.
- [5] D. Child, The essentials of factor analysis. Cassell Educational. 1990.
- [6] Z. Ghahramani and G. E. Hinton, "The EM algorithm for mixtures of factor analyzers," tech. rep., Technical Report CRG-TR-96-1, University of Toronto, 1996.
- [7] A. Ng, "CS229 lecture notes for factor analysis," tech. rep., Stanford University, 2018.
- [8] B. Ghojogh, A. Ghodsi, F. Karray, and M. Crowley, "Factor analysis, probabilistic principal component analysis, variational inference, and variational autoencoder: Tutorial and survey," arXiv preprint arXiv:2101.00734, 2021.
- [9] S. Roweis, "EM algorithms for PCA and SPCA," *Advances in neural information processing systems*, vol. 10, pp. 626–632, 1997.

26 / 27

References (cont.)

[10] M. E. Tipping and C. M. Bishop, "Probabilistic principal component analysis," *Journal of the Royal Statistical Society: Series B (Statistical Methodology)*, vol. 61, no. 3, pp. 611–622, 1999.