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Measures for a Model
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Learning Model
Assume we have a function f which gets the i-th input x i and outputs fi = f (x i ). This
figure shows this function and its input and output:

We wish to know the function which we call it the true model but we do not have access
to it as it is unknown.

Also, the pure outputs (true observations), fi ’s, are not available. The output may be
corrupted with an additive noise εi :

yi = fi + εi , (1)

where the noise is εi ∼ N (0, σ2).
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Learning Model
We have:

yi = fi + εi , εi ∼ N (0, σ2) =⇒ E(εi ) = 0, E(ε2i ) = Var(εi ) + (E(εi ))2 = σ2, (2)

The true observation fi is not random, thus:

E(fi ) = fi . (3)

The input training data {x i}ni=1 and their corrupted observations {yi}ni=1 are available to

us. We would like to approximate (estimate) the true model by a model f̂ in order to
estimate the observations {yi}ni=1 from the input {x i}ni=1.
Calling the estimated observations by {ŷi}ni=1, we want the {ŷi}ni=1 to be as close as
possible to {yi}ni=1 for the training input data {x i}ni=1.
We train the model using the training data in order to estimate the true model.
After training the model, it can be used to estimate the output of the model for both the
training input {x i}ni=1 and the unseen test input {x i}mi=1 to have the estimates {ŷi}ni=1
and {ŷi}mi=1, respectively.
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Learning Model

Here, we denote the estimation of the observation of the i-th instance with either ŷi or f̂i .

The model can be a regression (prediction) or classification model. In regression, the
model’s estimation is continuous while in classification, the estimation is a member of a
discrete set of possible observations.

The definitions of variance, bias, and MSE can also be used for the estimation f̂i of the
true model fi .

MSE(f̂ ) = Var(f̂ ) + (Bias(f̂ ))2 =⇒
(√

MSE(f̂ )
)2

=
(√

Var(f̂ )
)2

+ (Bias(f̂ ))2. (4)
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Mean Squared Error of
the Estimation of
Observations
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Mean Squared Error of the Estimation of Observations

Suppose we have an instance (x0, y0). This instance can be either a training or
test/validation instance. We will cover both cases.

According to Eq. (1), the observation y0 is:

y0 = f0 + ε0. (5)

Assume the model’s estimation of y0 is f̂0. The MSE of the estimation is:

E
(
(f̂0 − y0)

2
) (5)
= E

(
(f̂0 − f0 − ε0)

2
)
= E

(
(f̂0 − f0)

2 + ε20 − 2 ε0(f̂0 − f0)
)

= E
(
(f̂0 − f0)

2
)
+ E(ε20)− 2E

(
ε0(f̂0 − f0)

)
(2)
= E

(
(f̂0 − f0)

2
)
+ σ2 − 2E

(
ε0(f̂0 − f0)

)
. (6)

The last term is:

E
(
ε0(f̂0 − f0)

) (5)
= E

(
(y0 − f0)(f̂0 − f0)

)
. (7)

For calculation of this term, we have two cases: (I) whether the instance (x0, y0) is in the
training set or (II) not in the training set. In other words, whether the instance was used
to train the model (estimator) or not.
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Case I: Instance not in the Training Set
Assume the instance (x0, y0) was not in the training set, i.e., it was not used for training
the model. In other words, we have y0 /∈ T .

This means that the estimation f̂0 is independent of the observation y0 because the
observation was not used to train the model but the estimation is obtained from the
model. Therefore:

∴ y0 ⊥⊥ f̂0 =⇒ (y0 − f0) ⊥⊥ (f̂0 − f0)

=⇒ E
(
(y0 − f0)(f̂0 − f0)

) (a)
= E

(
(y0 − f0)

)
E
(
(f̂0 − f0)

) (b)
= 0× E

(
(f̂0 − f0)

)
= 0,

where (a) is because (y0 − f0) ⊥⊥ (f̂0 − f0) and (b) is because:

E
(
(y0 − f0)

)
= E(y0)− E(f0)

(c)
= f0 − f0 = 0,

where (c) is because of Eq. (3) and:

E(y0)
(5)
= E(f0) + E(ε0) = f0 + 0 = f0.

Therefore, in this case, the last term in Eq. (6) is zero. Thus:

E
(
(f̂0 − y0)

2
)
= E

(
(f̂0 − f0)

2
)
+ σ2 (8)
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Case I: Instance not in the Training Set

We found:

E
(
(f̂0 − y0)

2
)
= E

(
(f̂0 − f0)

2
)
+ σ2

Suppose the number of instances which are not in the training set is m. By Monte Carlo
approximation of the expectation terms, we have:

1

m

m∑
i=1

(f̂i − yi )
2 =

1

m

m∑
i=1

(f̂i − fi )
2 + σ2 =⇒

m∑
i=1

(f̂i − yi )
2 =

m∑
i=1

(f̂i − fi )
2 +mσ2. (9)

The term
∑m

i=1(f̂i − yi )
2 is the error between the predicted output and the label in the

dataset. So, it is the empirical error, denoted by err.

The term
∑m

i=1(f̂i − fi )
2 is the error between the predicted output and true unknown

label. This error is referred to as true error, denoted by Err. Therefore:

err = Err+m σ2 =⇒ Err = err−m σ2. (10)

The term m σ2 is a constant and can be ignored. Hence, in this case, the empirical error
is a good estimation of the true error. Thus, we can minimize the empirical error in order
to properly minimize the true error.
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Case II: Instance in the Training Set

In case 2, the instance is in the training set. For this case, we need to use a mathematical
formula named SURE, introduced in the following.

Consider a multivariate random variable Rd ∋ z = [z1, . . . , zd ]
⊤ whose components are

independent random variables with normal distribution, i.e., zi ∼ N (µi , σ).

Take Rd ∋ µ = [µ1, . . . , µd ]
⊤ and let Rd ∋ g(z) = [g1, . . . , gd ]

⊤ be a function of the
random variable z with g(z) : Rd → Rd .

There exists a lemma, named Stein’s Lemma, which states:

E
(
(z − µ)⊤ g(z)

)
= σ2

d∑
i=1

E
(∂gi
∂zi

)
, (11)

which is used in Stein’s Unbiased Risk Estimate (SURE) [1]. See our tutorial [2] for the
proof of Eq. (11).

If the random variable is a univariate variable, the Stein’s lemma becomes:

E
(
(z − µ) g(z)

)
= σ2 E

(∂g(z)
∂z

)
. (12)
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Case II: Instance in the Training Set
SURE for univariate variable:

E
(
(z − µ) g(z)

)
= σ2 E

(∂g(z)
∂z

)
.

In the SURE formula for univariate variable, we take ε0, 0, and f̂0 − f0 as the z, µ, and
g(z), respectively. We do this to make Eq. (7).

Using Eq. (12), the last term in Eq. (6) is:

E
(
(ε0 − 0)(f̂0 − f0)

)
= σ2 E

(∂(f̂0 − f0)

∂ε0

)
= σ2 E

( ∂ f̂0
∂ε0

−
∂f0

∂ε0

) (a)
= σ2 E

( ∂ f̂0
∂ε0

)
(b)
= σ2 E

( ∂ f̂0
∂y0

×
∂y0

∂ε0

) (c)
= σ2 E

( ∂ f̂0
∂y0

)
,

where (a) is because the true model f is not dependent on the noise, (b) is because of the
chain rule in derivative, and (c) is because:

y0
(5)
= f0 + ε0 =⇒

∂y0

∂ε0
= 1.

Therefore, in this case, the Eq. (6) is:

E
(
(f̂0 − y0)

2
)
= E

(
(f̂0 − f0)

2
)
+ σ2 − 2σ2E

( ∂ f̂0
∂y0

)
. (13)
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Case II: Instance in the Training Set
We had:

E
(
(f̂0 − y0)

2
)
= E

(
(f̂0 − f0)

2
)
+ σ2 − 2σ2E

( ∂ f̂0
∂y0

)
.

Suppose the number of training instances is n. By Monte Carlo approximation of the
expectation terms, we have:

1

n

n∑
i=1

(f̂i − yi )
2 =

1

n

n∑
i=1

(f̂i − fi )
2 + σ2 − 2σ2 1

n

n∑
i=1

∂ f̂i

∂yi
=⇒

n∑
i=1

(f̂i − yi )
2 =

n∑
i=1

(f̂i − fi )
2 + nσ2 − 2σ2

n∑
i=1

∂ f̂i

∂yi
. (14)

The term
∑m

i=1(f̂i − yi )
2 is the error between the predicted output and the label in the

dataset. So, it is the empirical error, denoted by err.

The term
∑m

i=1(f̂i − fi )
2 is the error between the predicted output and true unknown

label. This error is referred to as true error, denoted by Err. Therefore:

err = Err+ n σ2 − 2σ2
n∑

i=1

∂ f̂i

∂yi
=⇒ Err = err− n σ2 + 2σ2

n∑
i=1

∂ f̂i

∂yi
. (15)
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Case II: Instance in the Training Set

We had:

Err = err− n σ2 + 2σ2
n∑

i=1

∂ f̂i

∂yi
,

The last term in this equation is a measure of complexity (or overfitting) of the model.

Note that ∂ f̂i/∂yi means if we move the i-th training instance, how much the model’s
estimation of that instance will change? This shows how much the model is complex or
overfitted.

For better understanding, suppose a line regressing a training set via least squares
problem. If we change a point, the line will not change significantly because the model is
not complex (is underfitted). On the other hand, consider a regression model passing
through “all” the points. If we move a training point, the regressing curve changes
noticeably which is because the model is very complex (overfitted).
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Case II: Instance in the Training Set

We had:

Err = err− n σ2 + 2σ2
n∑

i=1

∂ f̂i

∂yi
,

According to this equation, in the case where the instance is in the training set, the
empirical error is not a good estimation of the true error.

The reason is that minimization of err usually increases the complexity of the model,
cancelling out the minimization of Err after some level of training.
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Overfitting,
Underfitting, and
Generalization
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Overfitting, Underfitting, and Generalization

If the model is trained in an extremely simple way so that its estimation has low variance
but high bias, we have underfitting. Note that underfitting is also referred to as
over-generalization.

On the other hand, if the model is trained in an extremely complex way so that its
estimation has high variance but low bias, we have overfitting.

To summarize:
▶ in underfitting: low variance, high bias, and low complexity.
▶ in overfitting: high variance, low bias, high complexity.
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Overfitting, Underfitting, and Generalization

An example for underfitting, good fit, and overfitting is illustrated in this figure.

As this figure shows, in both underfitting and overfitting, the estimation of a test instance
might be very weak while in a good fit, the test instance, which was not seen in the
training phase, is estimated well enough with smaller error.

The ability of the model to estimate the unseen test (out-of-sample) data is referred to as
generalization.

The lack of generalization is the reason why both overfitting and underfitting, especially
overfitting, is not acceptable. In overfitting, the training error, i.e., err, is very small while
the test (true) error, i.e., Err, is usually awful!
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Cross Validation
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Cross Validation

In order to either (I) find out until which complexity we should train the model or (II)
tune the parameters of the model, we should use cross validation [3].

In cross validation, we divide the dataset D into two partitions, i.e., training set denoted
by T and test set denoted by R where the union of these two subsets is the whole
dataset and the intersection of them is the empty set:

T ∪ R = D, (16)

T ∩ R = ∅. (17)

The T is used for training the model. After the model is trained, the R is used for testing
the performance of the model.

We have different methods for cross validation. Two of the most well-known methods for
cross validation are K -fold cross validation and Leave-One-Out Cross Validation
(LOOCV).
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K -fold Cross Validation

In K -fold cross validation, we randomly split the dataset D into K partitions
{D1, . . . ,DK} where:

|D1| ≈ |D2| ≈ · · · ≈ |DK |, (18)

K⋃
i=1

Di = D, (19)

Di ∩ Dj = ∅, ∀i , j ∈ {1, . . . ,K}, i ̸= j , (20)

where |.| denoted the cardinality of set.

Sometimes, the dataset D is shuffled before the cross validation for better randomization.

Moreover, both simple random sampling without replacement and stratified sampling
[4, 5] can be used for this splitting.

The K -fold cross validation includes K iterations, where in each of them, one of the
partitions is used as the test set and the rest of data is used for training. The overall
estimation error is the average test error of iterations.

We usually have K = 2, 5, 10 in the literature but K = 10 is the most common.
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K -fold Cross Validation

The algorithm of K -fold cross validation is shown in the following.
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Leave-One-Out Cross Validation

In Leave-One-Out Cross Validation (LOOCV), we iterate for |D| = N times and in each
iteration, we take one instance as the R (so that |R| = 1) and the rest of instances as the
training set.

The overall estimation error is the average test error of iterations.

Usually, when the size of dataset is small, LOOCV is used in order to use the most of
dataset for training and then test the model properly.

The algorithm of LOOCV is shown in the following.
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Cheating #1 in Machine Learning

The test set and the training set should be disjoint, i.e., T ∩ R = ∅; otherwise, we are
introducing the whole or a part of the test instances to the model to learn them.

Of course, in that way, the model will learn to estimate the test instances easier and
better; however, in the real-world applications, the test data is not available at the time of
training. Therefore, if we mistakenly have T ∩ R ≠ ∅, it is referred to as cheating in
machine learning (we call it cheating #1 here).
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Validation Set

In some cases, the model has some parameters which need to be determined. In this case,
we split the data D to three subsets, i.e., training set T , test set R, and validation set V.
Usually, we have |T | > |R| and |T | > |V|.
First, we want to find the best parameters. For this, the training set is used to train the
model with different values of parameters. For every value of parameter(s), after the
model is trained, it is tested on the validation set. This is performed for all desired values
of parameters. The parameter value resulting in the best estimation performance on the
validation set is selected to be the value of parameter(s).

After finding the values of parameters, the model is trained using the training set (where
the found parameter value is used). Then, the model is tested on the test set and the
estimation performance is the average test set over the cross validation iterations.
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Cheating #2 in Machine Learning
In cross validation with validation set, we have:

T ∩ R = ∅, T ∩ V = ∅, V ∩R = ∅. (21)

The validation and test sets should be disjoint because the parameters of the model
should not be optimized by testing on the test set. In other words, in real-world
applications, the training and validation sets are available but the test set is not available
yet. If we mistakenly have V ∩R ̸= ∅, it is referred to as cheating in machine learning
(we call it cheating #2 here).

This kind of mistake is very common in the literature unfortunately, where some people
optimize the parameters by testing on the test set without having a validation set.

Moreover, the training and test sets should be disjoint as explained beforehand; otherwise,
that would be another kind of cheating in machine learning (introduced before as
cheating #1).

On the other hand, the training and validation sets should be disjoint. Although having
T ∩ V ≠ ∅ is not cheating but it should not be done for the reason which will be
explained later in this section.

To have validation set in cross validation, we usually first split the dataset D into T ′ and
R where T ′ ∪R = D and T ′ ∩R = ∅. Then, we split the set T ′ into the training and
validation sets, i.e., T ∪ V = T ′ and T ∩ V = ∅ and usually |T | > |V|.
The algorithms of K -fold cross validation and LOOCV can be modified accordingly to
include the validation set. In LOOCV, we usually have |V| = 1.

Overfitting, Cross Validation, and Regularization 25 / 49



Justification of
Overfitting
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Justification of Overfitting

When the instance is not in the training set, the true error, Err, and the test error, err,
behave differently as shown in Fig. (a).

At the first stages of training, the err and Err both decrease; however, after some training,
the model becomes more complex and goes toward overfitting. In that stage, the Err
starts to increase.

We should end the training when the Err starts to increase because that stage is the good
fit. Usually, in order to find out when to stop training, we train the model for one stage
(e.g., iteration) and then test the trained model on the validation set where the error is
named Err. This is commonly used in training neural networks [6] where Err is measured
after every epoch for example.
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Justification of Overfitting

Recall the Eqs. (10) and (15) where the true error for the test (not in training set) and
training instance are related to the training error, respectively:

Err = err−m σ2, (instance in training set)

Err = err− n σ2 + 2σ2
n∑

i=1

∂ f̂i

∂yi
. (instance not in training set)

The reason why Err increases after a while of training is according to Eq. (15). Dropping

the constant nσ2 from that expression, we have: Err = err+ 2σ2
∑n

i=1
∂ f̂i
∂yi

where the

term 2σ2
∑n

i=1
∂ f̂i
∂yi

shows the model complexity. See Fig. (b) where both err and the

model complexity are illustrated as a function of training stages (iterations). According to
Eq. (15), the Err is the summation of these two curves which clarifies the reason of its
behavior.
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Justification of Overfitting

That is why we should not train a lot on the training set because the model will get too
much fitted on the training set and will lose its ability to generalize to new unseen data.

The Fig. (a) and Eq. (15) show that it is better to have T ∩ V = 0. Otherwise, for
example if we have T = V, the Err will be equivalent to err and thus it will go down even
in overfitting stages. This is harmful to our training because we will not notice overfitting
properly.

The Eq. (10) also explains that the error on validation or test set is a good measure for
the true error. That is why we can use test or validation error in order to know until what
stage we can train the model without overfitting.
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Discussion of Cheating in a Nut Shell

If we have only training and test sets without validation set:
▶ T ∩ R ≠ ∅ =⇒ cheating #1

If we have training, test, and validation sets without validation set:
▶ T ∩ R ≠ ∅ =⇒ cheating #1
▶ V ∩R ̸= ∅ =⇒ cheating #2
▶ T ∩ V ≠ ∅ =⇒ harmful to training (not noticing overfitting properly)

The first two items are advantageous to the model’s performance on test data but that is
cheating and also it may be disadvantageous to future new test data.

The third item is disadvantageous to the model’s performance on test data because we
may not find out overfitting or we may find it out late and the generalization error will
become worse; therefore, it is better not to do it.
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Regularization
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Regularization: Definition

We can minimize the true error, Err, using optimization. According to Eq. (15), we have:

minimize err− n σ2 + 2σ2
n∑

i=1

∂ f̂i

∂yi
. (22)

As the term n σ2 is a constant, we can drop it.

Calculation of ∂ f̂i/∂yi is usually very difficult; therefore, we usually use a penalty term in
place of it where the penalty increases as the complexity of the model increases in order to
imitate the behavior of ∂ f̂i/∂yi .

Therefore, the optimization can be written as a regularized optimization problem:

minimize
x

J̃(x ; θ) := J(x ; θ) + αΩ(x), (23)

where θ is the parameter(s) of the cost function, J(.) is the objective err to be minimized,
Ω(.) is the penalty function representing the complexity of model, α > 0 is the

regularization parameter, and J̃(.) is the regularized objective function.
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Regularization: Definition

minimize Err := err− n σ2 + 2σ2
n∑

i=1

∂ f̂i

∂yi
,

minimize
x

J̃(x ; θ) := J(x ; θ) + αΩ(x).

The penalty function can be different things such as ℓ2 norm [7], ℓ1 norm [8, 9], ℓ2,1 norm
[10], etc.

The ℓ1 and ℓ2,1 norms are useful for having sparsity [11, 12]. The sparsity is very effective
because of the “bet on sparsity” principal: “Use a procedure that does well in sparse
problems, since no procedure does well in dense problems [7, 13].”

The effectiveness of the sparsity can also be explained by Occam’s razor [14] stating that
“simpler solutions are more likely to be correct than complex ones” or “simplicity is a goal
in itself”.

We are minimizing the Err (i.e., J̃(x ; θ)) and not err (i.e., J(x ; θ)). As discussed before,
minimizing err results in overfitting. Therefore, regularization helps avoid overfitting.
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ℓ2 Regularization
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Theory for ℓ2 Norm Regularization

The ℓ2 norm regularization [7]:

minimize
x

J̃(x ; θ) := J(x ; θ) +
α

2
||x ||22. (24)

The ℓ2 norm regularization is also referred to as ridge regression or Tikhonov
regularization [6].

Suppose x∗ is minimizer of the J(x ; θ), i.e.:

∇J(x∗; θ) = 0. (25)

The Taylor series expansion of J(x ; θ) up to the second derivative at x∗ gives:

Ĵ(x ; θ) ≈ J(x∗; θ) +∇J(x∗; θ) +
1

2
(x − x∗)⊤H(x − x∗)

= J(x∗; θ) +
1

2
(x − x∗)⊤H(x − x∗), (26)

where H ∈ Rd×d is the Hessian.

Overfitting, Cross Validation, and Regularization 35 / 49



Theory for ℓ2 Norm Regularization

minimize
x

J̃(x ; θ) := J(x ; θ) +
α

2
||x ||22,

Ĵ(x ; θ) ≈ J(x∗; θ) +
1

2
(x − x∗)⊤H(x − x∗).

Using the Taylor approximation in the cost gives us [6]:

J̃(x ; θ) = Ĵ(x ; θ) +
α

2
||x ||22 = J(x∗; θ) +

1

2
(x − x∗)⊤H(x − x∗) +

α

2
||x ||22,

∂J̃(x ; θ)
∂x

= 0+ H(x† − x∗) + α x† set
= 0 =⇒ (H + αI ) x† = Hx∗

=⇒ x† = (H + αI )−1Hx∗, (27)

where x† is the minimizer of J̃(x ; θ).
∂J(x∗; θ)/∂x = 0 because the J(x∗; θ) is a constant vector with respect to x .
The Eq. (27) makes sense because if α = 0, which means we do not have the

regularization term, we will have x† = x∗. This means that the minimizer of J̃(x , θ) will
be the same as the minimizer of J(x ; θ) which is correct according to Eq. (24) where
α = 0.
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Theory for ℓ2 Norm Regularization

If we apply eigenvalue decomposition on the Hessian matrix, we will have:

H = UΛU⊤. (28)

Using this decomposition in Eq. (27), x† = (H + αI )−1Hx∗, gives us:

x† = (UΛU⊤ + αI )−1UΛU⊤x∗ (a)
= (UΛU⊤ + UU⊤αI )−1UΛU⊤x∗

(b)
= (UΛU⊤ + UαIU⊤)−1UΛU⊤x∗ =

(
U(Λ+ αI )U⊤)−1UΛU⊤x∗

(c)
= U(Λ+ αI )−1 U−1U︸ ︷︷ ︸

I

ΛU⊤x∗ = U(Λ+ αI )−1ΛU⊤x∗, (29)

where (a) and (c) are because U is an orthogonal matrix so we have U−1 = U⊤ which
yields to U⊤U = I and UU⊤ = I (because U is not truncated). The (b) is because α is
a scalar and can move between the multiplication of matrices.

The Eq. (29) means that we are rotating x∗ by U⊤x∗ but before rotating it back with
UU⊤x∗, we manipulate it with the term (Λ+ αI )−1Λ.
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Theory for ℓ2 Norm Regularization

Based on Eq. (29), x† = U(Λ+ αI )−1ΛU⊤x∗, we can have the following interpretations:

If α = 0, we have:

x† = U Λ−1Λ︸ ︷︷ ︸
I

U⊤x∗ = UU⊤x∗ (a)
= UU−1︸ ︷︷ ︸

I

x∗ = x∗,

where (a) is because U is an orthogonal matrix and (b) is because U is a non-truncated
orthogonal matrix. This means that if we do not have the penalty term, the minimizer of
J̃(x ; θ) is the minimizer of J(x ; θ) as expected. In other words, we are rotating the
solution x∗ by U⊤ and then rotate it back by U.
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Theory for ℓ2 Norm Regularization

If α ̸= 0, the term (Λ+ αI )−1Λ is:

(Λ+ αI )−1Λ =


λ1

λ1+α
0 . . . 0

0 λ2
λ2+α

. . . 0

...
...

. . .
...

0 0 . . . λd
λd+α

 ,

where Λ = diag([λ1, . . . , λd ]
⊤). Therefore, for the j-th direction of Hessian, we have

λj

λj+α
.

▶ If λj ≫ α, we will have
λj

λj+α
≈ 1 so for the j-th direction we have

(Λ+ αI )−1Λ ≈ I ; therefore, x† ≈ x∗. This makes sense because λi ≫ α means
that the j-th direction of Hessian and thus the j-th direction of J(x ; θ) is large
enough to be effective. Therefore, the penalty is roughly ignored with respect to it.

▶ If λj ≪ α, we will have
λj

λj+α
≈ 0 so for the j-th direction we have

(Λ+ αI )−1Λ ≈ 0; therefore, x† ≈ 0. This makes sense because λj ≪ α means that
the j-th direction of Hessian and thus the j-th direction of J(x ; θ) is small and not
effective. Therefore, the penalty shrinks that direction to almost zero.
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Theory for ℓ2 Norm Regularization

Therefore, the ℓ2 norm regularization keeps the effective directions but shrinks the weak
directions to close to zero.

The following measure is referred to as effective number of parameters or degree of
freedom [7]:

d∑
j=1

λj

λj + α
, (30)

because it counts the number of effective directions as discussed above. Moreover, the
term λj/(λj + α) or (Λ+ αI )−1Λ is called the shrinkage factor because it shrinks the
weak directions.
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ℓ1 Regularization
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Theory for ℓ1 Norm Regularization

As explained before, sparsity is very useful and effective. If x = [x1, . . . , xd ]
⊤, for having

sparsity, we should use subset selection for the regularization:

minimize
x

J̃(x ; θ) := J(x ; θ) + α ||x ||0, (31)

where:

||x ||0 :=
d∑

j=1

I(xj ̸= 0) =

{
0 if xj = 0,
1 if xj ̸= 0,

(32)

is “ℓ0” norm, which is not a norm (so we used “.” for it) because it does not satisfy the
norm properties [15]. The “ℓ0” norm counts the number of non-zero elements so when we
penalize it, it means that we want to have sparser solutions with many zero entries.

According to [16], the convex relaxation of “ℓ0” norm (subset selection) is ℓ1 norm.
Therefore, we write the regularized optimization as:

minimize
x

J̃(x ; θ) := J(x ; θ) + α ||x ||1. (33)

The ℓ1 regularization is also referred to as lasso (least absolute shrinkage and selection
operator) regularization [8].
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Theory for ℓ1 Norm Regularization
Different methods exist for solving optimization having ℓ1 norm, such as proximal
algorithm using soft thresholding [17] and coordinate descent [18, 19]. Here, we explain
solving the optimization using the coordinate descent algorithm.
The idea of coordinate descent algorithm is similar to the idea of Gibbs sampling [20]
where we work on the dimensions of the variable one by one. Similar to what we did for
obtaining Eq. (27), we have:

J̃(x ; θ) = Ĵ(x ; θ) + α ||x ||1 = J(x∗; θ) +
1

2
(x − x∗)⊤H(x − x∗) + α ||x ||1.

For simplicity in deriving an interpretable expression, we assume that the Hessian matrix is
diagonal [6]. For coordinate descent, we look at the j-th coordinate (dimension):

J̃(xj ; θ) = Ĵ(xj ; θ) + α |xj | = J(x∗j ; θ) +
1

2
(xj − x∗j )

2hj + α |xj |+ c,

where x = [x1, . . . , xd ]
⊤, x∗ = [x∗1 , . . . , x

∗
d ]

⊤, hj is the (j , j)-th element of the diagonal
Hessian matrix, and c is a constant term with respect to xj (not dependent to xj ).
Taking derivative with respect to xj gives us:

∂J̃(xj ; θ)

∂xj
= 0 + (xj − x∗j ) hj + α sign(xj )

set
= 0 =⇒

x†j = x∗j −
α

hj
sign(xj ) =

{
x∗j − α

hj
if xj > 0,

x∗j + α
hj

if xj < 0,
(34)

which is a soft thresholding function.
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Theory for ℓ1 Norm Regularization

Soft-thresholding:

x†j = x∗j −
α

hj
sign(xj ) =

{
x∗j − α

hj
if xj > 0,

x∗j + α
hj

if xj < 0,

If |x∗j | < (α/hj ), the solution to the regularized problem, i.e., x†
j , is zero. Recall that in ℓ2

norm regularization, we shrank the weak solutions close to zero; however, here in ℓ1 norm
regularization, we are setting the weak solutions exactly to zero. That is why the solutions
are relatively sparse in ℓ1 norm regularization.

In ℓ1 norm regularization, as shown in this figure, even the strong solutions are a little

shrunk (from the x†j = x∗j line), the fact that we also had in ℓ2 norm regularization.
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Comparison of ℓ2 and ℓ1 Regularization
Another intuition for why the ℓ1 norm regularization is sparse is illustrated below (credit if
Tibshirani - 1996 [8]).

The objective J(x ; θ) has some contour levels like a bowl (if it is convex). The
regularization term is also a norm ball, which is a sphere bowl (cone) for ℓ2 norm and a
diamond bowl (cone) for ℓ1 norm [15].

For ℓ2 norm regularization, the objective and the penalty term contact at a point where
some of the coordinates might be small; however, for ℓ1 norm, the contact point can be at
some point where some variables are exactly zero. This again shows the reason of sparsity
in ℓ1 norm regularization.
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Some slides are inspired by the textbook: Trevor Hastie, Robert Tibshirani, Jerome
Friedman, ”The elements of statistical learning: Data Mining, Inference, and Prediction”,
Springer, 2009 [7].
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