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Dataset

Consider the measurement of a quantity. This quantity can be:
▶ personal health data, including blood pressure, blood sugar, and blood fat,
▶ images from a specific scene but taken from different perspectives,
▶ images from several categories of animals, such as cat, dog, frog, etc.,
▶ medical images, such as digital pathology image patches, including both healthy

and tumorous tissues,
▶ or any other measured signal.

The quantity can be multidimensional, i.e., a set of values, and therefore, every quantity
can be considered a multidimensional data point in a Euclidean space.

Let the dimensionality of this space be d , meaning that every quantity is a d-dimensional
vector, or data point, in Rd . The set of d values for the quantity can be called features of
the quantity.

Multiple measurements of a quantity can exist, each of which is a d-dimensional data
point. Therefore, there will be a set of d-dimensional data points, called a dataset.

For example, the quantity can be an image, whose features are its pixels. The dataset can
be a set of images from a specific scene but with different perspectives and angles.

Preliminaries 3 / 66



Learning Model

Consider a dataset of n data points {x i ∈ Rd}ni=1, each of which is a d-dimensional vector
in the d-dimensional Euclidean space. We can put these vectors column-wise in a matrix
X ∈ Rd×n.

Consider a learning model f which is a map from data space to some output space:

f : Rd → Rp ,

f : x 7→ f (x).
(1)

Usually, p ≤ d but not necessarily.

Preliminaries 4 / 66



Learning Tasks
Learning model is like a new-born baby (it first knows nothing and we should teach it)

Supervised:
▶ Regression: example of learning EMG signals for artificial leg, example of weather

prediction

f (x) ∈ [0, 1]p or f (x) ∈ R.

▶ Classification: example of teaching apples and cucumbers to a baby

f (x) ∈ {ℓ1, ℓ2, . . . , ℓm}.

Unsupervised:
▶ Clustering: example of clustering apples and cucumbers by a baby

f (x) ∈ {ℓ1, ℓ2, . . . , ℓm}.

Environment (world):
▶ Reinforcement learning: example of teaching a dog

f (x) = a ∈ A,

where A is the set of possible actions.
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Learning Tasks

Dimensionality reduction (manifold learning): learning an embedding space

f : Rd → Rp .

where p ≤ d , and usually p ≪ d .
▶ Unsupervised dimensionality reduction: embedding similar patterns close to each

other
▶ Supervised dimensionality reduction: Decreasing the intra-class variances and

increase the inter-class variances
▶ For more information on dimensionality reduction , you can see our textbook [1]:

https://link.springer.com/book/10.1007/978-3-031-10602-6

Numerosity processing:
▶ Outlier (anomaly) detection: detecting outliers in data
▶ Prototype selection [2]: selecting important instances
▶ Prototype generation [3]: selecting and generating important instances
▶ For more information on dimensionality reduction and numerosity processing, you

can see my PhD thesis: [4]:
https://uwspace.uwaterloo.ca/handle/10012/16813
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Other Fields of AI

Some other fields of Artificial Intelligence (AI):

Soft computing:
▶ Fuzzy logic and fuzzy control
▶ Metaheuristic optimization and intelligent search

Biological-inspired (third generation) neural networks - relation to neuroscience and
cognitive science - Example: spiking neural network

Feature engineering (pre-processing):
▶ Feature selection
▶ Feature extraction (dimensionality reduction)

Application of AI in various fields of science and technology
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Expectation, Variance,
Covariance, Bias, MSE
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Random Variable, PDF, PMF, CDF

Random variable X is a mathematical formalization of a quantity which depends on
random events.

▶ Discrete random variable: a countable set of possible values, e.g., {x1, . . . , xm}
▶ Continuous random variable: an uncountable set of possible values, e.g., (0, 1]

Probability mass function (PMF) shows the distribution of a discrete random variable:

f (x) = P(X = x), x ∈ {x1, . . . , xm}. (2)

Probability density function (PDF) shows the distribution of a continuous random
variable:

f (x) = lim
∆x→0

P(x < X < x +∆x)

∆x
. (3)

Cumulative distribution function (CDF) shows the cumulative probabilities until that
value:

F (x) = P(X ≤ x). (4)
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Expectation
Let X be a random variable with probability mass/density function f (x).

Expectation or expected value is the mean of distribution.

Expectation for discrete data, x ∈ {x1, x2, . . . , xm}:

E(X ) =
m∑
i=1

xi f (xi ) = x1 f (x1) + · · ·+ xm f (xm). (5)

Expectation for continuous data, x ∈ D:

E(X ) =

∫
D
x f (x) dx . (6)

If h(x) is a function on X , then:

E(h(x)) =
∫
D
h(x) f (x) dx (7)

Expectation is a linear operator:

E
( k∑

i=1

aiXi

)
=

k∑
i=1

ai E(Xi ). (8)
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Variance

Assume we have variable X and we estimate it. Let the random variable X̂ denote the
estimate of X . Let E(·) and P(·) denote expectation and probability, respectively.

The variance of estimating this random variable is defined as:

Var(X̂ ) := E
(
(X̂ − E(X̂ ))2

)
, (9)

which means average deviation of X̂ from the mean of our estimate, E(X̂ ), where the
deviation is squared for symmetry of difference.

This variance can be restated as:

Var(X̂ ) = E(X̂ 2)− (E(X̂ ))2. (10)

Proof:

Var(X̂ ) = E
(
X̂ 2 + (E(X̂ ))2 − 2X̂E(X̂ )

)
(a)
= E(X̂ 2) + (E(X̂ ))2 − 2E(X̂ )E(X̂ )

= E(X̂ 2)− (E(X̂ ))2,

where (a) is because expectation is a linear operator and E(X̂ ) is not a random variable.

Preliminaries 11 / 66



Bias

Our estimation can have a bias. The bias of our estimate is defined as:

Bias(X̂ ) := E(X̂ )− X , (11)

which means how much the mean of our estimate deviates from the original X .

If the bias of an estimator is zero, i.e., E(X̂ ) = X , the estimator is unbiased. Otherwise, it
is biased.

The trade-off of bias and variance (dart example):
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Mean Squared Error (MSE)
The Mean Squared Error (MSE) of our estimate, X̂ , is defined as:

MSE(X̂ ) := E
(
(X̂ − X )2

)
, (12)

which means how much our estimate deviates from the original X .

The relation of MSE, variance, and bias is as follows:

MSE(X̂ ) = Var(X̂ ) + (Bias(X̂ ))2. (13)

Proof:

MSE(X̂ ) = E
(
(X̂ − X )2

)
= E

(
(X̂ − E(X̂ ) + E(X̂ )− X )2

)
= E

(
(X̂ − E(X̂ ))2 + (E(X̂ )− X )2 + 2(X̂ − E(X̂ ))(E(X̂ )− X )

)
(a)
= E

(
(X̂ − E(X̂ ))2

)
+ (E(X̂ )− X )2 + 2 (E(X̂ )− E(X̂ ))︸ ︷︷ ︸

0

(E(X̂ )− X )

(b)
= Var(X̂ ) + (Bias(X̂ ))2,

where (a) is because expectation is a linear operator and X and E(X̂ ) are not random,
and (b) is because of Eqs. (9) and (11).
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Relation of Variance, Bias, and MSE

The relation of MSE, variance, and bias is as follows:

MSE(X̂ ) = Var(X̂ ) + (Bias(X̂ ))2.

According to Pythagorean theorem:
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Covariance

Covariance is defined as:

Cov(X̂ , Ŷ ) := E
((

X̂ − E(X̂ )
)(
Ŷ − E(Ŷ )

))
. (14)

We can restate it as:

Cov(X̂ , Ŷ ) = E(X̂ Ŷ )− E(Ŷ )E(Ŷ ). (15)

Proof:

Cov(X̂ , Ŷ ) = E
((

X̂ − E(X̂ )
)(
Ŷ − E(Ŷ )

))
= E

(
X̂ Ŷ − X̂E(Ŷ )− E(X̂ )Ŷ + E(X̂ )E(Ŷ )

)
= E(X̂ Ŷ )− E

(
X̂E(Ŷ )

)
− E

(
E(X̂ )Ŷ

)
+ E

(
E(X̂ )E(Ŷ )

)
= E(X̂ Ŷ )− E(X̂ )E(Ŷ )− E(X̂ )E(Ŷ ) + E(X̂ )E(Ŷ )

= E(X̂ Ŷ )− E(X̂ )E(Ŷ ).
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Variance and Covariance
If we have two random variables X̂ and Ŷ , we can say:

Var(aX̂ + bŶ )
(10)
= E

(
(aX̂ + bŶ )2

)
−

(
E(aX̂ + bŶ )

)2
(a)
= a2 E(X̂ 2) + b2 E(Ŷ 2) + 2ab E(X̂ Ŷ )− a2 (E(X̂ ))2 − b2 (E(Ŷ ))2 − 2ab E(Ŷ )E(Ŷ )

(10)
= a2 Var(X̂ ) + b2 Var(X̂ ) + 2abCov(X̂ , Ŷ ), (16)

where (a) is for linearity of expectation.

If the two random variables are independent, i.e., X ⊥⊥ Y , we have:

E(X̂ Ŷ )
(a)
=

∫∫
x̂ ŷ f (x̂ , ŷ)dx̂dŷ

⊥⊥
=

∫∫
x̂ ŷ f (x̂)f (ŷ)dx̂dŷ

=

∫
ŷ f (ŷ)

∫
x̂ f (x̂)dx̂︸ ︷︷ ︸
E(X̂ )

dŷ = E(X̂ )

∫
ŷ f (ŷ)dŷ︸ ︷︷ ︸
E(Ŷ )

= E(X̂ )E(Ŷ ) =⇒ Cov(X̂ , Ŷ ) = 0,

(17)

where (a) is according to definition of expectation. Note that Eq. (17) is not true for the
reverse implication (we can prove by counterexample).

So, if two random variables X̂ and Ŷ are independent, then:

X ⊥⊥ Y =⇒ E(X̂ Ŷ ) = E(X̂ )E(Ŷ ) =⇒ Cov(X̂ , Ŷ ) = 0. (18)
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Variance and Covariance

We can extend Eqs. (16) and (15) to multiple random variables:

Var
( k∑

i=1

aiXi

)
=

k∑
i=1

a2i Var(Xi ) +
k∑

i=1

k∑
j=1,j ̸=i

aiajCov(Xi ,Xj ), (19)

Cov
( k1∑

i=1

aiXi ,

k2∑
j=1

bjYj

)
=

k1∑
i=1

k2∑
j=1

ai bj Cov(Xi ,Yj ), (20)

where ai ’s and bj ’s are not random.

If Xi ’s are independent, we have:

Var
( k∑

i=1

aiXi

)
=

k∑
i=1

a2i Var(Xi ). (21)
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Dependence and Correlation

Dependence is any dependence of two random variables.

Correlation is linear dependence.

Pearson correlation coefficient is defined as:

Corr(X ,Y ) :=
Cov(X ,Y )√
Var(X )Var(Y )

.

− 1 ≤ Corr(X ,Y ) ≤ 1.
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Conditional Expectation and Variance

Conditional probability:

P(X ,Y ) = P(X |Y )P(Y ) = P(Y |X )P(X ). (22)

Bayes’ rule:

P(X |Y )P(Y ) = P(Y |X )P(X ) =⇒ P(X |Y ) =
P(Y |X )P(X )

P(Y )
. (23)

We can have:

P(X |Y ) =
P(Y ,X )

P(Y )
. (24)

Law of total probability or marginalization:

f (y) =
∑
x

f (y |x) f (x), (25)

f (y) =

∫
x
f (y |x) f (x) dx . (26)
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Conditional Expectation and Variance

Conditional expectation:

E(Y |X ) :=
∑
y

y f (y |x) (27)

Law of total expectation or Adam’s law:

E(Y ) = E
(
E(Y |X )

)
(28)

Proof:

E(Y ) =
∑
y

y f (y) =
∑
y

y
∑
x

f (y |x)f (x) =
∑
x

[∑
y

y f (y |x)
]
f (x)

=
∑
x

E(Y |X )f (x) = E
(
E(Y |X )

)
.
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Conditional Expectation and Variance

Law of total variance or Eve’s law:

Var(Y ) = E
(
Var(Y |X )

)
+ Var

(
E(Y |X )

)
. (29)

Proof:

Var(Y ) = E(Y 2)− E(Y )2 =⇒ E(Y 2) = Var(Y ) + E(Y )2.

By law of total expectation:

E(Y 2) = E
(
Var(Y |X ) + E(Y |X )2

)
=⇒ E(Y 2)− E(Y )2 = E

(
Var(Y |X ) + E(Y |X )2

)
− E(Y )2

= E
(
Var(Y |X ) + E(Y |X )2

)
− E

(
E(Y |X )

)2
= E

(
Var(Y |X )

)
+

(
E
(
E(Y |X )2

)
− E

(
E(Y |X )

)2)
= E

(
Var(Y |X )

)
+ Var

(
E(Y |X )

)
.
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Monte Carlo Approximation
Suppose we are considering some d-dimensional data x ∈ Rd . Let f (x) be the Probability
Density Function (PDF) of data. Consider h(x) is a function over the data x . According
to definition, the expectation of function h(x) over the distribution f (x) and the
probability of function h(x) belonging to a set A are:

E(h(x)) =
∫

h(x) f (x) dx , (30)

P(h(z) ∈ A) =

∫
h(x)∈A

f (x) dx , (31)

respectively.
Using a sample of size n from distribution f (x) (i.e., {x1, . . . , xn} ∼ f (x)), we can
approximate Eqs. (30) and (31) by (Monte Carlo approximation):

E(h(x)) ≈
1

n

n∑
i=1

h(xi ), (32)

P(h(z) ∈ A) ≈
1

n

n∑
i=1

I
(
h(xi ) ∈ A

)
, (33)

where I(·) denotes the indicator function which is one and zero when its condition is and
is not satisfied, respectively.
As the above definition states, the MC approximation generates many samples from the
distribution in order to approximate the expectation by mean (or average) of the samples.
Obviously, the more the n is, the better the approximation becomes.
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Sample Mean and Covariance

Assume we have n data points {x i ∈ Rd}ni=1.

Sample mean:

Rd ∋ µ :=
1

n

n∑
i=1

x i . (34)

Sample covariance matrix:

Rd×d ∋ Σ :=
1

n

n∑
i=1

(x i − µ)(x i − µ)⊤. (35)

For this to be an unbiased sample covariance, n should be n − 1 in the denominator:

Rd×d ∋ Σ :=
1

n − 1

n∑
i=1

(x i − µ)(x i − µ)⊤. (36)
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Linear Projection
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Column Space

Consider p basis vectors. We can define a p-dimensional Euclidean space by these p basis
vectors. For example, two vectors define a plane and three vectors define a 3D space.

In terminology: The p basis vectors span the p-dimensional Euclidean space. Or the
p-dimensional Euclidean space is spanned by the p basis vectors.

Consider the p vectors {u1, . . . , up}. These vectors can be stacked columnwise in matrix
U = [u1, . . . , up ] ∈ Rd×p .

The space spanned by the columns of matrix U is called the column space of matrix U,
denoted by Col(U):

Col(U) := span{u1, . . . , up}. (37)

In other words, the space whose bases are the columns of matrix U is called the column
space of matrix U.
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Linear Projection
Assume there is a data point x ∈ Rd . The aim is to project this data point onto the
vector space spanned by p vectors {u1, . . . , up}, where each vector is d-dimensional and
usually p ≪ d .

These vectors can be stacked columnwise in matrix U = [u1, . . . , up ] ∈ Rd×p . In other
words, the goal is to project x onto the column space of U, denoted by Col(U).

As p < d , this projection is projection onto a subspace because we are projecting from
d-dimensional space onto a lower dimensional space.

The projection of x ∈ Rd onto Col(U) ∈ Rp is:

Rp ∋ x̃ := U⊤x . (38)

The reconstruction of x̃ ∈ Rp in the d-dimensional space is:

Rd ∋ x̂ := Ux̃ = UU⊤x . (39)

Reconstruction is its representation in Rd again, but after projection.
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Linear Projection

Reconstruction error: There is a residual/error between the original data x and its
reconstruction (if the data point is already in the column space, this residual is zero):

r = x − x̂ = x − UU⊤x . (40)
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Centering Matrix
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Centering Matrix
Consider a matrix A ∈ Rα×β , which is represented by its rows, A = [a1, . . . , aα]⊤ or by
its columns, A = [b1, . . . , bβ ], where ai and bj denote the i-th row and j-th column of A,
respectively. Note that the vectors are column vectors.

The left centering matrix is defined as:

Rα×α ∋ H := I − (1/α)11⊤, (41)

where 1 = [1, . . . , 1]⊤ ∈ Rα and I ∈ Rα×α is the identity matrix.

Left multiplying this matrix by A, i.e., HA, removes the mean of rows of A from all of its
rows:

HA
(41)
= A − (1/α)11⊤A = (A⊤ − µrows)

⊤, (42)

where the column vector µrows ∈ Rβ is the mean of the rows of A.

The right centering matrix is defined as:

Rβ×β ∋ H := I − (1/β)11⊤, (43)

where 1 = [1, . . . , 1]⊤ ∈ Rβ and I ∈ Rβ×β is the identity matrix.

Right multiplying this matrix to A, i.e., AH, removes the mean of the columns of A from
all of its columns:

AH
(43)
= A − (1/β)A11⊤ = A − µcols, (44)

where the column vector µcols ∈ Rα is the mean of the columns of A.
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Centering Matrix

Both left and right centering matrices can be used at the same time to have a
double-centered matrix A:

HAH = (Iα − (1/α)1α1
⊤
α )A(Iβ − (1/β)1β1

⊤
β )

= (A − (1/α)1α1
⊤
αA)(Iβ − (1/β)1β1

⊤
β )

= A − (1/α)1α1
⊤
αA − (1/β)A1β1

⊤
β + (1/(αβ))1α1

⊤
αA1β1

⊤
β . (45)

The second term removes the mean of the rows of A according to Eq. (42) and the third
term removes the mean of the columns of A according to Eq. (44). The last term,
however, adds the overall mean of A back to it.

In summary:

HA ≈ (A⊤ − µrows)
⊤,

AH ≈ A − µcols,

HAH ≈ (A⊤ − µrows)
⊤ − µcols + µall.
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Centering Matrix
The centering matrix is symmetric because:

H⊤ = (I − (1/α)11⊤)⊤ = I⊤ − (1/α)(11⊤)⊤ = I − (1/α)11⊤
(41)
= H. (46)

The centering matrix is also idempotent:

Hk = HH · · ·H︸ ︷︷ ︸
k times

= H, (47)

where k is a positive integer. Proof:

HH = (I − (1/α)11⊤)(I − (1/α)11⊤)

= I − (1/α)11⊤ − (1/α)11⊤ + (1/α2)1 1⊤1︸︷︷︸
α

1⊤

= I − (1/α)11⊤ − (1/α)11⊤ + (1/α)11⊤ = I − (1/α)11⊤
(41)
= H.

Therefore:

Hk = (H · · · (H(HH︸︷︷︸
H︸ ︷︷ ︸

H︸ ︷︷ ︸
H

))))))) = H.
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Norm
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Inner product

Definition (Inner product of vectors)

Consider two vectors x = [x1, . . . , xd ]
⊤ ∈ Rd and y = [y1, . . . , yd ]

⊤ ∈ Rd . Their inner product,
also called dot product, is:

⟨x , y⟩ = x⊤y =
d∑

i=1

xi yi .

Definition (Inner product of matrices)

We also have inner product between matrices X ,Y ∈ Rd1×d2 . Let X ij denote the (i , j)-th
element of matrix X . The inner product of X and Y is:

⟨X ,Y ⟩ = tr(X⊤Y ) =

d1∑
i=1

d2∑
j=1

X i,j Y i,j ,

where tr(.) denotes the trace of matrix.
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Norm

Definition (Norm)

A function ∥ · ∥ : Rd → R, ∥ · ∥ : x 7→ ∥x∥ is a norm if it satisfies:

1 ∥x∥ ≥ 0, ∀x
2 ∥ax∥ = |a| ∥x∥, ∀x and all scalars a

3 ∥x∥ = 0 if and only if x = 0

4 Triangle inequality: ∥x + y∥ ≤ ∥x∥+ ∥y∥.
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Important norms for vectors

Some important norms for a vector x = [x1, . . . , xd ]
⊤ are as follows.

The ℓp norm is:

∥x∥p :=
(
|x1|p + · · ·+ |xd |p

)1/p
,

where p ≥ 1 and |.| denotes the absolute value.

Two well-known ℓp norms are ℓ1 norm and ℓ2 norm (also called the Euclidean norm) with
p = 1 and p = 2, respectively:

∥x∥1 := |x1|+ · · ·+ |xd | =
d∑

i=1

|xi |,

∥x∥2 :=
√

x21 + · · ·+ x2d =

√√√√ d∑
i=1

x2i ,
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Important norms for matrices

Some important norms for a matrix X ∈ Rd1×d2 are as follows.

The formulation of the Frobenius norm for a matrix is similar to the formulation of ℓ2
norm for a vector:

∥X∥F :=

√√√√√ d1∑
i=1

d2∑
j=1

X 2
i,j ,

where X ij denotes the (i , j)-th element of X .
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Quadratic forms using norms

For x ∈ Rd and X ∈ Rd1×d2 , we have:

∥x∥22 = x⊤x = ⟨x , x⟩ =
d∑

i=1

x2i ,

∥X∥2F = tr(X⊤X ) = ⟨X ,X ⟩ =
d1∑
i=1

d2∑
j=1

X 2
i,j ,

which are convex and in quadratic forms.
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Preliminaries on Derivatives

Preliminaries 38 / 66



Dimensionality of derivative

Consider a function f : Rd1 → Rd2 , f : x 7→ f (x).
Derivative of function f (x) ∈ Rd2 with respect to (w.r.t.) x ∈ Rd1 has dimensionality
(d1 × d2).

This is because tweaking every element of x ∈ Rd1 can change every element of
f (x) ∈ Rd2 . The (i , j)-th element of the (d1 × d2)-dimensional derivative states the
amount of change in the j-th element of f (x) resulted by changing the i-th element of x .

Examples
The derivative of a scalar w.r.t. a scalar is a scalar.

The derivative of a scalar w.r.t. a vector is a vector.

The derivative of a scalar w.r.t. a matrix is a matrix.

The derivative of a vector w.r.t. a vector is a matrix.

The derivative of a vector w.r.t. a matrix is a rank-3 tensor.

The derivative of a matrix w.r.t. a matrix is a rank-4 tensor.
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Dimensionality of derivative

In more details:

If the function is f : R → R, f : x 7→ f (x), the derivative (∂f (x)/∂x) ∈ R is a scalar
because changing the scalar x can change the scalar f (x).
If the function is f : Rd → R, f : x 7→ f (x), the derivative (∂f (x)/∂x) ∈ Rd is a vector
because changing every element of the vector x can change the scalar f (x).
If the function is f : Rd1×d2 → R, f : X 7→ f (X ), the derivative (∂f (X )/∂X ) ∈ Rd1×d2 is
a matrix because changing every element of the matrix X can change the scalar f (X ).

If the function is f : Rd1 → Rd2 , f : x 7→ f (x), the derivative (∂f (x)/∂x) ∈ Rd1×d2 is a
matrix because changing every element of the vector x can change every element of the
vector f (x).
If the function is f : Rd1×d2 → Rd3 , f : X 7→ f (X ), the derivative (∂f (X )/∂X ) is a
(d1 × d2 × d3)-dimensional tensor because changing every element of the matrix X can
change every element of the vector f (X ).

If the function is f : Rd1×d2 → Rd3×d4 , f : X 7→ f (X ), the derivative (∂f (X )/∂X ) is a
(d1 × d2 × d3 × d4)-dimensional tensor because changing every element of the matrix X
can change every element of the matrix f (X ).
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Gradient and Hessian

Definition (Gradient)

Consider a function f : Rd → R, f : x 7→ f (x). In optimizing the function f , the derivative of
function w.r.t. its variable x is called the gradient, denoted by:

∇f (x) :=
∂f (x)
∂x

∈ Rd .

Definition (Hessian)

Consider a function f : Rd → R, f : x 7→ f (x). The second derivative of function w.r.t. to its
derivative is called the Hessian matrix, denoted by:

B = ∇2f (x) :=
∂2f (x)
∂x2

∈ Rd×d .

The Hessian matrix is symmetric. If the function is convex, its Hessian matrix is positive
semi-definite.
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Chain rule

When having composite functions (i.e., function of function), we use chain rule for
derivative. Example:

f (x) =
√

x3 + x2 − x + 10 =
√

g(x), g(x) = x3 + x2 − x + 10,

∂f (x)

∂x
=

∂f (x)

∂g(x)
×

∂g(x)

∂x
=

1

2
√

g(x)
× (3x2 + 2x − 1) =

3x2 + 2x − 1

2
√
x3 + x2 − x + 10

The chain rule in matrix derivatives is usually stated right to left in matrix multiplications
while transpose is used for matrices in multiplication.

Let vec(.) denote vectorization of a Ra×b matrix to a Rab vector.

Let vec−1
a×b(.) be de-vectorization of a Rab vector to a Ra×b matrix.
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Optimization
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Optimization

Lagrangian:
minimize

x
f (x)

subject to yi (x) ≤ 0, i ∈ {1, . . . ,m1},
hi (x) = 0, i ∈ {1, . . . ,m2}.

L(x ,λ,ν) := f (x) +
m1∑
i=1

λiyi (x) +
m2∑
i=1

νihi (x) = f (x) + λ⊤y(x) + ν⊤h(x).

∂L
∂x

set
= 0 =⇒ ...

Unconstrained optimization:

minimize
x

f (x),

x (k+1) := x (k) + (∆x)(k),

Gradient method: x (k+1) := x (k) − η(k)∇f (x (k)),

Newton’s method: x (k+1) := x (k) − η(k)
(
∇2f (x (k))

)−1∇f (x (k)).

Constrained optimization: We can use interior-point method or proximal methods, ...
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Rayleigh-Ritz Quotient
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Rayleigh-Ritz Quotient

The Rayleigh-Ritz quotient or Rayleigh quotient is defined as [5, 6]:

R ∋ R(A, x) :=
x⊤Ax
x⊤x

, (48)

where A is a symmetric matrix and x is a nonzero vector:

A = A⊤, x ̸= 0. (49)

One of the properties of the Rayleigh-Ritz quotient is:

R(A, cx) = R(A, x), (50)

where c is a scalar. Proof:

R(A, cx) =
(cx)⊤A cx
(cx)⊤cx

(a)
=

cx⊤A cx
cx⊤cx

(b)
=

c2

c2
×

x⊤Ax
x⊤x

(48)
= R(A, x),

where (a) and (b) are because c is a scalar.
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Rayleigh-Ritz Quotient
Consider the optimization problem of the Rayleigh-Ritz quotient:

minimize/maximize
x

R(A, x). (51)

According to Eq. (50), this is equivalent to the following problem [6]:

minimize/maximize
x

R(A, x)

subject to ||x ||2 = 1.
(52)

Proof: Let y := (1/||x ||2) x . The Rayleigh-Ritz quotient is:

R(A, y) =
y⊤Ay
y⊤y

=
1/||x ||22
1/||x ||22

×
x⊤Ax
x⊤x

= R(A, x).

Due to the following:

||y ||22 =
1

||x ||22
× ||x ||22 = 1 =⇒ ||y ||2 = 1,

R(A, y) should be optimized subject to ||y ||2 = 1. Changing the dummy variable y to x
gives Eq. (52).

Preliminaries 47 / 66



Rayleigh-Ritz Quotient

Another equivalent problem for Eq. (51) is:

minimize/maximize
x

x⊤Ax

subject to ||x ||2 = 1,
(53)

obtained by inserting the constraint ∥x∥22 = x⊤x = 1 in Eqs. (48) and (52).

The constraint in Eqs. (52) and (53) can be equal to any constant (1 is a constant and
disappears in derivative of Lagrangian).

The generalized Rayleigh-Ritz quotient or generalized Rayleigh quotient is defined as [5]:

R ∋ R(A,B; x) :=
x⊤Ax
x⊤B x

, (54)

where A and B are symmetric matrices and x is a nonzero vector:

A = A⊤, B = B⊤, x ̸= 0. (55)

Preliminaries 48 / 66



Rayleigh-Ritz Quotient
If the symmetric B is positive definite:

B ≻ 0, (56)

it has a Cholesky decomposition:

B = CC⊤, (57)

where C is a lower triangular matrix.

In case B ≻ 0, the generalized Rayleigh-Ritz quotient can be converted to a Rayleigh-Ritz
quotient:

R(A,B; x) = R(D,C⊤x), (58)

where:

D := C−1AC−⊤. (59)

Proof:

RHS = R(D,C⊤x)
(48)
=

(C⊤x)⊤D (C⊤x)
(C⊤x)⊤(C⊤x)

(59)
=

x⊤CC−1A(CC−1)⊤x
x⊤(CC⊤)x

(a)
=

x⊤Ax
x⊤B x

(54)
= R(A,B; x) = LHS,

where RHS and LHS are short for right and left hand sides and (a) is because of Eq. (57)
and CC−1 = I because C is a square matrix.
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Rayleigh-Ritz Quotient
Similarly, one of the properties of the generalized Rayleigh-Ritz quotient is:

R(A,B; cx) = R(A,B; x), (60)

where c is a scalar. Proof:

R(A,B; cx) =
(cx)⊤A cx
(cx)⊤B cx

(a)
=

cx⊤A cx
cx⊤B cx

(b)
=

c2

c2
×

x⊤Ax
x⊤B x

(54)
= R(A,B; x),

where (a) and (b) are because c is a scalar.

Consider the optimization problem of the generalized Rayleigh-Ritz quotient:

minimize/maximize
x

R(A,B; x). (61)

According to Eq. (60), it has an equivalent form:

minimize/maximize
x

x⊤Ax

subject to x⊤B x = 1,
(62)

for the same reason as the Rayleigh-Ritz quotient. The constraint can be equal to any
constant because in the derivative of Lagrangian, the constant will be dropped.
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Eigenvalue and
Singular Value
Decomposition
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Eigenvalue Problem

Eigenvalue and generalized eigenvalue problems play important roles in different fields of
science, including machine learning, physics, statistics, and mathematics.

In the eigenvalue problem, the eigenvectors of a matrix represent the most important and
informative directions of that matrix. For example, if the matrix is a covariance matrix of
data, the eigenvectors represent the directions of the spread or variance of data and the
corresponding eigenvalues are the magnitude of the spread in these directions [7].

These directions are impacted by another matrix in the generalized eigenvalue problem. If
the other matrix is the identity matrix, this impact is cancelled and the eigenvalue
problem captures the directions of the maximum spread.

The eigenvalue problem [8, 9] of a symmetric matrix A ∈ Rd×d is defined as:

Aϕi = λiϕi , ∀i ∈ {1, . . . , d}, (63)

and in matrix form, it is:

AΦ = ΦΛ, (64)

where the columns of Rd×d ∋ Φ := [ϕ1, . . . ,ϕd ] are the eigenvectors and diagonal
elements of Rd×d ∋ Λ := diag([λ1, . . . , λd ]

⊤) are the eigenvalues. Note that ϕi ∈ Rd and
λi ∈ R.
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Eigenvalue Problem

For the eigenvalue problem, the matrix A can be nonsymmetric. If the matrix is
symmetric, its eigenvectors are orthogonal/orthonormal and if it is nonsymmetric, its
eigenvectors are not orthogonal/orthonormal.

Equation (64) can be restated as:

AΦ = ΦΛ =⇒ AΦΦ⊤︸ ︷︷ ︸
I

= ΦΛΦ⊤ =⇒ A = ΦΛΦ⊤ = ΦΛΦ−1, (65)

where Φ⊤ = Φ−1 because Φ is an orthogonal matrix.

There is always Φ⊤Φ = I for orthogonal Φ, but there is only ΦΦ⊤ = I if “all” columns of
the orthogonal Φ exist (it is not truncated, i.e., it is a square matrix). Equation (65) is
referred to as “eigenvalue decomposition”, “eigen-decomposition”, or “spectral
decomposition”.
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Generalized Eigenvalue Problem

The generalized eigenvalue problem [5, 9] of two symmetric matrices A ∈ Rd×d and
B ∈ Rd×d is defined as:

Aϕi = λiBϕi , ∀i ∈ {1, . . . , d}, (66)

and in matrix form, it is:

AΦ = BΦΛ, (67)

where the columns of Rd×d ∋ Φ := [ϕ1, . . . ,ϕd ] are the eigenvectors and diagonal
elements of Rd×d ∋ Λ := diag([λ1, . . . , λd ]

⊤) are the eigenvalues. Note that ϕi ∈ Rd and
λi ∈ R.
The generalized eigenvalue problem of Eq. (66) or (67) is denoted by (A,B).

The (A,B) is called a “pair” or “pencil” [5], and the order in the pair matters, according
to Eq. (67).

The Φ and Λ are called the generalized eigenvectors and eigenvalues of (A,B).

The (Φ,Λ) or (ϕi , λi ) is called the “eigenpair” of the pair (A,B) in the literature [5].

Comparing Eqs. (63) and (66) or Eqs. (64) and (67) demonstrates that the eigenvalue
problem is a special case of the generalized eigenvalue problem where B = I .
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Optimization Forms of (Generalized) Eigenvalue Problem

Optimization Form 1:
maximize

ϕ
ϕ⊤Aϕ,

subject to ϕ⊤B ϕ = 1,
(68)

where A ∈ Rd×d and B ∈ Rd×d . The Lagrangian for Eq. (68) is:

L = ϕ⊤Aϕ− λ (ϕ⊤B ϕ− 1),

where λ ∈ R is the Lagrange multiplier. Equating the derivative of Lagrangian to zero
gives us:

Rd ∋
∂L
∂ϕ

= 2Aϕ− 2λBϕ
set
= 0 =⇒ Aϕ = λBϕ,

which is a generalized eigenvalue problem (A,B) according to Eq. (66), where ϕ is the
eigenvector and λ is the eigenvalue.

As Eq. (68) is a maximization problem, the eigenvector is the one having the largest
eigenvalue. If Eq. (68) is a minimization problem, the eigenvector is the one having the
smallest eigenvalue.
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Optimization Forms of (Generalized) Eigenvalue Problem

Optimization Form 2:
maximize

Φ
tr(Φ⊤AΦ),

subject to Φ⊤B Φ = I ,
(69)

where A ∈ Rd×d and B ∈ Rd×d .
The Lagrangian for Eq. (69) is:

L = tr(Φ⊤AΦ)− tr
(
Λ⊤(Φ⊤B Φ− I )

)
,

where Λ ∈ Rd×d is a diagonal matrix whose entries are the Lagrange multipliers.
Equating the derivative of L to zero gives us:

Rd×d ∋
∂L
∂Φ

= 2AΦ− 2BΦΛ
set
= 0 =⇒ AΦ = BΦΛ,

which is an eigenvalue problem (A,B) according to Eq. (67).
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Optimization Forms of (Generalized) Eigenvalue Problem
Optimization Form 3: Consider the following optimization problem with the variable
ϕ ∈ Rd :

minimize
ϕ

||X − ϕϕ⊤X ||2F ,

subject to ϕ⊤ϕ = 1,
(70)

where X ∈ Rd×n. The objective function in Eq. (70) is simplified as:

||X − ϕϕ⊤X ||2F = tr
(
(X − ϕϕ⊤X )⊤(X − ϕϕ⊤X )

)
= tr

(
(X⊤ − X⊤ϕϕ⊤)(X − ϕϕ⊤X )

)
= tr

(
X⊤X − 2X⊤ϕϕ⊤X + X⊤ϕϕ⊤ϕ︸ ︷︷ ︸

1

ϕ⊤X
)

= tr(X⊤X − X⊤ϕϕ⊤X ) = tr(X⊤X )− tr(X⊤ϕϕ⊤X )

= tr(X⊤X )− tr(XX⊤ϕϕ⊤) = tr(X⊤X − XX⊤ϕϕ⊤).

The Lagrangian is:

L = tr(X⊤X )− tr(XX⊤ϕϕ⊤)− λ(ϕ⊤ϕ− 1),

where λ is the Lagrange multiplier. Equating the derivative of L to zero gives:

Rd ∋
∂L
∂ϕ

= 2XX⊤ϕ− 2λϕ
set
= 0 =⇒ XX⊤ϕ = λϕ =⇒ Aϕ = λϕ,

which is an eigenvalue problem for A according to Eq. (66), where ϕ is the eigenvector
and λ is the eigenvalue.
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Optimization Forms of (Generalized) Eigenvalue Problem

Optimization Form 4: Consider the following optimization problem with the variable
Φ ∈ Rd×d :

minimize
Φ

||X −ΦΦ⊤X ||2F ,

subject to Φ⊤Φ = I ,
(71)

where X ∈ Rd×n. Similar to Eq. (70), the objective function in Eq. (71) is simplified as:

||X−ΦΦ⊤X ||2F = tr(X⊤X − XX⊤ΦΦ⊤)

The Lagrangian is:

L = tr(X⊤X )− tr(XX⊤ΦΦ⊤)− tr
(
Λ⊤(Φ⊤Φ− I )

)
,

Rd×d ∋
∂L
∂Φ

= 2XX⊤Φ− 2ΦΛ
set
= 0 =⇒ XX⊤Φ = ΦΛ =⇒ AΦ = ΦΛ,

which is an eigenvalue problem for A according to Eq. (67). The columns of Φ are the
eigenvectors of A and the diagonal elements of Λ are the eigenvalues.
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Optimization Forms of (Generalized) Eigenvalue Problem

Optimization Form 5: Consider the following optimization problem [5] with the variable
ϕ ∈ Rd :

maximize
ϕ

ϕ⊤ Aϕ

ϕ⊤B ϕ
. (72)

According to the generalized Rayleigh-Ritz quotient method [6], this optimization problem
can be restated as:

maximize
ϕ

ϕ⊤ Aϕ,

subject to ϕ⊤B ϕ = 1,
(73)

The Lagrangian is:

L = ϕ⊤ Aϕ− λ(ϕ⊤B ϕ− 1),

∂L
∂w

= 2Aϕ− 2λB ϕ
set
= 0 =⇒ 2Aϕ = 2λB ϕ =⇒ Aϕ = λB ϕ,

which is a generalized eigenvalue problem (A,B) according to Eq. (66).
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Singular Value Decomposition
Singular Value Decomposition (SVD) [10] is one of the most well-known and effective
matrix decomposition methods. There are different methods for obtaining this
decomposition, one of which is Jordan’s algorithm [10].

SVD has two different forms, i.e., complete and incomplete.

Consider a matrix A ∈ Rα×β . The complete SVD decomposes the matrix as:

Rα×β ∋ A = UΣV⊤, (74)

U ∈ Rα×α, V ∈ Rβ×β , Σ ∈ Rα×β ,

where the columns of U and the columns of V are called left singular vectors and right
singular vectors, respectively.

In complete SVD, Σ is a rectangular diagonal matrix whose main diagonal includes the
singular values. In the cases with α > β and α < β, this matrix is in the following forms:

Σ =



σ1 0 0
...

. . .
...

0 0 σβ

0 0 0
...

...
...

0 0 0


and

σ1 0 0 0 · · · 0
...

. . .
... 0 · · · 0

0 0 σα 0 · · · 0

 ,

respectively. In other words, the number of singular values is min(α, β).
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Singular Value Decomposition

The incomplete SVD decomposes the matrix as:

Rα×β ∋ A = UΣV⊤, (75)

U ∈ Rα×k , V ∈ Rβ×k , Σ ∈ Rk×k ,

where [11]:

k := min(α, β), (76)

and the columns of U and the columns of V are called left singular vectors and right
singular vectors, respectively.

In incomplete SVD, Σ is a square diagonal matrix whose main diagonal includes the
singular values. The matrix Σ is in the form:

Σ =

σ1 0 0
...

. . .
...

0 0 σk

 .
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Singular Value Decomposition

Note that in both complete and incomplete SVD, the left singular vectors are orthonormal
and the right singular vectors are also orthonormal; therefore, U and V are both
orthogonal matrices so:

U⊤U = I , (77)

V⊤V = I . (78)

If these orthogonal matrices are not truncated and thus are square matrices, e.g. for
complete SVD, there are also:

UU⊤ = I , (79)

VV⊤ = I . (80)
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Relation of SVD and EVD

In both complete and incomplete SVD of matrix A, the left and right singular vectors are
the eigenvectors of AA⊤ and A⊤A, respectively, and the singular values are the square
root of eigenvalues of either AA⊤ or A⊤A.

Proof: There is:

AA⊤ = (UΣV⊤)(UΣV⊤)⊤ = UΣV⊤V︸ ︷︷ ︸
I

ΣU⊤ = UΣΣU⊤ = UΣ2U⊤,

which is the eigen-decomposition [12] of AA⊤ where the columns of U are the
eigenvectors and the diagonal of Σ2 are the eigenvalues so the diagonal of Σ are the
square root of eigenvalues.

Also:

A⊤A = (UΣV⊤)⊤(UΣV⊤) = VΣU⊤U︸ ︷︷ ︸
I

ΣV⊤ = VΣΣV⊤ = VΣ2V⊤,

which is the eigenvalue decomposition of A⊤A where the columns of V are the
eigenvectors and the diagonal of Σ2 are the eigenvalues, so the diagonal of Σ are the
square root of eigenvalues.
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Acknowledgement

Some slides are based on our textbook: “Elements of Dimensionality Reduction and
Manifold Learning” [1]

Some slides of this slide deck (expectation parts) are inspired by the lectures of Prof. Mu
Zhu at University of Waterloo, Department of Statistics and Actuarial Science.

For more information on optimization, refer to my course “Optimization Techniques” in
University of Guelph. Link in my YouTube channel:
https://www.youtube.com/playlist?list=PLPrxGIUWsqP3ZBM4Zy5YqfCh1BqM5sJov

More information on Rayleigh-Ritz quotient, eigenvalue problem, and SVD: see our
tutorial paper ”Eigenvalue and generalized eigenvalue problems: Tutorial” [12]

More information on expectation: see our two tutorial papers ”The Theory Behind
Overfitting, Cross Validation, Regularization, Bagging, and Boosting: Tutorial” [13] and
”Sampling algorithms, from survey sampling to Monte Carlo methods: Tutorial and
literature review” [14]
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