
SNE and t-SNE

Statistical Machine Learning (ENGG*6600*02)

School of Engineering,
University of Guelph, ON, Canada

Course Instructor: Benyamin Ghojogh
Summer 2023

SNE and t-SNE 1 / 30

Introduction

SNE and t-SNE 2 / 30

Introduction
Stochastic Neighbor Embedding (SNE) (2003) [1] is a manifold learning and
dimensionality reduction method which can be used for feature extraction [2].

It has a probabilistic approach. It fits the data in the embedding space locally hoping to
preserve the global structure of data [3].

The idea of SNE is to consider every point as neighbors of other points with some
probability where the closer points are neighbors with higher probability. Therefore,
rather than considering k nearest neighbors in a binary manner (whether being neighbors
or not), it considers neighbors in a stochastic way (for how probable it is to be neighbors).

It tries to preserve the probability of neighborhoods in the low-dimensional embedding
space.

There exist some other similar probabilistic dimensionality reduction methods which make
use of Gaussian distribution for neighborhood. Some examples are Neighborhood
Component Analysis (NCA) [4], deep NCA [5], and Proxy-NCA [6].

SNE uses the Gaussian distribution for neighbors in both the input and embedding
spaces. The Student-t distributed SNE, or so-called t-SNE [7], considers the Student-t
and Gaussian distributions in the input and embedding spaces, respectively. The reason
of using Student-t distribution in t-SNE is because of its heavier tails so it can include
more information from the high-dimensional data.

t-SNE is one of the state-of-the-art methods for data visualization; for example, it has
been used for DNA and single-cell data visualization [8].

The goal of SNE is to embed the high-dimensional data {x i}ni=1 into the lower
dimensional data {y i}ni=1 where n is the number of data points. We denote the

dimensionality of high- and low-dimensional spaces by d and p, respectively, i.e. x i ∈ Rd

and y i ∈ Rp . We usually have p ≪ d . For data visualization, we have p ∈ {2, 3}.
SNE and t-SNE 3 / 30

Stochastic Neighbor
Embedding (SNE)

SNE and t-SNE 4 / 30

Stochastic Neighbor Embedding (SNE)
In SNE (2003) [1], we consider a Gaussian probability around every point x i where the
distribution is for probability of accepting any other point as the neighbor of x i ; the
farther points are neighbors with less probability. Hence, the variable is distance, denoted
by d ∈ R, and the Gaussian probability is:

f (d) =
1

√
2πσ2

exp(−
d2

2σ2
), (1)

where the mean of distribution is assumed to be zero.

The fixed multiplier 1√
2πσ2

can be dropped; however, exp(−d2/2σ2) does not add

(integrate) to one and thus it is not a probability density function. In order to tackle this
problem, we can do a trick and divide exp(−d2/2σ2) by the summation of all possible
values of exp(−d2/2σ2) to have a softmax function. Therefore, the probability that the
point x i ∈ Rd takes x j ∈ Rd as its neighbor is:

R ∋ pij :=
exp(−d2

ij)∑
k ̸=i exp(−d2

ik)
, (2)

where:

R ∋ d2
ij :=

||x i − x j ||22
2σ2

i

. (3)

SNE and t-SNE 5 / 30

Stochastic Neighbor Embedding (SNE)

The σ2
i is the variance which we consider for the Gaussian distribution used for the x i . It

can be set to a fixed number or determined by a binary search to make the entropy of
distribution some specific value [1]. Note that according to the distribution of data in the
input space, the best value for the variance of Gaussian distributions can be found.

In the low-dimensional embedding space, we again consider a Gaussian probability
distribution for the point y i ∈ Rp to take y j ∈ Rp as its neighbor:

R ∋ qij :=
exp(−z2ij)∑
k ̸=i exp(−z2ik)

, (4)

where:

R ∋ z2ij := ||y i − y j ||22. (5)

It is noteworthy that the variance of distribution is not used (or is set to σ2
i = 0.5 to

cancel 2 in the denominator) because the variance of distribution in the embedding space
is the choice of algorithm.

SNE and t-SNE 6 / 30

Stochastic Neighbor Embedding (SNE)

We want the probability distributions in both the input and embedded spaces to be as
similar as possible; therefore, the cost function to be minimized can be summation of the
Kullback-Leibler (KL) divergences [9] over the n points:

R ∋ c1 :=
n∑

i=1

KL(Pi ||Qi) =
n∑

i=1

n∑
j=1,j ̸=i

pij log(
pij

qij
), (6)

where pij and qij are the Eqs. (2) and (4).

Note that divergences other than the KL divergence can be used for the SNE
optimization; e.g., see [10].

The gradient of c1 with respect to y i is:

Rp ∋
∂c1

∂y i

= 2
n∑

j=1

(pij − qij + pji − qji)(y i − y j), (7)

where pij and qij are the Eqs. (2) and (4), and pii = qii = 0.

For proof of this, refer to our tutorial “Stochastic neighbor embedding with Gaussian and
student-t distributions: Tutorial and survey” [11] or our textbook.

SNE and t-SNE 7 / 30

Stochastic Neighbor Embedding (SNE)

The update of the embedded point y i is done by gradient descent. Every iteration is:

∆y (t)
i := −η

∂c1

∂y i

+ α(t)∆y (t−1)
i ,

y (t)
i := y (t−1)

i +∆y (t)
i ,

(8)

where momentum is used for better convergence [12].

The α(t) is the momentum. It can be smaller for initial iterations and larger for further
iterations. For example, we can have [7]:

α(t) :=

{
0.5 t < 250,
0.8 t ≥ 250.

(9)

In the original paper of SNE [1], the momentum term is not mentioned but it is suggested
in [7].

The η is the learning rate which can be a small positive constant (e.g., η = 0.1) or can be
updated adaptively according to [13].

Moreover, in both [1] and [7], it is mentioned that in SNE we should add some Gaussian
noise (random jitter) to the solution of the first iterations before going to the next
iterations. It helps avoiding the local optimum solutions.

SNE and t-SNE 8 / 30

Symmetric Stochastic
Neighbor Embedding

SNE and t-SNE 9 / 30

Symmetric Stochastic Neighbor Embedding

In symmetric SNE (2008) [7], we consider a Gaussian probability around every point x i .
The probability that the point x i ∈ Rd takes x j ∈ Rd as its neighbor is:

R ∋ pij :=
exp(−d2

ij)∑
k ̸=l exp(−d2

kl)
, (10)

where:

R ∋ d2
ij :=

||x i − x j ||22
2σ2

i

. (11)

Note that the denominator of Eq. (10) for all points is fixed and thus it is symmetric for i
and j . Compare this with Eq. (2):

R ∋ pij :=
exp(−d2

ij)∑
k ̸=i exp(−d2

ik)
,

which is not symmetric.

SNE and t-SNE 10 / 30

Symmetric Stochastic Neighbor Embedding
The Eq. (10):

R ∋ pij :=
exp(−d2

ij)∑
k ̸=l exp(−d2

kl)
,

has a problem with outliers. If the point x i is an outlier, its pij will be extremely small
because the denominator is fixed for every point and numerator will be small for the
outlier.
However, If we use Eq. (2) for pij :

R ∋ pij :=
exp(−d2

ij)∑
k ̸=i exp(−d2

ik)
,

the denominator for all the points is not the same and therefore, the denominator for an
outlier will also be small waving out the problem of small numerator.
For this mentioned problem, we do not use Eq. (10) and rather we use:

R ∋ pij :=
pi|j + pj|i

2n
, (12)

where:

R ∋ pj|i :=
exp(−d2

ij)∑
k ̸=i exp(−d2

ik)
, (13)

is the probability that x i ∈ Rd takes x j ∈ Rd as its neighbor.

SNE and t-SNE 11 / 30

Symmetric Stochastic Neighbor Embedding

In the low-dimensional embedding space, we consider a Gaussian probability distribution
for the point y i ∈ Rp to take y j ∈ Rp as its neighbor and we make it symmetric (fixed
denominator for all points):

R ∋ qij :=
exp(−z2ij)∑
k ̸=l exp(−z2kl)

, (14)

where:

R ∋ z2ij := ||y i − y j ||22. (15)

Note that the Eq. (14) does not have the problem of outliers as in Eq. (10) because
even for an outlier, the embedded points are initialized close together and not far.

SNE and t-SNE 12 / 30

Symmetric Stochastic Neighbor Embedding

We want the probability distributions in both the input and embedded spaces to be as
similar as possible; therefore, the cost function to be minimized can be summation of the
Kullback-Leibler (KL) divergences [9] over the n points:

R ∋ c2 :=
n∑

i=1

KL(Pi ||Qi) =
n∑

i=1

n∑
j=1,j ̸=i

pij log(
pij

qij
), (16)

where pij and qij are the Eqs. (12) and (14).

The gradient of c2 with respect to y i is:

Rp ∋
∂c2

∂y i

= 4
n∑

j=1

(pij − qij)(y i − y j), (17)

where pij and qij are the Eqs. (12) and (14), and pii = qii = 0.

For proof of this, refer to our tutorial “Stochastic neighbor embedding with Gaussian and
student-t distributions: Tutorial and survey” [11] or our textbook.

SNE and t-SNE 13 / 30

t-distributed
Stochastic Neighbor
Embedding (t-SNE)

SNE and t-SNE 14 / 30

The Crowding Problem

In SNE [1], we are considering Gaussian distribution for both input and embedded spaces.

That is okay for the input space because it already has a high dimensionality.

However, when we embed the high-dimensional data into a low-dimensional space, it is
very hard to fit the information of all the points in the same neighborhood area.

For better clarification, suppose the dimensionality is like the size of a room, as depicted
in this figure. In high dimensionality, we have a large hall including a huge crowd of
people. Now, we want to fit all the people into a small room; of course, we cannot! This
problem is referred to as the crowding problem.

SNE and t-SNE 15 / 30

t-distributed Stochastic Neighbor Embedding (t-SNE)
The main idea of t-SNE (2008) [7] is addressing the crowding problem which exists in
SNE [1].

In the example of fitting people in a room, t-SNE enlarges the room to solve the crowding
problem (see the figure).

Therefore, in the formulation of t-SNE, we use Student-t distribution [14] rather than
Gaussian distribution for the low-dimensional embedded space.

This is because the Student-t distribution has heavier tails than Gaussian distribution,
which is like a larger room, and can fit the information of high dimensional data in the low
dimensional embedding space.

As we will see later, the qij in t-SNE is:

qij =
(1 + z2ij)

−1∑
k ̸=l (1 + z2kl)

−1
,

which is based on the standard Cauchy distribution:

f (z) =
1

π(1 + z2)
, (18)

where π is canceled from the numerator and the normalizing denominator in qij (similar to
the technique of softmax).

SNE and t-SNE 16 / 30

t-distributed Stochastic Neighbor Embedding (t-SNE)

If the Student-t distribution [14] with the general degrees of freedom δ is used, we
would have:

f (z) =
Γ(δ+1

2
)

√
δ × π Γ(δ

2
)
(1 +

z2

δ
)−

δ+1
2 , (19)

where Γ is the gamma function.

Cancelling out the scaling factors from the numerator and denominator, we would have
[15]:

qij =
(1 + z2ij/δ)

−(δ+1)/2∑
k ̸=l (1 + z2kl/δ)

−(δ+1)/2
. (20)

However, as the first degree of freedom has the heaviest tails amongst different degrees
of freedom, it is the most suitable for the crowding problem; hence, we use the first
degree of freedom which is the Cauchy distribution. Note that the t-SNE algorithm,
which uses the Cauchy distribution, may also be called the Cauchy-SNE.

Later, t-SNE with general degrees of freedom was proposed [15].

SNE and t-SNE 17 / 30

t-distributed Stochastic Neighbor Embedding (t-SNE)
In t-SNE [7], we consider a Gaussian probability around every point x i in the input space
because the crowding problem does not exist in the high dimensional data. The
probability that the point x i ∈ Rd takes x j ∈ Rd as its neighbor is:

R ∋ pj|i :=
exp(−d2

ij)∑
k ̸=i exp(−d2

ik)
, (21)

where:

R ∋ d2
ij :=

||x i − x j ||22
2σ2

i

. (22)

Note that Eq. (21) is not symmetric for i and j because of the denominator. We take the
symmetric pij as the scaled average of pi|j and pj|i :

R ∋ pij :=
pi|j + pj|i

2n
. (23)

In the low-dimensional embedding space, we consider a Student’s t-distribution with one
degree of freedom (Cauchy distribution) for the point y i ∈ Rp to take y j ∈ Rp as its
neighbor:

R ∋ qij :=
(1 + z2ij)

−1∑
k ̸=l (1 + z2kl)

−1
, (24)

where:

R ∋ z2ij := ||y i − y j ||22. (25)

SNE and t-SNE 18 / 30

t-distributed Stochastic Neighbor Embedding (t-SNE)

We want the probability distributions in both the input and embedded spaces to be as
similar as possible; therefore, the cost function to be minimized can be summation of the
Kullback-Leibler (KL) divergences [9] over the n points:

R ∋ c3 :=
n∑

i=1

KL(Pi ||Qi) =
n∑

i=1

n∑
j=1,j ̸=i

pij log(
pij

qij
), (26)

where pij and qij are the Eqs. (23) and (24).

The gradient of c3 with respect to y i is:

∂c3

∂y i

= 4
n∑

j=1

(pij − qij)(1 + ||y i − y j ||22)−1(y i − y j), (27)

where pij and qij are the Eqs. (23) and (24), and pii = qii = 0.

SNE and t-SNE 19 / 30

t-distributed Stochastic Neighbor Embedding (t-SNE)
Proof: Proof is according to [7]. Let:

R ∋ rij := z2ij = ||y i − y j ||22. (28)

By changing y i , we only have change impact in zij and zji for all j ’s. According to chain
rule, we have:

Rp ∋
∂c3

∂y i

=
∑
j

(∂c3
∂rij

∂rij

∂y i

+
∂c3

∂rji

∂rji

∂y i

)
.

According to Eq. (28), we have:

rij = ||y i − y j ||22 =⇒
∂rij

∂y i

= 2(y i − y j),

rji = ||y j − y i ||22 = ||y i − y j ||22 =⇒
∂rji

∂y i

= 2(y i − y j).

Therefore:

∴
∂c3

∂y i

= 2
∑
j

(∂c3
∂rij

+
∂c3

∂rji

)
(y i − y j). (29)

SNE and t-SNE 20 / 30

t-distributed Stochastic Neighbor Embedding (t-SNE)
The cost function can be re-written as:

c3 =
∑
k

∑
l ̸=k

pkl log(
pkl

qkl
) =

∑
k ̸=l

pkl log(
pkl

qkl
)

=
∑
k ̸=l

(
pkl log(pkl)− pkl log(qkl)

)
,

whose first term is a constant with respect to qkl and thus to rkl .
We have:

R ∋
∂c3

∂rij
= −

∑
k ̸=l

pkl
∂(log(qkl))

∂rij
.

According to Eq. (24):

R ∋ qij :=
(1 + z2ij)

−1∑
k ̸=l (1 + z2kl)

−1
,

the qkl is:

qkl :=
(1 + z2kl)

−1∑
m ̸=f (1 + z2mf)

−1
,=

(1 + rkl)
−1∑

m ̸=f (1 + rmf)−1
.

We take the denominator of qkl as:

β :=
∑
m ̸=f

(1 + z2mf)
−1 =

∑
m ̸=f

(1 + rmf)
−1. (30)

SNE and t-SNE 21 / 30

t-distributed Stochastic Neighbor Embedding (t-SNE)
We had:

R ∋
∂c3

∂rij
= −

∑
k ̸=l

pkl
∂(log(qkl))

∂rij
, qkl :=

(1 + z2kl)
−1∑

m ̸=f (1 + z2mf)
−1

,=
(1 + rkl)

−1∑
m ̸=f (1 + rmf)−1

,

β :=
∑
m ̸=f

(1 + z2mf)
−1 =

∑
m ̸=f

(1 + rmf)
−1.

We have log(qkl) = log(qkl) + log β − log β = log(qklβ)− log β. Therefore:

∴
∂c3

∂rij
= −

∑
k ̸=l

pkl
∂
(
log(qklβ)− log β

)
∂rij

= −
∑
k ̸=l

pkl

[
∂
(
log(qklβ)

)
∂rij

−
∂
(
log β

)
∂rij

]

= −
∑
k ̸=l

pkl

[
1

qklβ

∂
(
qklβ

)
∂rij

−
1

β

∂β

∂rij

]
.

The qklβ is:

qklβ =
(1 + rkl)

−1∑
m ̸=f (1 + rmf)−1

×
∑
m ̸=f

(1 + rmf)
−1 = (1 + rkl)

−1.

Therefore, we have:

∴
∂c3

∂rij
= −

∑
k ̸=l

pkl

[
1

qklβ

∂
(
(1 + rkl)

−1
)

∂rij
−

1

β

∂β

∂rij

]
.

SNE and t-SNE 22 / 30

t-distributed Stochastic Neighbor Embedding (t-SNE)
We found:

∂c3

∂rij
= −

∑
k ̸=l

pkl

[
1

qklβ

∂
(
(1 + rkl)

−1
)

∂rij
−

1

β

∂β

∂rij

]
.

The ∂
(
(1 + rkl)

−1
)
/∂rij is non-zero for only k = i and l = j ; therefore:

∂
(
(1 + rij)

−1
)

∂rij
= −(1 + rij)

−2,

∂β

∂rij
=

∂
∑

m ̸=f (1 + rmf)
−1

∂rij
=

∂(1 + rij)
−1

∂rij
= −(1 + rij)

−2.

Therefore:

∴
∂c3

∂rij
=−

(
pij

[−1

qijβ
(1 + rij)

−2
]
+ 0 + · · ·+ 0

)
−

∑
k ̸=l

pkl

[1
β
(1 + rij)

−2
]
.

We have
∑

k ̸=l pkl = 1 because summation of all possible probabilities is one. Thus:

∂c3

∂rij
= −pij

[−1

qijβ
(1 + rij)

−2
]
−

[1
β
(1 + rij)

−2
]
= (1 + rij)

−1 (1 + rij)
−1

β︸ ︷︷ ︸
=qij

[pij
qij

− 1
]

= (1 + rij)
−1(pij − qij).

SNE and t-SNE 23 / 30

t-distributed Stochastic Neighbor Embedding (t-SNE)
We found:

∂c3

∂rij
= (1 + rij)

−1(pij − qij).

Similarly, we have:

∂c3

∂rji
= (1 + rji)

−1(pji − qji)
(a)
= (1 + rij)

−1(pij − qij),

where (a) is because in t-SNE, the pij , qij , and rij are symmetric for i and j according to
Eqs. (23), (24), and (28).

Substituting the obtained derivatives in Eq. (29):

∴
∂c3

∂y i

= 2
∑
j

(∂c3
∂rij

+
∂c3

∂rji

)
(y i − y j),

gives us:

∂c3

∂y i

= 4
∑
j

(pij − qij)(1 + rij)
−1(y i − y j),

which is the gradient mentioned before. Q.E.D.

SNE and t-SNE 24 / 30

t-distributed Stochastic Neighbor Embedding (t-SNE)

The update of the embedded point y i is done by gradient descent whose every iteration is
as Eq. (8) where c1 is replaced by c3:

∆y (t)
i := −η

∂c1

∂y i

+ α(t)∆y (t−1)
i ,

y (t)
i := y (t−1)

i +∆y (t)
i .

For t-SNE, there is no need to add jitter to the solution of initial iterations [7] because it
is more robust than SNE.

In t-SNE, it is better to multiply all pij ’s by a constant (e.g., 4) in the initial iterations:

pij := pij × 4, (31)

which is called early exaggeration. This heuristic helps the optimization focus on the
large pij ’s (close neighbors) more in the early iterations.

This is because large pij ’s are affected more by multiplying by 4 than the small pij ’s.

After the neighbours are embedded close to one another, we are free not to do this
multiplication any more and let far-away points be embedded using the probabilities
without multiplication. Note that the early exaggeration is optional and not mandatory.

SNE and t-SNE 25 / 30

t-distributed Stochastic Neighbor Embedding (t-SNE)

We can have general degrees of freedom for Student-t distribution in t-SNE [15].

As we saw in Eqs. (19) and (20), we can have any degrees of freedom for qij (note that α
is a positive integer). We repeat Eq. (20) here for more convenience:

qij =
(1 + z2ij/δ)

−(δ+1)/2∑
k ̸=l (1 + z2kl/δ)

−(δ+1)/2
. (32)

If δ → ∞, the Student-t distribution formulated in Eq. (19) tends to Gaussian distribution
used in SNE [1].

SNE and t-SNE use degrees δ → ∞ and δ = 1 in Eq. (32), respectively.

SNE and t-SNE 26 / 30

Example of t-SNE Embedding (Digit Dataset)

Credit of image: [16]

SNE and t-SNE 27 / 30

Acknowledgment

Some slides are based on our tutorial paper: “Stochastic neighbor embedding with
Gaussian and student-t distributions: Tutorial and survey” [11]

For more information on SNE and t-SNE, refer to our tutorial paper [11].

Some slides of this slide deck are inspired by teachings of Prof. Ali Ghodsi at University of
Waterloo, Department of Statistics.

The code of SNE and t-SNE in my GitHub: https://github.com/bghojogh/SNE-tSNE

t-SNE in sklearn: https:
//scikit-learn.org/stable/modules/generated/sklearn.manifold.TSNE.html

SNE and t-SNE 28 / 30

https://github.com/bghojogh/SNE-tSNE
https://scikit-learn.org/stable/modules/generated/sklearn.manifold.TSNE.html
https://scikit-learn.org/stable/modules/generated/sklearn.manifold.TSNE.html

References

[1] G. E. Hinton and S. T. Roweis, “Stochastic neighbor embedding,” in Advances in neural
information processing systems, pp. 857–864, 2003.

[2] B. Ghojogh, M. N. Samad, S. A. Mashhadi, T. Kapoor, W. Ali, F. Karray, and M. Crowley,
“Feature selection and feature extraction in pattern analysis: A literature review,” arXiv
preprint arXiv:1905.02845, 2019.

[3] L. K. Saul and S. T. Roweis, “Think globally, fit locally: unsupervised learning of low
dimensional manifolds,” Journal of machine learning research, vol. 4, no. Jun, pp. 119–155,
2003.

[4] J. Goldberger, G. E. Hinton, S. T. Roweis, and R. R. Salakhutdinov, “Neighbourhood
components analysis,” in Advances in neural information processing systems, pp. 513–520,
2005.

[5] X. Liu, X. Yang, M. Wang, and R. Hong, “Deep neighborhood component analysis for
visual similarity modeling,” ACM Transactions on Intelligent Systems and Technology
(TIST), vol. 11, no. 3, pp. 1–15, 2020.

[6] Y. Movshovitz-Attias, A. Toshev, T. K. Leung, S. Ioffe, and S. Singh, “No fuss distance
metric learning using proxies,” in Proceedings of the IEEE International Conference on
Computer Vision, pp. 360–368, 2017.

[7] L. van der Maaten and G. Hinton, “Visualizing data using t-SNE,” Journal of machine
learning research, vol. 9, no. Nov, pp. 2579–2605, 2008.

SNE and t-SNE 29 / 30

References (cont.)

[8] D. Kobak and P. Berens, “The art of using t-SNE for single-cell transcriptomics,” Nature
communications, vol. 10, no. 1, pp. 1–14, 2019.

[9] S. Kullback, Information theory and statistics.
Courier Corporation, 1997.

[10] D. J. Im, N. Verma, and K. Branson, “Stochastic neighbor embedding under
f-divergences,” arXiv preprint arXiv:1811.01247, 2018.

[11] B. Ghojogh, A. Ghodsi, F. Karray, and M. Crowley, “Stochastic neighbor embedding with
gaussian and student-t distributions: Tutorial and survey,” arXiv preprint
arXiv:2009.10301, 2020.

[12] N. Qian, “On the momentum term in gradient descent learning algorithms,” Neural
networks, vol. 12, no. 1, pp. 145–151, 1999.

[13] R. A. Jacobs, “Increased rates of convergence through learning rate adaptation,” Neural
networks, vol. 1, no. 4, pp. 295–307, 1988.

[14] W. S. Gosset (Student), “The probable error of a mean,” Biometrika, pp. 1–25, 1908.

[15] L. van der Maaten, “Learning a parametric embedding by preserving local structure,” in
Artificial Intelligence and Statistics, pp. 384–391, 2009.

[16] N. Pezzotti, “Dimensionality-reduction algorithms for progressive visual analytics,” 2019.

SNE and t-SNE 30 / 30

