
Tree and Random Forest

Statistical Machine Learning (ENGG*6600*02)

School of Engineering,
University of Guelph, ON, Canada

Course Instructor: Benyamin Ghojogh
Summer 2023

Tree and Random Forest 1 / 26

Tree

Tree and Random Forest 2 / 26

Tree
Tree is used for classification and regression.

It is easy to implement and is intuitive and how it works is explainable.

It is common to use in bio-statistics and health sciences.

Assume we have a dataset {(x i , yi)}ni=1 where x i ∈ Rd is the data point and yi ∈ R is the
scalar label.

Let x i = [xi1, xi2, . . . , xid]
⊤ where xij denotes the j-th dimension (feature) of x i .

A tree partitions the space into regions. It splits over one of the features at every split.
An example binary tree in 2D is as follows:

Tree and Random Forest 3 / 26

Split in Tree

The initial region is the whole space.

A binary tree splits a region into two disjointed sub-regions whose union is the parent
region:

R1(j , s) = {x i | xij ≤ s}, (1)

R2(j , s) = {x i | xij > s}, (2)

R = R1(j , s) ∪ R2(j , s), (3)

∅ = R1(j , s) ∩ R2(j , s), (4)

where s is the threshold of split on the feature j ∈ {1, . . . , d}.
There are some questions:

▶ Over which feature j do we split?
▶ What is the value of the threshold s?
▶ What constant value (estimated label) should we assign to every region?

Tree and Random Forest 4 / 26

Local Cost Function

There are some questions:
▶ Over which feature j do we split?
▶ What is the value of the threshold s?
▶ What constant value (estimated label) should we assign to every region?

The local cost function of the tree is defined as:

min
j,s

(∑
x i∈R1

(yi − c̄1)
2 +

∑
x i∈R2

(yi − c̄2)
2
)
, (5)

where R1 and R2 are the two sub-regions that the parent region is split to, j is the feature
to split over, s is the value of the threshold, and c̄1 and c̄2 are the mean labels of the
sub-regions:

c̄1 := average({yi |x i ∈ R1}), (6)

c̄2 := average({yi |x i ∈ R2}). (7)

Therefore, we find the best j and s so that we have the smallest mean squared error of
the estimation of the labels in the regions.

Tree and Random Forest 5 / 26

Overfitting and Underfitting

If the depth of the tree is small, the number of children regions is small. So, it is
underfitting.

If the depth of the tree is too large, the number of children regions is too large. In the
worst case, every region can contain one single data point. So, it is overfitting.

Therefore, the number of children nodes in a tree T is a good measure of overfitting and
complexity. Let this number be denoted by |T |.
Question: how large should a tree be?

Solution 1: Keep splitting the tree until the validation error Err starts going up while the
training error err is going down. This idea is similar to the idea of early stopping in neural
networks.

Tree and Random Forest 6 / 26

Global Error
Solution 2: consider the global error of the tree:

|T |∑
m=1

nmQm(T), (8)

where summation is over the children nodes, nm :=
∑n

i=1 I(x i ∈ Rm) is the number of
data points in child region Rm (note that I(.) is the indicator function), and Qm is the
average error of the child region Rm defined as:

Qm :=
1

nm

∑
x i∈Rm

(yi − c̄m)
2. (9)

We can calculate the global error of the tree after every split and if there is not a
sufficient decrease in the global error, we can stop.

Tree and Random Forest 7 / 26

Global Error
We can calculate the global error of the tree after every split and if there is not a
sufficient decrease in the global error, we can stop.

However, this solution is not good because what if the global error in the next split
suddenly decreases drastically! This is like a chess game where we should consider the
long-term reward/cost and not only the short-term reward/cost.

Tree and Random Forest 8 / 26

Regularization and Pruning

Solution 3: Another solution is to use regularization.

We grow the tree by the local error optimization for every split, as done in Eq. (5):

min
j,s

(∑
x i∈R1

(yi − c̄1)
2 +

∑
x i∈R2

(yi − c̄2)
2
)
,

and then we prune it by the regularized global error of the tree:

|T |∑
m=1

nmQm(T) + α|T |, (10)

where α > 0 is the regularization parameter and Qm is the average error of the child
region Rm defined in Eq. (9):

Qm :=
1

nm

∑
x i∈Rm

(yi − c̄m)
2.

Tree and Random Forest 9 / 26

Regularization and Pruning

Pruning is the opposite of splitting regions. It is collapsing or merging child regions into
the parent region so the parent region becomes a new child region.

For pruning, we merge the child tree (merge its children) which has the smallest
regularized global error, defined in Eq. (10).

min
T

|T |∑
m=1

nmQm(T) + α|T |, (11)

where the optimization variable is the tree because every prune makes a new tree.

This optimization is because that child tree plays the smallest role in decrease of the
regularized global cost of the tree.

Tree and Random Forest 10 / 26

Regularization and Pruning

Question: why do we grow the tree until long and then prune? Why don’t we just stop
growing at the desired depth?

▶ This is because we might find interesting splits later in the tree and then prune from
the less important children trees to keep that important split. Note that it is like
playing chess and we should think to long-term analysis.

Tree and Random Forest 11 / 26

Algorithm of regression tree in summary

Algorithm of regression tree in summary:

1 Grow the tree iteratively (recursively) until some long enough depth using:

min
j,s

(∑
x i∈R1

(yi − c̄1)
2 +

∑
x i∈R2

(yi − c̄2)
2
)
.

2 Prune the tree iteratively until its depth becomes the desired depth:

min
T

|T |∑
m=1

nmQm(T) + α|T |,

where:

Qm :=
1

nm

∑
x i∈Rm

(yi − c̄m)
2.

Tree and Random Forest 12 / 26

Decision Tree for
Classification

Tree and Random Forest 13 / 26

Decision Tree for Classification

The tree can be used for classification. It is called decision tree because it decides the
class label of the data points in its regions.

The cost of the decision tree should be a loss for misclassification.

Assume there are c classes and ℓ denotes the label of the the ℓ-th class. We define:

pmℓ =
1

nm

∑
x i∈Rm

I(yi = ℓ) =

∑n
i=1 I(x i ∈ Rm, yi = ℓ)∑n

i=1 I(x i ∈ Rm)
, (12)

where I(.) is the indicator function and nm :=
∑n

i=1 I(x i ∈ Rm) is the number of data
points in child region Rm.

This pmℓ shows what fraction of points in the region Rm have class label ℓ. In other
words, how pure the region is for the class label ℓ.

Tree and Random Forest 14 / 26

Decision Tree for Classification
We had:

pmℓ =
1

nm

∑
x i∈Rm

I(yi = ℓ) =

∑n
i=1 I(x i ∈ Rm, yi = ℓ)∑n

i=1 I(x i ∈ Rm)
.

We can have various cost functions such as these:
▶ The misclassification error:

e =

|T |∑
m=1

(1− pmℓ). (13)

▶ The Gini index:

e =

|T |∑
m=1

c∑
ℓ=1,ℓ ̸=k

pmℓpmk . (14)

▶ The cross entropy:

e = −
|T |∑
m=1

c∑
ℓ=1

pmℓ log(pmℓ). (15)

Tree and Random Forest 15 / 26

Decision Tree for Classification
The misclassification error:

misclassification: e =

|T |∑
m=1

(1− pmℓ).

Gini index: e =

|T |∑
m=1

c∑
ℓ=1,ℓ ̸=k

pmℓpmk .

cross entropy: e = −
|T |∑
m=1

c∑
ℓ=1

pmℓ log(pmℓ).

where the cross entropy is scaled to pass through the point [0.5, 0.5].

Tree and Random Forest 16 / 26

Noise Injection to
Data in Trees

Tree and Random Forest 17 / 26

Noise Injection to Data in Trees

One regularization technique in trees is noise injection to input training data at some
level. This prevents overfitting.

Recall the lecture of overfitting:

Err = err−m σ2, (instance not in the training set)

Err = err− n σ2 + 2σ2
n∑

i=1

∂ f̂i

∂yi
. (instance in the training set)

If we do not add noise to data, σ = 0, so we get Err = err− n σ2 for training data and we
will not understand when it starts to overfit. Therefore, if we get overfit without knowing,
it will work poorly in the test phase.

Tree and Random Forest 18 / 26

Random Forest

Tree and Random Forest 19 / 26

Bagging
Bagging is short for Bootstrap AGGregatING, first proposed by [1] (1996).

It is a meta algorithm which can be used with any model (classifier, regression, etc).

The definition of bootstrapping is as follows. Suppose we have a sample {x i}ni=1 with

size n where f (x) is the unknown distribution of the sample, i.e., x i
iid∼ f (x). We would

like to sample from this distribution but we do not know the f (x). Approximating the
sampling from the distribution by randomly sampling from the available sample is
named bootstrapping. In bootstrapping, we use simple random sampling with
replacement. The drawn sample is named bootstrap sample.

In bagging, we draw k bootstrap samples each with some sample size. Then, we train the
model hj using the j-th bootstrap sample, ∀j ∈ {1, . . . , k}. Hence, we have k trained
models rather than one model. Finally, we aggregate the results of estimations of the k
models for an instance x :

f̂ (x) =
1

k

k∑
j=1

hj (x). (16)

If the model is classifier, we should probably use sign function:

f̂ (x) = sign
(1
k

k∑
j=1

hj (x)
)
. (17)

Tree and Random Forest 20 / 26

Bagging

Let ej denote the error of the j-th model in estimation of the observation of an instance.
Suppose this error is a random variable with normal distribution having mean zero, i.e.,

ej
iid∼ N (0, s) where s := σ2.

We denote the covariance of estimations of two trained models using two different
bootstrap samples by c.

Therefore, we have:

E(e2j) = s =⇒ Var(ej) = E(e2j)− (E(ej))2 = s − 0 = s =⇒ Var(hj (x)) = s, (18)

E(ej eℓ) = c =⇒ Cov(ej , eℓ) = E(ej eℓ)− E(ej)E(eℓ) = c − (0× 0) = c

=⇒ Cov(hj (x), hℓ(x)) = c, (19)

for all j , ℓ ∈ {1, . . . , k}, j ̸= ℓ.

According to Eqs. (16), (18), and (19), we have:

Var
(
f̂ (x)

)
=

1

k2
Var

(k∑
j=1

hj (x)
)
=

1

k2

k∑
j=1

Var(hj (x)) +
1

k2

k∑
j=1

k∑
ℓ=1,ℓ̸=j

Cov(hj (x), hℓ(x))

=
1

k2
ks +

1

k2
k(k − 1)c =

1

k
s +

k − 1

k
c. (20)

Tree and Random Forest 21 / 26

Bagging
We found:

Var
(
f̂ (x)

)
=

1

k
s +

k − 1

k
c.

The obtained expression has an interesting interpretation: If two trained models with two
different bootstrap samples are very correlated, we will have c ≈ s, thus:

lim
c→s

Var
(
f̂ (x)

)
=

1

k
s +

k − 1

k
s = s, (21)

and if the two trained models are very different (uncorrelated), we will have c ≈ 0, hence:

lim
c→0

Var
(
f̂ (x)

)
=

1

k
s +

k − 1

k
0 =

1

k
s. (22)

This means that if the trained models are very correlated in bagging, there is not any
difference from using only one model; however, if we have different trained models, the
variance of estimation improves significantly by the factor of k.
This also implies that bagging never is destructive; it either is not effective or improves
the estimation in terms of variance [2, 1].

The more complex model usually has more variance and less bias. Therefore, the more
variance corresponds to overfitting. As bagging helps decrease the variance of estimation,
it helps prevent overfitting. Therefore, bagging is a meta algorithm useful to have less
variance and not to get overfitted [3].

Bagging can be seen as an ensemble learning method [4] which is useful because of
model averaging [5, 6].

Tree and Random Forest 22 / 26

Random Forest

One of the examples of using bagging in machine learning is random forest (2002) [7].

In random forest, we train different models (trees) using different bootstrap samples
(subsets of the training set).

However, as the trees work similarly, they will be very correlated. For the already
explained reason, this will not have a significant improvement from using one tree.

Random forest addresses this issue by also sampling from the features (dimensions) of
the bootstrap sample. This makes the trained trees very different and thus results in a
noticeable improvement.

Tree and Random Forest 23 / 26

Acknowledgment

There are variations of decision tree but they all have the same base we discussed. Some
variations are C4.55 (1993) [8] and CART (1984) [9]. For more information on CART, see
[10]. For more information on decision trees, see [11, 12].

For more information on trees in machine learning, see the book: Trevor Hastie, Robert
Tibshirani, Jerome H. Friedman, Jerome H. Friedman. “The elements of statistical
learning: data mining, inference, and prediction”. Vol. 2. New York: springer, 2009 [11].

Some slides of this slide deck are inspired by teachings of Prof. Ali Ghodsi at University of
Waterloo, Department of Statistics and Prof. Hoda Mohammadzade at Sharif University
of Technology, Department of Electrical Engineering.

Tree and Random Forest 24 / 26

References

[1] L. Breiman, “Bagging predictors,” Machine learning, vol. 24, no. 2, pp. 123–140, 1996.

[2] P. L. Bühlmann and B. Yu, “Explaining bagging,” in Research report/Seminar für Statistik,
Eidgenössische Technische Hochschule Zürich, vol. 92, Seminar für Statistik,
Eidgenössische Technische Hochschule (ETH), 2000.

[3] L. Breiman, “Arcing classifier (with discussion and a rejoinder by the author),” The annals
of statistics, vol. 26, no. 3, pp. 801–849, 1998.

[4] R. Polikar, “Ensemble learning,” in Ensemble machine learning, pp. 1–34, Springer, 2012.

[5] J. A. Hoeting, D. Madigan, A. E. Raftery, and C. T. Volinsky, “Bayesian model averaging:
a tutorial,” Statistical science, pp. 382–401, 1999.

[6] G. Claeskens and N. L. Hjort, Model selection and model averaging.
Cambridge Books, Cambridge University Press, 2008.

[7] A. Liaw and M. Wiener, “Classification and regression by randomforest,” R news, vol. 2,
no. 3, pp. 18–22, 2002.

[8] J. R. Quinlan, “Program for machine learning,” C4. 5, 1993.

[9] L. Breiman, J. Friedman, R. Olshen, and C. Stone, Classification and regression trees–crc
press.
CRC Press, 1984.

Tree and Random Forest 25 / 26

References (cont.)

[10] J. M. Klusowski, “Analyzing cart,” arXiv preprint arXiv:1906.10086, 2019.

[11] T. Hastie, R. Tibshirani, J. H. Friedman, and J. H. Friedman, The elements of statistical
learning: data mining, inference, and prediction, vol. 2.
Springer, 2009.

[12] W.-Y. Loh, “Classification and regression trees,” Wiley interdisciplinary reviews: data
mining and knowledge discovery, vol. 1, no. 1, pp. 14–23, 2011.

Tree and Random Forest 26 / 26

